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Comments on “Asymptotic Eigenvalue Distributions and Capacity for
MIMO Channels Under Correlated Fading” [1]

Georgy Levin and Sergey Loyka, Senior Member, IEEE

Abstract— A stronger and general sufficient condition for the
asymptotic normality of MIMO channel eigenvalues and its
capacity is given. Physical interpretation of this condition is
discussed. Simple alternative conditions, which do not require
eigenvalue decomposition, are proposed. It is demonstrated that
some popular correlation matrix models satisfy these conditions.
In many cases, the convergence to the asymptotic normality is
at least as 1/

√
nt, where nt is the number of Tx antennas.

Index Terms— Asymptotic analysis, correlated fading, MIMO
channel, outage capacity.

WHILE the exact eigenvalue distribution of MIMO chan-
nels1 is rather complex, Martin and Ottersten [1] pro-

posed a simple and well-tractable asymptotic approximation.
In particular, they proved that when the number of antennas at
the Tx end is large, the eigenvalues of a correlated Rayleigh
fading channel are uncorrelated and asymptotically Gaussian.
This result immediately implies that the outage capacity
distribution of such a channel is also asymptotically Gaussian,
since the capacity is a continuously differentiable function of
the eigenvalues [1].

Some comments that extend and strengthen the results in
[1] are given below. We adopt the original notations and
normalizations in [1], and assume that Q = I · P/nt.

Comment 1: Generalized Convergence Condition. [[1], The-
orem 1] gives a condition under which the eigenvalues of
a correlated Rayleigh MIMO channel are uncorrelated and
asymptotically Gaussian as nt → ∞, which follows from
the Liapounoff Central Limit Theorem. The generality of
this condition can be further extended without any increase
in complexity. Specifically, from a more general formulation
of Liapounoff Theorem2, the generalized condition for [[1],
Theorem 1] is that, for some δ > 0,

lim
nt→∞Znt

(δ) = lim
nt→∞

‖λt‖2+δ

‖λt‖2

= 0 (1)

where the norm ‖λt‖m = (
∑nt

i=1 (λt
i)

m)1/m, and λt =
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1We adopt the original terminology and notations in [1]: the eigenvalues of

HHH are termed the channel eigenvalues, where H is the channel matrix.
2Initially, in 1900, Liapounoff showed that a sum of independent ran-

dom variables xn is asymptotically Gaussian if E(|xn|3) exists, and
3
√

m3/ 2
√

m2 → 0 as n → ∞, where mk =
�n

i=1 E(|xn|k). Shortly after,
in 1901, he found that it is enough to request existence of only some absolute
moments E(|xn|2+δ), δ > 0, and the sum is asymptotically Gaussian if
2+δ
√

m2+δ/ 2
√

m2 → 0 as n → ∞ [[2], Ch. 8].

{λt
i, i = 1..nt} is the vector of eigenvalues of the correlation

matrix Rt. Furthermore, a stronger result holds, as indicated
below.

Lemma 1: If limnt→∞ Znt
(δ) = 0 for some δ > 0, then it

also holds for all δ > 0.
Proof: Assume that limnt→∞ Znt

(δ0) = 0 for some
δ0 > 0. It follows from Liapounoff’s Inequality [2], [3] that
(‖λt‖2+δ / ‖λt‖2)

1/δ ≤ (‖λt‖2+δ0
/ ‖λt‖2)

1/δ0 for δ ≤ δ0

and, hence, Znt
(δ) → 0 for all δ ≤ δ0. On the other

hand, using the norm inequality [[4], Fact 9.7.16], ‖λt‖2+δ ≤
‖λt‖2+δ0

for δ ≥ δ0 and hence Znt
(δ) → 0 for all δ ≥ δ0.

