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Abstract—The Bell Labs layered space–time (BLAST) algo-
rithm is simple, and hence, a popular choice for a multiple-input
multiple-output (MIMO) receiver. Its bit-error rate (BER) per-
formance has been studied mainly using numerical (Monte Carlo)
techniques, since exact analytical evaluation presents serious
difficulties. Close examination of the problem of BLAST BER
performance analysis reveals that the major difficulty for analyt-
ical evaluation is due to the optimal ordering procedure. Hence,
we analyze the algorithm performance without optimal ordering.
While this is a disadvantage of the analysis, there are certain
advantages as well. Exact closed-form analytical evaluation is
possible for arbitrary number of transmit and receive antennas in
an independent, identically distributed Rayleigh fading channel,
which provides deep insight and understanding that cannot be
gained using the Monte Carlo approach alone. A result on the
maximum ratio combining weights, which is used at each detection
step, is derived to obtain a number of results: independence of
noise, distribution of signal-to-noise ratio (SNR), and block- or
bit-error rates. We present a detailed analysis and expressions
for uncoded error rates at each detection step, which hold true
for any modulation format and take simple closed form in some
cases. Asymptotic form of these expressions for large SNRs is
particularly simple. Extensive Monte Carlo simulations validate
the analytical results and conclusions.

Index Terms—Bit-error rate (BER), Bell Labs layered
space–time (BLAST), error propagation, multiantenna systems,
multiple-input multiple-output (MIMO), performance analysis.

I. INTRODUCTION

THE Bell Labs layered space–time (BLAST) algorithm is
simple and hence a popular choice for a multiple-input

multiple-output (MIMO) receiver, which also achieves a sig-
nificant portion of, or, under certain conditions, the full MIMO
capacity [1]–[3]. Its bit-error rate (BER) performance has been
studied mainly numerically (Monte Carlo (MC) techniques)
since analytical evaluation presents serious difficulties, espe-
cially when no bounds or approximations are used. While the
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performance of system (i.e., with two transmit (Tx) and
receive (Rx) antennas) can be analytically evaluated in a

closed form without using any bounds [4], [5], an extension of
the analysis to the general case of system has not been found
yet. Hence, various bounds and approximations have been em-
ployed to attack the problem [6]. Consequently, the solutions
found are limited in some way. An additional limitation of the
analysis in [4] and [5] is that a noncoherent (i.e., powerwise)
equal gain combining (NC EGC) was used after interference
nulling out (projection), which is not optimum, and that the
after-projection noise correlation was ignored.

The approach adopted in this paper is different. Close exam-
ination of the problem of BLAST BER performance analysis
reveals that the major difficulty for closed-from exact analytical
evaluation is due to the optimal ordering procedure. Hence, we
analyze the algorithm performance without optimal ordering.
Clearly, this is a disadvantage of the analysis. However, there
are certain advantages as well: 1) closed-form exact analytical
evaluation is possible in the general case of system, which re-
sults in exact BER expressions; 2) this provides deep insight
and understanding that cannot be gained using the MC approach
alone; 3) there exists a hope that the techniques developed can
be further extended to account for the optimal ordering; 4) com-
paring the performance of the no-ordering algorithm with that
with the optimal ordering allows one to better understand the
advantages provided by the ordering and various differences in
the performance; and 5) computational complexity of the algo-
rithm without optimal ordering is significantly less and, hence,
an implementation complexity is smaller. Contrary to [5], we
employ the optimum maximum ratio combining (MRC) after
the interference projection (taking into account the after-projec-
tion noise correlation), which provides the best performance in
terms of the output signal-to-noise ratio (SNR), and hence, the
BER. This also results in exact closed-form expressions for un-
conditional average BER at each step, which are not available
in [5]. Thus, a precise quantification of the error propagation ef-
fect is possible.

The approach consists essentially of obtaining new results
on the optimal MRC weights without ordering. These weights
are expressed as a product of a projection matrix by part of the
channel matrix and it is thus possible to prove that the after-com-
bining noise components at each detection step are Gaussian
and independent of each other. A closed-form expression of the
output SNR distributions at each step is obtained with an as-
sumption of error-free detection at the previous steps. These dis-
tributions are used to obtain relatively precise outage, block-,
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bit-, and total bit-error rates. A more detailed analysis, which
still makes good use of the MRC weight properties but with con-
ditioning on previous step error events, permits obtaining exact
BER expressions for binary phase-shift keying (BPSK) modu-
lation without the error-free detection assumption, i.e., taking
into account the error propagation. Finally, we point out that
the uncoded diagonal (D)-BLAST performance is identical to
that of vertical (V)-BLAST in terms of the total error rate, and
that all the results also apply to the QR-decomposition-based
V-BLAST.

