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Abstract – Keyhole MIMO channels, which were predicted 
theoretically and also observed experimentally, have recently 
received significant attention as they may appear in some 
practically-important propagation scenarios. This paper 
concentrates on a capacity study of such channels. Closed-form 
expressions for the instantaneous SNR and outage capacity 
distributions of a spatially correlated keyhole MIMO channel are 
given. The case of non-singular correlation matrices with distinct 
eigenvalues is considered in detail. When the number of Tx (Rx) 
antennas is large, the correlated keyhole channel tends 
asymptotically to the Rayleigh diversity channel with a single Tx 
(Rx) and multiple Rx (Tx) antennas. The outage capacity at low 
outage probabilities and the diversity order of the keyhole 
channel is upper-bounded by that of the equivalent Rayleigh 
diversity channel. The asymptotic outage capacity distribution, 
when the numbers of Tx and Rx antennas are both large, is 
Gaussian under general conditions on the correlation (the 
average SNR affects the mean and the correlation affects the 
variance). The Gaussian approximation is accurate already for a 
reasonably small number of antennas. Using the single-
parameter exponential correlation matrices, we show that the 
outage capacity at low outage probabilities decreases with 
correlation.  

Index Terms - MIMO systems, keyhole channel, outage 
capacity distributio, correlation. 

I. INTRODUCTION 
Multiple-Input-Multiple-Output (MIMO) systems have 

become an attractive solution in wireless communications due 
to enormously large spectral efficiency. One of the major 
statistical characteristics of the MIMO channel in multipath 
environment is its outage capacity, which gives the ultimate 
upper limit on the error-free information rate with a given 
probability of outage [1]. The outage capacity distribution of 
different channels has been extensively studied, and many 
analytical and empirical results have been obtained. For 
example, a non-correlated and correlated Rayleigh MIMO 
channels are well studied and closed-form expressions for their 
outage capacity distributions have been found [2]. Many 
measurement-based works show that the wide range of real 
channels follows closely those analytical results [3]. 

On the contrary, the outage capacity distribution of keyhole 
MIMO channels has not been studied in sufficient depth. The 
keyhole channel was analytically predicted in [4]. It can be 

modeled as a concatenation of two Rayleigh sub-channels 
separated by a keyhole whose dimensions are much smaller 
than the wavelength. As shown in [4], the presence of the 
keyhole degenerates the channel, i.e. its rank is one regardless 
the number of Tx and Rx antennas. Consequently, the capacity 
of such channels deteriorates significantly comparing to the 
Rayeigh channels with the same number of Tx and Rx 
antennas. There is a significant interest in the keyhole channels 
in recent literature as they may appear in some practically 
important propagation scenarios. Chizhik et al [5] suggests a 
keyhole scenario where the link between Tx and Rx ends is due 
to the 1-D diffraction. There is a number of experimental 
evidences of a keyhole channel. The measurements of the 
channel capacity along a hallway, reported in [6], show the 
decrease in capacity with distance, which is explained by the 
keyhole effect in the hallways. Almers et al [7] show that the 
keyhole model describes well wireless channels when the wave 
propagates via narrow tunnels such as waveguides. However, 
the literature dealing with the information theoretic analysis of 
such channels is rather limited. Closed-form expressions for the 
mean (ergodic) capacity of a spatially uncorrelated keyhole 
channel are presented in [8]. Performance analysis of space-
time block codes over an uncorrelated keyhole channel is 
shown in [9], where, in particular, the moment generating 
function of the instantaneous after-decoding signal to noise 
ratio (SNR) is derived, and the symbol error rates (SER) for 
various codes are evaluated. An asymptotically tight lower 
bound on the mean capacity of a spatially correlated keyhole 
channel is proposed in [10]. 

These papers, however, do not consider the outage capacity, 
which is a more relevant performance measure in a fading 
channel from a practical perspective (i.e. for a given quality of 
service) as compared to the mean capacity. To fill the gap, the 
present paper derives closed-form expressions for the 
instantaneous SNR and the outage capacity distributions of 
correlated keyhole MIMO channels. We consider a particular 
but the most common case where the correlation matrices at the 
Tx and Rx ends are non-singular and have distinct eigenvalues. 
We show that the keyhole channel is statistically different from 
traditional diversity channels, which also have rank one. 
However, when the number of either Tx or Rx antennas is 
large, the keyhole channel tends asymptotically to the Rayleigh 
diversity channel with a single Tx or Rx antenna respectively. 
The capacity distribution at low outage probabilities and the 
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diversity order of the keyhole channel are upper-bounded by 
those of the equivalent Rayleigh diversity channel. 