Combining the two, Lemma 1 follows.
Based on Lemma 1, we have the following result.
Theorem 1: The eigenvalues of a correlated Rayleigh

MIMO channel are uncorrelated and asymptotically Gaussian
as nt → ∞, i.e [[1],Theorem 1] holds, if

lim
nt→∞

‖λt‖∞
‖λt‖2

= lim
nt→∞

λt
1

‖λt‖2

= lim
nt→∞

‖Rt‖2

‖Rt‖ = 0 (2)

where λt
1 is the maximal eigenvalue of Rt, ‖Rt‖2 and ‖Rt‖ =(∑nt

k,m=1 |[Rt]k,m|2
)1/2

are spectral and Frobenius norms

respectively [4], [Rt]k,m are elements of Rt.
Proof: Follows immediately from Lemma 1 by choosing

δ → ∞ in (1).
Due to the inequality ‖λt‖2+δ ≥ λt

1, the result in Theorem 1
is indeed stronger than those in [[1], Theorem 1] or in (1).
Note that evaluation of ‖Rt‖2 requires only one (maximal)
eigenvalue, Frobenius norm does not require eigenvalue de-
composition at all, so that unlike (1), condition (2) is easier to
verify. We consider next the convergence rate to the Gaussian
distribution assuming that condition (1) holds.

Definition 1: The convergence rate of Znt
(δ) to zero as

nt → ∞ for given δ is

RZ(δ) = lim
nt→∞− ln Znt

(δ)
ln nt

≤ 1
2
− 1

2 + δ
, (3)

where the inequality is due to Znt
(δ) ≥ n

−1/2+1/(2+δ)
t ,

which, in turn, follows from Liapounoff’s Inequality [[2],
Theorem on p. 228].

Proposition 1: The best overall convergence rate is deter-
mined by the supremum of (3) taken over all δ > 0,

RZ = sup
δ>0

RZ(δ) = RZ(∞) ≤ 1/2, (4)

i.e. in the best possible case Znt
(δ) → 0 as 1/

√
nt. A proof

follows immediately from the fact that Znt
(δ) ≥ Znt

(∞)
and, consequently, RZ(δ) ≤ RZ(∞) for any δ > 0; the
upper bound (the best rate) follows from (3). The best rate
is achieved, for example, when all the eigenvalues are equal
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(i.e. no correlation), or when the correlation at the Tx end
has a Toeplitz structure (see Comment 4). Note that using a
specific fixed δ to find RZ may lead to an incorrect result3, i.e.
the supremum in (4) is essential. It should also be pointed out
that the generalized Liapounoff Theorem does not require δ
to be a constant [3], [5]: it can be a function of nt, δ(nt) > 0,
which further extends the generality of (1). [3] and [5] give
specific examples, which demonstrate greater generality of this
formulation.

Comment 2: Necessary conditions and some cases when
[[1], Theorem 1] does not apply. While the conditions [[1],
eq. 10], (1) and (2) are not easy to deal with, some cases
when [[1], Theorem 1] does not apply can be characterized in
a simple way, which provides simple necessary conditions for
that Theorem.

Corollary 1 to [[1], Theorem 1]: Let λt
1 ≥ λt

2 ≥ ... ≥ λt
nt

be the ordered eigenvalues of Rt. (1) does not hold true, so
that [[1], Theorem 1] cannot be applied, if there is a finite
set of eigenvalues which are not dominated by the rest, i.e. if
there exists k such that

c = lim
nt→∞

∑nt

i=k+1 (λt
i)

2∑k
i=1 (λt

i)
2

< ∞, (5)

which physically means that the multipath is not rich enough
as nt → ∞.

Proof: see Appendix.
From (5), a necessary condition for [[1], Theorem 1] is that

c = ∞. While condition (5) is less general than (1) or (2), it
allows for an insight and is simple to evaluate since it involves
only the second-order moments of λt. Consider two broad
cases where Corollary 1 applies: (i) Rt has a finite number
(k) of non-zero eigenvalues as nt → ∞, which corresponds
to a limited number of multipath in the propagation channel.
Then

∑nt

i=k+1 (λt
i)

2 = 0 and consequently c = 0. Thus, a
necessary physical condition for [[1], Theorem 1] to hold is
that the number of multipath components goes to infinity with
nt. (ii) The largest eigenvalue is not dominated by all other
eigenvalues, i.e.

c = lim
nt→∞

∑nt

i=2

(
λt

i

)2
/(

λt
1

)2
< ∞ (6)

which hold true, for example, when λt
2

√
nt

/
λt

1 < ∞ as
nt → ∞. Thus, a necessary condition for [[1], Theorem 1]
is that limnt→∞ λt