It should be mentioned that there exists certain similarity be-
tween the V-BLAST, the decision-feedback multiuser detector
(DF-MUD) [11], [16] and the decision-feedback equalizer
(DFE) [10], [15] as they employ essentially equivalent signal
processing algorithms to eliminate interference from different
streams, users, or symbols ([11] gives a detailed discussion
of various MUD algorithms and their performance analysis;
it also provides an extensive reference list). However, the
performance of these algorithms may differ significantly, es-
pecially in a fading channel (for example, while adding more
receive antennas in the V-BLAST increases the diversity order,
adding more spreading sequences in a multiuser code-division
multiple-access (CDMA) system with the DF-MUD or more
taps in the DFE does not). One way to obtain the average
error rates for the V-BLAST would be to employ, with proper
modifications, the instantaneous error rate results obtained
for the DF-MUD [11], [16], [17] or the DFE [18] (note that
these results often rely on various bounds, approximations,
or simulations, especially when taking into account the error
propagation), and to average them out over the channel sta-
tistics (fading). In this paper, we adopt a more direct and also
simpler approach of step-by-step analysis of the V-BLAST and
introduce “semi-instantaneous” error rates, which rely on the
fact that the interstream interference (ISTI) (due to the error
propagation) is Gaussian in a Rayleigh fading channel. This
simplifies the derivation of average error rates significantly
and results in exact closed-form expressions, which take into
account the error propagation without any approximations or
bounds. As usually, high-SNR approximations of those expres-
sions offer significant insight into the system performance.

The paper is organized as follows. Section II presents basic
channel and V-BLAST algorithm models and the assumptions
made. Section III gives a detailed analysis of the after-com-
bining instantaneous SNR and noise at each step. Section IV
gives a generic analysis of the outage probability, instantaneous
and average BER, block error rate (BLER), and total bit-error
rate (TBER). A relationship between BLER and TBER is also
discussed. Section V specifies the results of Section IV to the
case of , , and systems with BPSK modulation
and gives exact closed-form BER expressions. Section VI pro-
vides MC simulation results, which validate the analytical eval-
uation of the previous sections. Finally, Section VII concludes
the paper.

II. THE V-BLAST ALGORITHM

The main idea of the BLAST architecture is to split the in-
formation bit stream into several substreams and transmit them

in parallel using a set of Tx antennas (the number of Tx an-
tennas equals the number of substreams) at the same time and
frequency. At the Rx end, each Rx antenna “sees” all the trans-
mitted signals, which are mixed due to the nature of the wireless
propagation channel. Using appropriate signal processing at the
receiver, these signals can be separated so that the matrix wire-
less channel is transformed into a set of virtual parallel indepen-
dent channels (provided that the multipath is rich enough).

The standard baseband system model is given by

(1)

where and are the Tx and Rx vectors, respectively, is the
channel matrix, i.e., the matrix of the complex channel

gains between each Tx and each Rx antenna, is the number of
Rx antennas, is the number of Tx antennas, , and is
the additive white Gaussian noise (AWGN), which is assumed
to be , i.e., independent and identically distributed
(i.i.d.) in each branch.

The job of the V-BLAST algorithm is to find given and
in a computationally efficient way. The V-BLAST processing
begins with the first Tx symbol and proceeds in sequence to the

th symbol. When the optimal ordering procedure is employed,
the Tx indexing is changed prior to the processing. The main
steps of the algorithm are as follows [1], [3].

1) The interference cancellation step: At the th processing
step (i.e., when the signal from the th transmitter is de-
tected) the interference from the first transmitters
can be subtracted based on the estimations of the Tx sym-
bols and the knowledge of the channel matrix

(2)

where is the th column of , and are the detected
symbols (which are assumed to be error-free).