Since the expression for the exact capacity distribution is 
rather complicated and does not allow for significant insight, 
we use the asymptotic analysis, which has already been 
successfully exploited in [11] and [12] for the Rayleigh MIMO 
channels, to derive the asymptotic outage capacity distribution 
of keyhole MIMO channels when the number of Tx and Rx 
antennas is large. We show that, under certain general 
conditions on correlation, this distribution is Gaussian; the 
average SNR affects the mean, which is independent of the 
correlation, and the correlation affects the variance. In order to 
study the impact of the correlation on the outage capacity in 
explicit form, we consider the exponential and quadratic 
exponential correlation matrix models [13, 14] and show 
analytically that the larger the correlation the larger the 
variance of the asymptotic capacity. In turn, the larger variance 
results in smaller capacity at low outage probabilities. 

Finally, we demonstrate that the exact capacity distribution 
follows closely the asymptotic one already for a reasonably 
small number of Tx and Rx antennas; the discrepancy is 
insignificant from the practical point of view. Hence, the 
simple asymptotical expression not only offers a significant 
insight, but also can be applied to practical problems. 

II. KEYHOLE MIMO CHANNEL CAPACITY 
Consider a spatially correlated keyhole MIMO channel 

with tn  Tx and rn  Rx antennas (see Fig. 1). Let the element 

kmH , rt nmnk ...1 ;..1 == , of the channel transfer matrix H  
be a complex channel gain from the thm  transmit to the 

thk receive antenna. The gain matrix of a keyhole channel is 
given by [4]: 

H
trhhH =                                    (1) 

where ( )H denotes the Hermitian transpose, th [ ]1×tn  and 

rh [ ]1×rn  are mutually independent random vectors 
representing the complex gains from the transmit antennas to 
the keyhole and from the keyhole to the receive antennas 
respectively. Since the considered keyhole channel is a 
concatenation of the two correlated Rayleigh sub-channels, th  
and rh  are complex circular symmetric correlated Gaussian 
vectors with zero means and correlation matrices 

}{ H
ttt E hhR =  and }{ H

rrr E hhR =  respectively, where {}E  
denotes expectation. H  is normalized such that 

rt nnE =}{ 2H , where  is the 2L  norm, and 

1}{}{ 2121 == −−
rrtt EnEn hh , which also implies 

1}{}{ 11 == −−
rrtt tracentracen RR . 

From [1], when the channel state information (CSI) is 
available at the Rx but not the Tx end, the instantaneous 
capacity (i.e. the capacity for a given channel realization) of a 
quasi-static frequency flat MIMO channel in natural units 
[ ]nat  is given by: 

( )]/det[ln 0 t
H nC HHI γ+=                    (2) 

where det  is the determinant, I is [ ]rr nn ×  identity matrix and 

0γ is the average SNR per Rx antenna. Substituting (1) in (2) 
and using the fact that for any suitable matrices A  and B , 

[ ] [ ]BAIABI +=+ detdet , it is straightforward to show that the 
instantaneous capacity of the keyhole channel is: 

2 20 0ln 1 ln 1t r
t t

C
n n

   γ γ= + = + α   
   

h h           (3) 

Following (3), a technique to achieve the capacity is to 
implement maximum ratio combining (MRC) at the Tx and Rx 
ends such that the different signals from the Tx antennas would 
add up coherently at the keyhole and also at the Rx end. Based 
on this concept 22

rt hh=α  in (3) is a normalized 
instantaneous SNR of the combined signal at the receiver. 
Since the instantaneous capacity is a continuous, monotonically 
increasing function of α , the cumulative distribution function 
(CDF) of C , which is also the outage capacity distribution 

)(xFC , is given by: 

( )0/)1()( γ−= α
x

tC enFxF                   (4) 

where )(xFα is the CDF of α . The exact expressions for 
)(xFα  and consequently for )(xFC  are derived in the next 

section. 