1

/(
λt

2

√
nt

)
= 0. Consider, as an example,

the uniform correlation matrix [6], when all the non-diagonal
entries of Rt are equal to ρt. The eigenvalues in this case can
be found explicitly in a closed form: λt

1 = 1 + (nt − 1) · ρt,
λt

2 = ... = λt
nt

= 1 − ρt, where 0 ≤ ρt ≤ 1 is the
correlation between two antenna elements. Thus, for k = 1,
c = 0 if ρt �= 0, i.e. λt

1 is not dominated by all the other
eigenvalues. In this case it is straightforward to show that,
limnt→∞ Znt

(δ) = 1 and [[1], Theorem 1] does not apply.
Comment 3: Upper Bound on the Accuracy of Gaussian

Approximation. For finite nt, the Gaussian distribution serves
as an approximation of the true one. Its accuracy can be
estimated from the following results.

3For example, the results in [1] correspond to δ = 1, which implies, without
using supremum, RZ ≤ 1/6.

Proposition 2: Let Δnt
(x) = |Fnt

(x) − Φ(x)|, where
Fnt

(x) is the CDF of λ given nt, and Φ(x) is a Gaussian
CDF with the same mean and covariance as that of λ. From
[[7], Theorem 1.1.]4,

Δnt
= sup

x
Δnt

(x) ≤ c · n1/4
r Znt

(δ)2+δ, 0 < δ ≤ 1 (7)

where c ≤ 4 is an absolute constant. Moreover, since the chan-
nel capacity J(λ) (see [1] for the definition) is a continuous
function of λ, and the upper bound in (7) is valid for all x, it
also applies to Δnt

(x) = |Fnt
(x) − Φ(x)|, where Fnt

(x) is
the channel outage capacity distribution given nt, and Φ(x)
is the Gaussian CDF with the same mean and variance as of
J(λ).

In analogy with (3), the rate of convergence Δnt
→ 0 for

given 0 < δ ≤ 1 is defined as

RΔ(δ) = lim
nt→∞− ln Δnt

lnnt
≥ (2 + δ)RZ(δ), (8)

where the inequality is due to (3) and (7). From (3), the best
convergence rate of Znt

(δ) → 0 for given δ is 1/2−1/(2+δ).
In this best case,

RΔ = sup
δ

RΔ(δ) ≥ 1/2, (9)

i.e. the best convergence is at least as 1/
√

nt. It should be
noted that: (i) Even though the lower bound in (9) corresponds
to δ = 1, it does not necessarily mean that the upper bound in
(7) gives the best estimate of Δnt

when δ = 15. (ii) In some
cases, the upper bound in (7) significantly overestimates Δnt

,
so that the convergence is better than expected from the bound
[5] (see also Comment 7).

Comment 4: Convergence Condition for Toeplitz Matrices.
While the conditions in [[1], eq. 10], (1) and (2) are important
theoretical tools, their usefulness for practical computations
is rather limited due to two reasons: (i) The eigenvalues
are known in a closed form only for some simple matrices.
Consequently, the aforementioned conditions can be evaluated
analytically only in such cases. (ii) Numerical evaluation of
these conditions is also difficult, since the numerical complex-
ity (number of operations, inaccuracy, etc.) of the eigenvalue
problem increases rapidly with nt, so that nt → ∞ is
problematic if possible at all. The following theorem gives
a condition that is easier to evaluate.

Theorem 2: Let Rt be a Toeplitz correlation matrix with
elements [Rt]k,m = tk−m, such that

0 < Mt = lim
nt→∞

∑nt−1

k=−nt+1
|tk|2 < ∞, (10)

i.e. Rt is non-degenerate and square-summable6. Then for
∀δ > 0, the following holds:

lim
nt→∞Znt

(δ) =

= (I2+δ)
1/(2+δ) (I2)

−1/2 · lim
nt→∞n

− δ
2(2+δ)

t = 0
(11)

4[[7], Theorem 1.1.] is stated for δ = 1, but it can also be extended to
0 < δ ≤ 1 [8].

5See [5] for detailed discussion of this issue.
6If Rt is non-degenerate and absolutely summable, it also satisfies (10),

since
�nt−1

k=−nt+1 |tk|2 ≤
��nt−1

k=−nt+1 |tk|
�2

.
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where for ∀p > 0

Ip = (2π)−1

∫ 2π

0

fp(x)dx < ∞ (12)

and a non-negative real function f(x) =
∑∞

k=−∞ tk · ejkx is
the spectrum of Rt [9].