2) The interference nulling step: Based on the knowledge of
the channel matrix, the interference from yet-to-be-de-
tected symbols can be nulled out using the Gram–Schmidt
orthogonalization process (applied to the column vectors
of ) and orthogonal projection on the subspaced spanned
by yet-to-be-detected symbols

(3)

where is the projection matrix on the subspace orthog-
onal to that spanned by :

, where , [8]
and “ ” means Hermitian conjugate. Clearly, this corre-
sponds to complete [i.e., zero-forcing (ZF)] ISTI cancella-
tion. While the minimum mean-square error (MMSE) al-
gorithm would perform better, it is more difficult to imple-
ment, and also is much more challenging to analyze. We
further assume the ZF ISTI cancellation.

3) The optimal ordering procedure: The order of symbol pro-
cessing is organized according to their after-processing
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SNRs in the decreasing order, i.e., the symbol with highest
SNR is detected first.

III. ANALYSIS OF THE V-BLAST ALGORITHM

The following basic assumptions are employed in this paper:
1) the channel is random, quasi-static (i.e., fixed for every

frame of information bits but varying from frame to frame),
frequency-independent (i.e., negligible delay spread); the
components of are (i.e., i.i.d. Rayleigh fading
with unit average power gain);

2) equal-power constellations are used;
3) the Tx signals, noise, and channel gains are independent of

each other;
4) perfect channel knowledge is available at the receiver, but

not at the transmitter;
5) there is no performance degradation due to synchroniza-

tion and timing errors;
6) no coding is used.
It should be noted that some of the results below do not need

all these assumptions. As it was indicated above, the optimal
ordering procedure will be omitted in this paper. We follow the
approach to V-BLAST analysis proposed in [4] and [5], where it
was shown that the conditional (i.e., assuming no detection error
at the first steps) after-processing instantaneous (i.e., for
given channel instant) signal power at the th processing step
is

(4)

where means equal in distribution, and different are inde-
pendent of each other (this follows directly from the geometric
analysis in [5] and also from the QR decomposition of ; see
the end of Section V for details). The th step has diversity order
equal to , the smallest one being at the first step, and
the largest at the last one. Note that the fact that the distribution
is conditional (no error propagation) does not limit the analysis,
since, as we show below, the conditional distribution at each step
is sufficient to find the BLER and outage probability taking into
account the error propagation. The distribution of follows
also from the Bartlett decomposition of the complex Wishart
matrix [7] (see the end of Section V).

The best way to improve the output SNR is to use MRC after
the interference nulling-out step, i.e., to form the decision vari-
able

(5)

where are the optimum weights. However, the well-known
MRC expressions for the weights and the output SNR cannot
be applied directly, since the orthogonal projection during the
nulling-out step [see (3)] results in correlated branch noise. The
after-projection noise correlation matrix is

(6)

where denotes expectation (in this case, over the noise). The
MRC combining weights are given in this case by the solu-
tion of the following generalized eigenvalue problem (see Ap-
pendix A):

(7)

where is the after-projection signal covariance matrix at
step . Remarkably, as the detailed analysis of Appendix A
demonstrates, the output SNR is still the same as that for i.i.d.
branch noise

(8)

where is the after-projection signal, and we have
assumed that (i.e., an equal-power constellation. The
results below can also be generalized to an unequal-power case).
We stress that this is a nontrivial result that holds true because
of special structure of the projection matrices . The optimum
(MRC) weights are given by

(9)

Since these weights already include the projection, they can be
applied directly to . The output signal can be presented as

(10)

Since at different steps are independent of each other, so
are . From this, however, it does not follow that the decisions
and, hence, errors at each step are independent of each other,
as the latter requires for the noise to be independent at each
step, not just the SNR. To demonstrate that the instantaneous
noise is indeed independent at each step, we first show that

(11)

Indeed, can be presented as

(12)

where orthonormal vectors satisfy the fol-
lowing requirement:

span span
(13)

The second equality in (12) follows from the Gram–Schmidt
orthonormalization procedure [5]. Since

(14)
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it follows that

(15)

which is what one would expect intuitively as eliminates all
the components in span , which includes
also the components in span for
and, hence, is redundant. Using this result, one can show that

(16)

i.e., optimum weights at different steps are orthogonal to each
other.