III. EXACT OUTAGE CAPACITY DISTRIBUTION 
Since α  is a product of two mutually independent non-

negative random variables 2
tt h=β  and 2

rr h=β , the 
probability density function (PDF) )(zfα , CDF )(zFα  and 
characteristic function (CF) )(ωΦα  of α  are given by: 

0
( ) ( / ) ( ) ln( )

t r
f z f z x f x d x

∞
α β β= ∫                  (5) 

0
( ) ( / ) ( )

t r
F z F z x f x dx

∞
α β β= ∫                     (6) 

0
( ) ( ) ( )

t r
x f x dx

∞
α β βΦ ω = Φ ω∫                     (7) 

TxTx
EndEnd

RxRx
EndEnd

keyholekeyhole

 
Fig. 1. A keyhole MIMO channel. Each end has rich multipath so that 

the sub-channels are correlated Rayleigh fading. 
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where )( ),( ),( ωΦβββ ttt
xfxF  and )(xF

rβ , )(xf
rβ , )(ωΦβr

 
are the CDF, PDF and CF of tβ  and rβ  respectively. 

Let β  be either tβ  or rβ . β  has the generalized 2χ  
distribution with characteristic function 

[ ]RI ω−=ωΦ −
β j1det)(  where R  is either tR  or rR  and 

1−=j . Consider a particular case where R  is non-singular 
and has n  distinct eigenvalues kλ , the CF of β  can be 
represented as: 

( ) ( )1 1
11

( ) 1 1
n n

k k kkk
j A j− −

β ==
Φ ω = − ωλ = − ωλ∑∏   (8) 

where kA  are the coefficients of the partial-fraction-
decomposition of )(ωΦβ . It can be shown that when kλ  are 
distinct  

( )∏
≠
=

−λλ−=
n

km
m kmkA 1

1/1                 (9) 

The derivation of (9) is rather simple and it is omitted due to 
the page limit. From (8) the CDF of β  is given by: 

1
( ) (1 exp{ / })

n
k kk

F x A xβ =
= − − λ∑           (10) 

Using (5), (6) and (10), the PDF and CDF of α  are obtained 
as: 

∑ ∑= =α 










λλλλ
= t rn

k

n

m r
m

t
k

r
m

t
k

r
m

t
k xKAAxf

1 1 0
42)(         (11) 

11 1
4 4( ) 1 t rn n t r

k m t r t rk m
k m k m

x xF x A A Kα = =

 
 = −
 λ λ λ λ 

∑ ∑  (12) 

where t
kA  and r

mA  are the coefficients of the partial-fraction-
decomposition of )(ωΦβt

 and )(ωΦβr
 respectively, t

kλ  and 
r
mλ  are the eigenvalues of tR  and rR , and )(xKn  is the n-

order modified Bessel function of the second kind. Finally, by 
substituting (12) in (4) the exact expression for the outage 
capacity distribution of the spatially correlated keyhole MIMO 
channel is obtained. Eq. (11), (12) and (4) have been validated 
by extensive Monte-Carlo (MC) simulations for various tn , 

rn , 0γ , tR  and rR . As an example, Fig. 2 shows the 
analytical outage capacity distribution (4) and MC simulated 
one using 10,000 trials for 0 20dBγ =  and t rn n× =  2x2, 4x4 
and 8x8. tR  and rR  were modeled using exponential 
correlation matrix [13] with correlation parameters 0.5tr =  
and 0.8rr =  at Tx and Rx ends respectively. In all considered 
cases the agreement between the simulation and analytical 
distribution is good. The maximum deviation of the simulated 
distribution is within the ±σ  error range, where σ  is a 
standard deviation of the simulated distribution due to the finite 
statistics (10,000 trials) (see [3] for details on statistical 

analysis). The ±σ  boundaries are not shown for the figure 
clarity. 

It is interesting to consider asymptotic outage capacity 
distribution of the keyhole MIMO channels. For this we need 
the following lemma. A proof is omitted due to the page limit. 

Lemma 1: Let β  be a generalized 2χ  random variable 
with CF [ ]RI ω−=ωΦ −

β j1det)( , where R  is an n n×  

correlation matrix. If ∞<−

∞→
}{lim 1 Rtracen

n
 and 

0lim 22 =−

→∞
Rn

n
, the distribution of 1n− β  is asymptotically 

Gaussian as n→∞  with mean }{1 Rtracen−=µ  and variance 
222 R−=σ n . 