Proof: see Appendix.
Not only does Theorem 2 give a practical way to evaluate

the condition (1) for Toeplitz correlation matrices7 without
using eigenvalue decomposition, it also shows that under
condition (10), the channel eigenvalues and so the outage
capacity are always asymptotically Gaussian8. Moreover, it
is straightforward to show using Szego Theorem [9], that

Mt = lim
nt→∞

∑nt−1

k=−nt+1
|tk|2 = lim

nt→∞n−1
t ‖Rt‖2

, (13)

where n−1
t ‖Rt‖ is a measure of correlation and power im-

balance of a MIMO channel introduced in [10]. This measure
affects the outage capacity distribution and was motivated
by asymptotic analysis of the latter, which creates certain
analogy with Znt

(δ). Thus, in the case of Toeplitz matrices, a
necessary condition for Znt

(δ) to converge to zero and hence
for [[1], Theorem 1] to hold is that the measure of correlation
n−1

t ‖Rt‖ → 0 as nt → ∞ 9.
Furthermore, from (11), RZ = 1/2, (the supremum is at

δ → ∞, i.e. under the conditions of Theorem 2, the upper
bound in (4) is achieved and the convergence is as 1/

√
nt.

This result is general for a wide class of Toeplitz correlation
matrices that satisfy (10), regardless of any other details. As a
numerical example, Fig. 1 shows the upper bound in (7) and
Δnt

(x0) vs. nt, where x0 is the outage capacity such that
the outage probability Φ(x0) = 0.01. Z(δ) is calculated at
δ = 1 for Rt given by the exponential correlation model [11]
with correlation parameter ρt = 0.5, Δnt

(x0) is obtained by
Monte-Carlo (MC) simulation using 105 trials. As expected,
the upper bound (solid line) decreases as 1/

√
nt (see the

dashed line for comparison). Δnt
(x0) lies well below the

upper bound, and decreases with nt at least as 1/
√

nt.
Comment 5: Convergence Condition for Arbitrary Matrices.

When Rt is not Toeplitz, Theorem 2 does not apply. However,
it is shown in the Appendix for correlation matrices with an
arbitrary structure, that Znt

(1) is bounded by the norm of Rt

as follows: (
n−1

t ‖Rt‖
)1/3 ≤ Znt

(1) ≤ 1 (14)

Similarly to the Toeplitz correlation structures considered
above, a necessary condition for Znt

(1) to converge to zero
and hence for [[1], Theorem 1] to hold is that the measure of
correlation n−1

t ‖Rt‖ → 0 as nt → ∞. Moreover, from [10],
n
−1/2
t ≤ n−1

t ‖Rt‖ ≤ 1, where the lower bound corresponds
to the case when λt

i = 1, ∀i, i.e. there is no correlation at
the Tx end, and the upper bound is achieved when there is a
single non-zero eigenvalue λt

1 = nt and λt
i = 0 for ∀i �= 1, i.e.

the Tx end is fully correlated. Thus, the overall tendency for

7Toeplitz correlation matrix physically corresponds to a uniform antenna
array geometry, when correlation depends on the spacing between elements
only, but not on their positions.

8Note that the uniform correlation matrix [6] does not satisfy (10), unless
ρt = 0

9In this sense, the Tx antennas have to be "asymptotically uncorrelated".
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Fig. 1. Distance between the outage capacity distribution of a Rayleigh fading
channel and the Gaussian approximation; c = 0.4, nr = 2, Φ(x0) = 0.01.

Znt
(1) is to increase with correlation, which results in slower

convergence for higher correlated channels (see also [10]).