Consider now the output noise covariance matrix

(17)

where the expectation is over the noise. Using (9), (10), and (16),
one obtains

(18)

where if and 0 otherwise, and

denotes the (Euclidean) norm. Since are com-
plex Gaussian (for given channel realization), independence fol-
lows from zero correlation. Hence, the decisions and errors are
independent at each step, and the conditional error rates are in-
dependent, too. This result parallels the one for ZF DF-MUD
[11], as they employ similar processing algorithms.1

IV. OUTAGE PROBABILITY AND ERROR RATES

As (8) demonstrates, statistical analysis of the SNR for a
fading channel is equivalent to that of the output signal power.
Using the distribution of the signal power at each detection step
given above (i.e., (4); see [5] for more details), the conditional
outage probability at step , conditioned on error-free detection
in the previous steps, can be found immediately

(19)

where is the average per-branch SNR, and the corresponding
probability density function (PDF) is

(20)

Due to the independence of at different steps, the joint SNR
PDF is the product of the step SNR PDFs (20).

1This was pointed out by an anonymous reviewer.

A. Error-Rate Evaluation

The conditional (i.e., given no error at the first steps)
average (over the channel statistics) BER at the th step can be
expressed in the standard form

(21)

where is the instantaneous BER (for given ), which is
determined by the modulation format, and denotes an average
error rate. Noting that has the distribution, the av-
erage BER can be expressed in closed form for many modula-
tion formats [10]. Since the instantaneous conditional BER at
step is simply , the probability of having an error at step

and no errors at steps 1 to is

(22)

where we have taken into account the error independence. The
probability of having at least one error at steps 1 to is

(23)

Finally, defining a BLER as a probability of having at least
one error at the detected Tx vector, one can express it as

(24)

We emphasize that in order to find BLER, one needs only the
conditional error probabilities at each step; the error propagation
does not affect (24) as the BLER is independent of it. Another
way to look at the probabilities in (23) and (24) is as the error
probability at steps and , respectively, assuming 100% error
propagation (i.e., an error at any previous step necessarily results
in an error in any further steps). Detailed analysis demonstrates
that this is a somewhat exaggerated assumption; the actual error
propagation is less than 100%. Hence, these expressions provide
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TABLE I
ERROR RATES AND CORRESPONDING SYMBOLS

upper bounds on respective error probabilities. Consequently,
the th step (unconditional) error probability can be bounded
as

(25)

where the lower bound follows from the assumption of no error
propagation at all. Using the independence of noise at different
steps, and also the fact that and are independent for
in i.i.d. Rayleigh fading channel, the average BLER is

(26)

In a similar way, the average (unconditional) step error
rate can be bounded as

(27)

Let us now consider its asymptotic behavior for large average
SNR, . In this case, , and the product term
represents a second-order effect which can be neglected

(28)

i.e., the upper bound in (26) is asymptotically tight. Noting that
the diversity order increases with the step number , the smallest

one being at step 1, which results asymptotically in
, (28) can be further approximated as

(29)

Clearly, the first-step BER has the dominant effect, which agrees
well with intuitive expectation based on the diversity order ar-
gument. The analysis above, however, gives a more detailed and
precise picture. Note also that the approximation in (28) is more
accurate than that in (29).

For convenience, Table I provides a summary of various
error-rate definitions used in the paper.

B. Relationship Between BLER and TBER

After all the substreams have been detected, they are merged
together into a single output stream. Let us define a TBER as
BER in that output stream

(30)

where and are the total number of bit errors and of the
transmitted bits, respectively (the convergence of the limit is in
probability). Since , where is the number
of errors in the th stream, can be expressed as

(31)

where we have used . While a step BER

provides detailed characterization of the algorithm performance
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at each step, TBER represents an important performance mea-
sure of the system as a whole. One can upper and lower bound
it using BLER derived above as follows. Define a block error as
an event of having at least one error in the transmitted block of

bits. Clearly, a block error means one to bit errors. Hence,
the number of block and bit errors ( and ) are related as

, and the upper and lower bounds on
follow

(32)

which is similar to the relationship between symbol-error rates
(SERs) and BERs [10]. While evaluation of requires precise
characterization of the error-propagation effect, the bounds in
(32) can be easily evaluated using the conditional BER only,
which is much more simple. These bounds provide a reasonable
estimate for when is not too large. The upper bound in
(32) also gives TBER, assuming 100% error propagation.