Using (7), it can be shown that when either tn  or rn  tends 
to infinity and either tR  or rR  satisfies the conditions of 
Lemma 1, the asymptotic CF’s of α  are: 

( )1( ) det r tj n−
αΦ ω → − ωI R , as tn →∞       (13) 

( )1( ) det t rj n−
αΦ ω → − ωI R , as rn →∞       (14) 

A proof follows directly form Lemma 1 and it is omitted due to 
the page limit. Eq. (13) and (14) mean that the asymptotic 
distributions of α  are identical to those of rtn β  and trn β  
respectively. Therefore following (3), the asymptotic 
instantaneous capacities of the keyhole channel are given by: 

( )0ln 1
d

rC→ + γ β , as tn →∞                  (15) 

0ln 1
d

r
t

t

n
C

n
 γ

→ + β 
 

 as rn →∞                (16) 

where 
d
→  means convergence in distribution. Note that the 

right side of (15) is explicitly the instantaneous capacity of the 
rn×1 Rayleigh channel and (16) is that of the 1×tn  Rayleigh 
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Fig. 2. Outage capacity of a keyhole channel: analytical distribution vs. 

MC simulation. 
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channel with the Rx antenna gain equal to rn . This asymptotic 
behavior of the keyhole channel is physically explained by the 
fact that when ∞→tn  the Raleigh sub-channel at the Tx end 
is asymptotically Gaussian with one equivalent Tx antenna, 
which corresponds to the Rx diversity channel. Similarly, when 

∞→rn  the sub-channel at the Rx end is asymptotically 
Gaussian with one Rx antenna, which corresponds to the Tx 
diversity channel. This fact has been proven in [9] for 
uncorrelated keyhole channels, eq. (15) and (16) show that the 
same is true for the correlated channels under the conditions of 
Lemma 1. Since (15) and (16) are both continuous, 
monotonically increasing functions of rβ  and tβ  respectively 
and the CDF’s of )(xF

tβ and )(xF
rβ  are given by (10), the 

asymptotic outage capacity distributions of the keyhole channel 
for ∞→tn  and ∞→rn  are given respectively by: 

( )1
0( ) ( 1)

r
x

CF x F e−
β→ γ − , as tn →∞          (17) 

1
0( ) ( 1)

t
x t

C
r

n
F x F e

n
−

β
 

→ γ − 
 

, as rn →∞       (18) 

Since the increase in the number of Tx or Rx antennas can 
not decrease the mean capacity or diversity order of a MIMO 
channel, and since the keyhole channel tends asymptotically to 
the rn×1  or 1×tn  Rayleigh diversity channels when either tn  
or rn  increases, the capacity at low outage probabilities and 
diversity order of the equivalent Rayleigh diversity channels 
upper-bound those of the keyhole channel. To illuminate this 
fact, the outage capacity distributions of different 3×tn  
keyhole and 1x3 equivalent Rayleigh channels are plotted in 
Fig. 3 for dB300 =γ . tR  and rR  were modeled using the 
exponential correlation matrix with correlation parameters 

0.7r =  at both Tx and Rx ends. Clearly, as the number of Tx 
antennas increases, the outage capacity of the corresponding 
keyhole channels approaches asymptotically that of the 
equivalent 1x3 Rayleigh channel. 

Eq. (4) for the exact outage capacity distribution has a 
complicated form, which makes it difficult to get insight and to 
evaluate the effect of various parameters on the capacity. In 

particular the impact of correlation on the capacity distribution 
is difficult to see. Even though the asymptotic distributions 
above underlines the relationship between the keyhole channel 
and the equivalent Rayleigh diversity channels, eq. (17) and 
(18) are still intricate and do not contribute much to that 
understanding. Moreover, when tn  or rn  are large and the 
correlation at either Tx or Rx end is low, the partial fraction 
decomposition coefficients (9) are very large and the numerical 
calculation of (4) suffers from the loss of precision. To 
overcome all these problems, we derive below the asymptotic 
outage capacity distribution of the correlated keyhole channel 
when both tn  and rn  are large. 

IV. ASYMPTOTIC OUTAGE CAPACITY DISTRIBUTION 
We begin with the following theorem, which is important 

for further discussion. 