Comment 6: Convergence for Some Popular Correlation
Matrices. While the exponential correlation matrix has been
used in [1], it was not demonstrated that it satisfies the
condition of [[1], Theorem 1]. In fact, the eigenvalues in this
case are given by a transcendental equation [12], which does
not allow easy evaluation of (1). However, using d’Alambert
Ratio Test, it can be shown that in this case Mt < ∞
for |ρt| < 1, where ρt is the correlation between adjacent
Tx antennas, so that following Theorem 2 in Comment 4,
condition (1) is indeed satisfied. Moreover, using (11), for
|ρt| < 1

lim
nt→∞Znt

(1) = (1+4|ρt|2+|ρt|4)1/3

(1+|ρt|2)1/2·(1−|ρt|2)1/6×
× lim

nt→∞n
−1/6
t = 0

, (15)

From the definition of a limit, for any ε > 0, there is
n0 such that for all nt > n0, Znt

≤ ε. (15) shows that
n0 is an increasing function of |ρt|, i.e. larger correlation
results in slower convergence. This supports the conclusion
in Comment 4, and explains the corresponding observation
in [1], which was based on numerical results. When the
correlation is significant only among adjacent antennas and
can be neglected for other pairs of antennas, the elements of
Rt are given by the tri-diagonal correlation matrix [12] for

|ρt| < 1
2

(
cos π

nt+1

)−1

,

[Rt]k,m =

⎧⎪⎪⎨
⎪⎪⎩

1, k = m
ρt, k = m − 1
ρ̄t, k = m + 1
0, otherwise

, (16)

where ρ̄t is the complex conjugate of ρt. It is straightforward
to show that Mt < ∞, i.e. from Theorem 2, Znt

(1) → 0
as nt → ∞. Thus, [[1], Theorem 1] applies in this case.



478 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 2, FEBRUARY 2008

Moreover,

lim
nt→∞Znt

(1) =

(
1 + 6 |ρt|2

)1/3

(
1 + 2 |ρt|2

)1/2
· lim

nt→∞n
−1/6
t = 0, (17)

i.e. similarly to (15), n0 is an increasing function of |ρt|
and higher correlation results in slower convergence. Another
important case is the squared-exponential correlation matrix
defined as

[Rt]k,m =

{
ρ
(m−k)2

t , k ≤ m

ρ̄
(k−m)2

t , k > m
, |ρt| ≤ 1 (18)

This correlation structure has been proposed for the IEEE
802.11n Wireless LANs standard [13] and describes physical
propagation channels where the angular PDF is truncated
Gaussian [14], [15]. While the confirmation of (1) is difficult
in this case, it is straightforward to show that Mt < ∞, |ρt| <
1, and hence from Theorem 2 and [[1], Theorem 1], the chan-
nel eigenvalues and so the outage capacity are asymptotically
Gaussian.

It can be shown, however, that Mt is unbounded for the
popular correlation models which correspond to the uniform
or truncated Laplacian angular distributions of the multipath.
Hence, Theorem 2 does not apply in these cases. Clearly,
whether Mt is finite or not is determined by asymptotic
behavior of Rt’s tails (k,m → ∞). However, the match
between the popular correlation models and real correlation
structures for k,m → ∞ has not been thoroughly studied, if
studied at all, since: (i) in practice nt is always finite, so
that the asymptotic behavior of Rt’s tails had little or no
importance, and (ii) measuring these tails is difficult from the
technical point of view. Thus, the issue of convergence for
practical correlation structures seems to be an open problem.
The usefulness of Theorem 2, however, is somewhat more
general than just with respect to some particular correlation
models. From (10), [[1], Theorem 1] applies for all Toeplitz
correlation structures for which the correlation decays faster
than 1/

√
D, where D is the distance between the antenna

elements.
Comment 7: On Practical Utility of Gaussian Approxima-

tion. The practical utility of the asymptotic Gaussian distrib-
ution is that it can be used as an approximation to the outage
capacity distribution of MIMO channels with finite (realistic)
nt. While the convergence conditions discussed above are
important theoretical tools that provide generic guidance, they
should be used with caution for practical applications due
to the following reasons: (i) Even though condition (1) is
satisfied, it does not mean that Δnt

is sufficiently small for
realistic nt. Consequently, using Gaussian approximation for
realistic (finite) nt may result in inaccurate estimation of the
channel capacity. (ii) In the opposite case, when (1) is not
satisfied, Δnt

may be still sufficiently small for given realistic
nt, so that the Gaussian approximation can be used. Note
also that (1) is a sufficient but not necessary condition. (iii)
The common generic approach to evaluate Δnt

theoretically
is by the upper bound in (7), which, in many cases, is very
conservative for low to moderate nt [5]. As we show above,
this bound does not converge faster then 1/

√
nt, which is

comparatively slow and requires large nt to guarantee accurate
approximation based on the bound alone. In practice, however,
the convergence can be much faster, so that the difference
between the true distribution and its Gaussian approximation
can be indistinguishably small already for nt = 2, as shown
in [16], [17], and in [18] using rigorous statistical methods.
This problem arises from the fact that the upper bound in (7)
applies to a wide class of channel distributions and therefore
cannot be further improved unless specific distributions are
considered [19]. The mathematical results in this area are rare
[5].