Similar expressions also hold true for average error rates

(33)

(34)

Using (28), one obtains, for large average SNR

(35)

Or, neglecting higher order terms

(36)

Note that the expressions above hold for any modulation
format.

V. EXACT BER EXPRESSIONS FOR BPSK MODULATION

In this section, we derive exact closed-form expressions
for step BER with BPSK modulation. We use the normal-
ized weights (note that normalization does not
affect SNR, and hence, BER), so that the weight matrix

is semi-unitary (it is unitary only
when )

(37)

This normalization corresponds to . For sim-
plicity, we begin with a system. In our analysis, we follow
an approach similar to that of the decision-feedback multiuser
detection BER analysis [11], [17].

A. V-BLAST BER

The output signal at step 2 is

(38)

where and . Conditioned on
and , the ISTI is Gaussian

(39)

To see this, we first note that for given and , is a
sum of Gaussian random variables, and, hence, is Gaussian. The
conditional mean and variance of are

(40)
as and . Since the conditional distribution
does not depend on , the conditioning on can be dropped

(41)

In the same way, one can see that the noise term in (38) is also
Gaussian and independent of

(42)

and it is also independent of the other terms. The last two terms
can be joined to get the “total noise” term, which includes ISTI,
and, conditioned on , its distribution is

(43)

Since instantaneous BER at each step are independent of each
other and (no error at step 1) with probability (w.p.)

and (error at step 1) w.p. , for
given , BER at step 2 can be immediately found from (38) as

(44)

where is the average BER at step 1, which
is the same as the -order MRC average BER given by
[10]

(45)
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where are the binomial coefficients and,
with the adopted normalization, is the average SNR.

is unconditional BER at step 2 averaged over but
not (it is neither average nor instantaneous BER in traditional
sense). Finally, the average unconditional BER at step 2 is

(46)

where is the conditional (on no error at
the first step) average BER at step 2, which is the same as the

th-order MRC average BER, , and

(47)

is the average probability of error propagation (the last equality
in (47) follows from the observation that the “equivalent average
SNR,” which includes the propagating error as a part of the total
noise, is ). The total average BER is found using (33)

(48)

In the case of a system, the expressions become espe-
cially simple

(49)

(50)

Using these expressions and (33), the total BER can be found.
For large average SNR

(51)

and (46) simplifies to

(52)

Note that the second term dominates in (46), as it is the first-
order term (no diversity) while the first term is the second-order
one (second-order diversity). Clearly, there is no diversity at the
second step due to error propagation. The total average BER is

(53)

Fig. 1. Average probability of error propagation �P for BPSK-modulated 2�
n V-BLAST.

The average BLER in this case is

(54)

which can be approximated, for high average SNR, as

(55)

We note that the approximation in (53) is the same as the
lower bound in (34) and (36). Hence, the lower bound is asymp-
totically tight.

The high-SNR approximations above can also be extended to
the case

(56)

(57)

(58)

(59)

Note that the high-SNR approximation does not apply to
, as the “effective” SNR for this term is 1/4 (due to

the propagating error from the first step).
Fig. 1 shows the average probability of error propagation

in (56) versus . Clearly, the beneficial effect of increasing
is not only to reduce and (by increasing the diversity
order), but also to decrease the error propagation from the first
step to the second. We attribute this to effective “beamforming”
in the second step ( in (38)), which eliminates the propa-
gating error when its angle of arrival (determined by ) is not
within the “main beam” of . As increasing will decrease
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the “beamwidth” [8], it will also decrease the probability of the
propagating error to fall within the “main beam” of .

B. V-BLAST BER

Similarly to (38), the output signal (decision variable) at step
is

(60)

The ISTI term is Gaussian conditioned
on

(61)

where

(62)
and the expectation is over ;

is the error vector, if there is an error
at step , and otherwise. The ISTI and noise terms in
(60) are added up to the “total noise”

(63)

Let us consider conditional BER at step averaged over

(64)
can be expressed as

(65)

where

(66)

Let us define the following probability:

(67)

where the summation is over all possible . Note that this is
neither instantaneous nor average BER at step , as some terms
are averaged over some of , , and other terms
are not [similar to (44)]. Using (67) and the independence of

Fig. 2. Average BER/TBER of 3�3 BPSK-modulated V-BLAST. Exact
versus high-SNR approximation.