Theorem 1: Let C  be an instantaneous capacity of the 
correlated keyhole channel given in (3); }{ H

ttt E hhR =  and 

}{ H
rrr E hhR = . When both tn  and rn  tend to infinity, the 

distribution of C  is Gaussian in probability if 
}{lim 1

ttn
tracen

t

R−

∞→
 and }{lim 1

rrn
tracen

r

R−

→∞
 are finite and 

0limlim 2222 == −
→∞

−
→∞ rrnttn

nn
rt

RR . Moreover, if the channel 

is normalized so that 1lim { } 1
t

t tn
n trace−

→∞
=R  and 

1lim { } 1
r

r rn
n trace−

→∞
=R , the asymptotic mean µ  and the 

variance 2σ  of C  are as follows: 

22222
0  );1ln( rrttr nnn RR −− +=σγ+=µ     (19) 

A proof is based on Lemma 1 and it is omitted due to the page 
limit. The conditions of Theorem 2 do not require either 
distinct eigenvalues of the correlation matrices tR  and rR , or 
det 0t ≠  R , [ ]det 0r ≠R . Therefore the outage capacity 
distribution of an uncorrelated keyhole MIMO channel is 
asymptotically Gaussian as well, with the mean as in (19) and 
variance 2 1 1 t rn n− −σ = + . As follows from (19), it is not 
necessarily true that increase in the number of antennas 
decreases the variance and hence, the outage probability, but 
only if 2σ  is monotonically decreasing with tn  and rn , i.e. 

tR  and rR  increase not faster than 11
tn −ε  and 21

rn −ε  
respectively for some 1 2,  0ε ε > . 

Since µ  is a function of rn  and 0γ  only, the immediate 
conclusion is that correlation has no effect on the asymptotic 
mean capacity, but only on the variance. In contrast, increase in 
the average SNR increases the mean capacity while the 
variance remains unchanged. We note that the asymptotic mean 
capacity in (19) and the upper bound on the mean capacity of 
the finite order keyhole channel proposed in [8] are identical. 
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Fig. 3. Outage capacity distributions: nx3 keyhole channels vs. 1x3 

Rayleigh channel. 
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Unlike the exact distribution, the asymptotic one is 
expressed through the simple functions of matrices tR  and rR  
such as trace and norm rather than through eigenvalues and 
coefficients of the partial-fraction-decomposition. This makes 
the analysis simpler. Further we consider two single-parameter 
correlation matrix models for tR  and rR  to show explicitly 
the impact of correlation on the asymptotic capacity 
distribution. 

First, we consider the exponential correlation model [13], 
where the elements of correlation matrix R , either tR  or rR , 
are represented through a single complex correlation parameter 
r  as following: 

;  
 , 1 

;  

m k

km k m

r m k
R r

r m k

−

−

 ≥= <
<

                 (20) 

where r  is the complex conjugate of r . This model allows for 
significant insight and has been successfully used for many 
communications problems. Despite its simplicity, it is a 
physically-reasonable model in the sense that the correlation 
decreases as the distance between antennas increases. It can be 
shown that R  in (20) satisfies the conditions of Lemma 1 and 
consequently those of Theorem 2, 

2
21 2

2

11lim { } 1;  lim lim 0
1n n n

r
n trace n

n r
− −

→∞ →∞ →∞

+
= = ⋅ =

−
R R  (21) 

A proof is based on the convergence properties of the 
geometric series and is omitted due to the page limit. 
Therefore, when both tR  and rR  are given by the exponential 
model the asymptotic capacity distribution of such a keyhole 
channel is Gaussian with the mean as in (19) and the variance 
given by 

2

2

2

2
2

1

11
1

11

r

r

rt

t

t r

r
nr

r
n −

+
⋅+

−

+
⋅=σ                   (22) 

where tr  and rr  are the correlation parameters in tR  and rR  
respectively. To get some insight, assume that rt nnn ==  and 

rt rrr == , then the asymptotic capacity distributions of an 
uncorrelated 0=r  and correlated 0≠r  keyhole channels 
have the same mean ( )01ln γ+ n  but different variances 2

uσ  and 
2
cσ : 

22

2 2
1

1
c

u

r

r

∆ +σ′η = =
σ −

                             (23) 

For any 1<r , 22
uc σ≥σ  i.e. 1≥η′ . Moreover, ′η  is a 

monotonically increasing function of r . Therefore, the outage 
capacity of the uncorrelated channel is larger than that of the 
correlated one for the same outage probability 5.0<outP . The 
larger r , the larger the gap between the two capacities. 