APPENDIX

Proof of Corollary 1: Consider a lower bound on Znt
(δ):

Znt
(δ) =

‖λt‖2+δ

‖λt‖2

=
‖μ‖2+δ

‖μ‖2

≥ ‖μ‖−1
2 (19)

where μ = {λt
i/λt

1, i = 1..nt}. Assume that there is a finite
set of k largest eigenvalues which is not dominated by the rest
as nt → ∞, i.e. if S1 =

∑k
i=1 (μi)

2 and S2 =
∑nt

i=k+1 (μi)
2,

then

c
Δ= lim

nt→∞
S2

S1
= lim

nt→∞

∑nt

i=k+1 (λt
i)

2∑k
i=1 (λt

i)
2

< ∞ (20)

From (19),

lim
nt→∞Znt

(δ) ≥ lim
nt→∞ (S1(1 + S2/S1)

−1/2 ≥
≥ (k · [1 + c])−1/2 > 0

(21)

where the second inequality is since S1 ≤ k.
Proof of Theorem 2: Since Mt is finite, from Szego

Theorem [9], the following holds true for ∀p > 0

lim
nt→∞n−1

t

∥∥λt
∥∥p

p
= (2π)−1

∫ 2π

0

fp(x)dx = Ip < ∞, (22)

where f(x) =
∑∞

k=−∞ tk · ejkx is a spectrum of Rt. Note
that since Rt is a correlation matrix, f(x) is non-negative
and real. By substituting (22) in (1), one obtains

lim
nt→∞Znt

(δ) = (I2+δ)
1/(2+δ) (I2)

−1/2 · lim
nt→∞n

−δ
2(2+δ)
t (23)

Note that both I2 and I2+δ are finite (see (22)) and posi-
tive, since I2 = Mt > 0 due to Parseval’s Theorem, and
(I2+δ)

1/(2+δ) ≥ (I2)
1/2

> 0 due to Liapounoff’s Inequality
[[2], Theorem p. 228]. Using (23), for ∀δ > 0,

lim
nt→∞Znt

(δ) = 0 (24)

Proof of (14): Below we adopt the normalization tr(Rt) =
nt [1]. Lower Bound: First, note that ‖λt‖3

3 ≥ n−1
t ‖Rt‖4:

‖λt‖3
3 = n−1

t

∑nt

i=1

(
(λt

i)
1/2

)2 · ∑nt

i=1

(
(λt

i)
3/2

)2 ≥
≥ n−1

t

(∑nt

i=1 (λt
i)

2
)2 = n−1

t ‖Rt‖4 (25)

where the inequality is due to Cauchy-Schwarz inequality.
Thus,

‖λt‖3

‖λt‖2

≥
(
n−1

t ‖Rt‖4
)1/3

(
‖Rt‖2

)1/2
=

(
n−1

t ‖Rt‖
)1/3

(26)
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Upper Bound: First, note that ‖λt‖3
3 ≤ ‖Rt‖3:

‖λt‖3
3 =

∑nt

i=1 (λt
i)

2·λt
i ≤

≤ (∑nt

i=1 (λt
i)

4
)1/2 (∑nt

i=1 (λt
i)

2
)1/2 ≤

≤ ∑nt

i=1 (λt
i)

2 · (∑nt

i=1 (λt
i)

2
)1/2 = ‖Rt‖3

(27)

where the first inequality is due to Cauchy-Schwarz inequal-
ity, and the second one follows from

(∑nt

i=1 (λt
i)

4
)1/2 ≤∑nt

i=1 (λt
i)

2. Thus,

‖λt‖3

‖λt‖2

≤ ‖Rt‖
‖Rt‖ = 1 (28)
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