SNR at each step, it is straightforward to obtain average uncon-
ditional BER

(68)

where

(69)

and are found using the expectation of (66) over
appropriate entries of . Similar to (47), the expression for

follows from that for the traditional MRC BPSK av-
erage BER by observing that the “equivalent average SNR” in
(64) is . Using (33) and (68), the total average
BER can be easily obtained

(70)

Similar to the case, high-SNR approximations can be
developed from the expressions above. The first-step BER still
has a dominant effect on the overall performance, i.e., the diver-
sity order at each step and also in the total average BER is the
same as in the first step, . Thus, the dominant con-
tribution to in (68) is coming from such error vectors that
have an error at the first step, , and the
summation in (68) has to be performed only over such vectors

(71)

where can be approximated as

(72)
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TABLE II
AVERAGE BER COEFFICIENTS IN (73) AND (75) FOR n � n SYSTEM.

Since each term in (71) includes as a co-factor, it can be
factored out, and hence, (71) can be presented in the following
form:

(73)

where is found using (66) and the high-SNR
approximation in (72)

(74)
and , , and .
Finally, the total average BER is expressed as

(75)

Note that are constants at high SNR. Fig. 2 shows that the ap-
proximations in (73)–(75) are indeed accurate, even for moder-
ately large SNR (especially for the total average BER). Table II
gives the coefficients and for the system. Note that

with is independent of . In fact, it depends only on
, but not and individually, e.g., is the same for

all systems with . represents the total average
BER as the percentage of the first-step average BER. Clearly, it
decreases with .

It should also be noted that the BER performance of uncoded
D-BLAST can also be evaluated using the expressions above.
Specifically, by observing that the antenna cycling in D-BLAST
[1], [2] does not affect (since all the detected substreams
are finally merged into the single output stream), all the expres-
sions above for apply directly to D-BLAST as well. How-
ever, due to the antenna cycling, all the average substream error
rates , where index is associated now with the
substream rather than the detection step, will be the same (since
each particular substream is detected periodically at each step
from 1 to ), and hence, equal to the average total error rate

. Thus, D-BLAST does not offer any
BER advantage over V-BLAST in terms of the total error rate.
The advantage is coming from the fact that all substreams per-
form equally well.

It should be pointed out that a QR decomposition of the
channel matrix , where is semiunitary, ,
and is lower triangular, can be used for the interfer-
ence-nulling procedure instead of the projections with signif-

icant reduction in computational complexity of the algorithm
[12], [13], [20]. These two algorithms are identical in terms
of decision variables, and hence, in terms of the performance
[19], so that all the results here also apply to the QR-based
V-BLAST. The identical performance of these two algorithms
can also be seen directly from (37) as the weight matrix
is semiunitary, and , where is lower triangular
(since ), is also a QR decomposition of .
Since QR decomposition is unique [7], , , and
the two algorithms are identical. For an i.i.d. Rayleigh channel,
the entries of are i.i.d. complex Gaussian, ,
and the QR decomposition above has the following properties
[7]:2 1) ; 2) , ; 3) all the
elements of are independent of each other; 4) the elements
of and are independently distributed and, hence, the noise

is independent of the signal term ; fur-
thermore, . These properties are identical
to the results obtained above using the step-by-step analysis
of the algorithm, and hence, indirectly validate our earlier
results. Property 3 also confirms that in (4), and hence, the
instantaneous SNRs at different steps are independent of each
other, which facilitates the average error-rate analysis.

VI. MONTE CARLO SIMULATIONS

In order to verify the analytical results above, extensive MC
simulations have been undertaken. Specifically, the Rayleigh
i.i.d. fading channel and BPSK modulation demodulated co-
herently have been used. First, the instantaneous BER expres-
sions have been validated. No statistically significant difference
between analytical and MC results have been found for condi-
tional (without error propagation) and unconditional (with error
propagation) BER. Secondly, the average BER expressions have
been extensively validated. Some of the results are shown in
Figs. 3–6.

Figs. 3 and 4 show MC simulated average BER/BLER/TBER
and the exact analytical results in Section V for 2 2 and 2 3
systems. Good agreement is obvious. First-step BER dominates
the BLER for high SNR ( 5 dB). Note that the error propaga-
tion has significant effect on the second-step BER, as compar-
ison to the “no error propagation” BER demonstrates (as (52)
indicates, the error propagation results in the second-step diver-
sity order being equal to one rather than two).