However, for 2.0≤r , 2 2
c uσ ≈ σ . In this case the correlation 

has no significant impact on the asymptotic capacity unless a 
very low outage probability is of interest. When 5.0>outP , the 
corresponding outage capacity of the correlated channel is 
larger than that of the uncorrelated one. However, this range of 
probabilities has little importance if any from the practical 
point of view. We show later on that the exact outage capacity 
distribution of a 3x3 keyhole channel is already close to the 
asymptotic one. To demonstrate the effect of correlation 
discussed above, Fig. 4 shows the asymptotic outage capacity 
distributions of the 3x3 keyhole channels with exponential 
correlation at both Tx and Rx ends for dB300 =γ . We see, in 
particular, that the distributions for 0r =  and 0.2r =  are 

almost the same for 910outP −≥ , however, as r  increases the 
outage capacity decreases drastically at low outage 
probabilities ( 0.1outP < ). 

Another physically-based single-parameter correlation 
matrix model is the quadratic exponential (QE) one. In this 
model the elements of the correlation matrix R  are given as 
[14]: 

2

2

( )

( )

;  
 , 1 

;  

m k

km k m

r m k
R r

r m k

−

−

 ≥= <
 <

              (24) 

Here the correlation between different antennas decays 
much faster with distance than in the previous example. This 
model describes well the scenario with Gaussian angular 
spectrum. Unlike the previous model, there are such complex-
valued r  for which R  is not positive semi-definite. These 
values should be avoided. Apparently for the QE correlation 
matrix 1}{lim 1 =−

∞→
Rtracen

n
 and 22lim

n
n−

→∞
R  can be bounded 

from above and below using the Cauchy Integral formula as 
follows: 

22 1lim lim 1
2lnn n

n
n r

−

→∞ →∞

 π≤ ⋅ + 
−  

R                (25) 

(
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Fig. 4. Asymptotic outage capacity distributions of the 3x3 keyhole 
channel with exponential correlation. 
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22 1lim lim 1 { 2ln }
2lnn n

n erfc r
n r

−

→∞ →∞

 π≥ ⋅ + ⋅ − 
−  

R  (26) 

where }{xerfc  is the complimentary error function. Since 

0lim 22 =−

→∞
Rn

n
, from Theorem 1 the asymptotic outage 

capacity distribution of the keyhole channel with the QE 
correlation at both Tx and Rx ends is Gaussian with the mean 
given in (19) and the variance bounded by either (25) or (26). 
We notice that using the upper-bound (25) in place of the 
variance of the asymptotic outage capacity distribution makes 
the latter closer to the exact distribution when tn  and rn  are 
finite. Thus we limit further discussion to the upper bound 
only. 

Similarly to the previous analysis, assuming that 
rt nnn ==  and rt rrr == , the asymptotic capacity 

distributions of an uncorrelated 0=r  and correlated 0≠r  
keyhole channels have the same mean ( )01ln γ+ n  and the 
variances ratio η′′  can be estimated using the upper bound in 
(25): 

1  ,
ln2

12

2
<

−
π+=

σ
σ=η′′

∆
r

ru

c                (27) 

For any 1<r , 1≥η′′  and it is a monotonically increasing 
function of r . Therefore the effect of correlation in this case is 
similar to that of the exponential correlation matrix. The outage 
capacity decreases with increasing r  for 5.0<outP . 

While the Gaussian approximation for the outage capacity 
distribution is simple, it is valid when both tn  and rn  tend to 
infinity. For given tn  and rn , the exact distribution approaches 
the asymptotic one faster for larger average SNR. Moreover, in 
some cases, the asymptotic distribution follows closely the 
exact one starting from 2x2 keyhole channel. To demonstrate 
this, the exact and asymptotic capacity distributions of 2x2, 3x3 
and 5x5 keyhole MIMO channels with the exponential 

correlation are shown in Fig. 5. The correlation parameters are 
0.7t tr r= =  and dB300 =γ . Clearly, the difference is 

negligible for most practical purposes. However, there are 
cases when the discrepancy between the exact and asymptotic 
outage capacity distributions is larger. We explain this by the 
slow convergence of 1

t tn− β  and 1
t rn− β  to the corresponding 

Gaussian random variables. 

V. CONCLUSION 
There is a similarity between the asymptotic outage 

capacity distribution of the spatially correlated keyhole channel 
and that of the uncorrelated [11] and correlated [12] Rayleigh 
MIMO channels, which turn to be Gaussian in all considered 
cases. The fact that the outage capacities of so different 
channels are all asymptotically Gaussian may be an indication 
of generality of the Gaussian model in the asymptotic outage 
capacity analysis of MIMO systems. 
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Fig. 5. Keyhole channel outage capacity: exact vs. asymptotic 

distribution. 
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