Fig. 5 compares the exact and approximate average BLER/
TBER expressions (33) and (53)–(55) of a 2 2 system. Clearly,
the average BLER is well approximated by the first-step average
BER for dB. The accuracy of the TBER approximation
is a bit worse but still acceptable. The small inaccuracy is due to
the fact that (53) ignores the error propagation, which demon-

2An elegant derivation of these properties, which is based on the Householder
transformation, can be found in [20].
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Fig. 3. Average BLER/TBER/BER of 2�2 BPSK-modulated V-BLAST.

Fig. 4. Average BLER/TBER/BER of 2�3 BPSK-modulated V-BLAST.

Fig. 5. Average BLER/TBER of 2�2 BPSK-modulated V-BLAST. Exact and
approximate.

strates that the effect of error propagation on the total average
BER is indeed small. Including it results in a better approxima-
tion

(76)

Comparing (76) with (53), one concludes that the effect of
error propagation on the average total BER is to increase it by
about 20%, which is indeed small (contrary to an existing view-
point that the error propagation has a dramatically negative ef-
fect on BLAST BER). On the contrary, the second-step average
BER is affected by the error propagation in a dramatic way:

Fig. 6. Average BLER/TBER/BER of 4�4 BPSK-modulated V-BLAST.

the diversity order decreases from two without error propaga-
tion to one with it (see Figs. 3 and 4). Fortunately, since the
first-step BER is dominant, this does not significantly affect the
total BER.

Fig. 6 gives the average step BER of a 4 4 system along with
the average BLER/TBER. Based on these numerical results, one
observes that the average step BER, despite the error propaga-
tion, decreases with step number

(77)

According to the analysis above, we attribute this to the fact
that: 1) the probability of error propagation is less than 1 (
for a 2 2 system); and 2) the conditional BER at higher steps
has higher diversity order (see (47), (51), and (52) for the case
of a 2 2 system). Clearly, the average step BER of an
system can be well approximated by (73), where (see
also Table II). Based on numerical evidence, we conjecture that

. Similar approximation also applies to BLER and

TBER [see (59) and (75)]. Additionally, one observes that (29) is
indeed an accurate approximation, and that the lower bounds in
(34) and (36) are tight for high SNR, .
Based on this, we conjecture that for an

system, which constitutes the autocoding effect [21] in the un-
ordered V-BLAST system. Comparing Fig. 6 with Fig. 3, one
concludes that the average BER at given step does not depend
on whether higher steps are present or not (for example, is
the same for 2 2, 3 3, and 4 4 systems), which also follows
from (68), and is especially obvious for the high-SNR approx-
imation in (73). This conclusion is not entirely trivial, as step
1 processing implies projecting out the subspace spanned by

and, hence, depends on the presence of higher
order steps.

VII. CONCLUSIONS

Closed-form analytical performance evaluation of the
V-BLAST algorithm has been presented in this paper. While
the assumption of no ordering limits the results obtained, it also
allows for such an evaluation to be performed, providing insight
which is not available using numerical techniques only (i.e.,
MC simulations). It was demonstrated that the optimum (MRC)
weights, which also include the projections, are orthogonal to
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each other and, hence, the after-combining noise is independent
at each step, which simplifies the analysis significantly and
results in closed-form expressions for the instantaneous BER
at each step. The instantaneous SNR at each step are also
independent of each other for a Rayleigh i.i.d. channel, and,
additionally, the ISTI is Gaussian. Hence, the average BER
expressions can be obtained in a straightforward way (using,
for example, the techniques developed for multiuser detection
analysis). In the case of BPSK modulation and high SNR, the
expressions are especially simple. The error propagation has a
dramatic effect on higher step BER, resulting in the diversity
order being equal to at each step, but it has only
a minor effect on the total average BER (about 20% increase
for a 2 2 BPSK-modulated system at high SNR). The average
step BER is lower for higher steps (since the probability of
error propagation is less than one). As expected, the average
BLER and total error rate are dominated by the first-step BER.

APPENDIX

Consider the after-projection noise vector

(A1)

Since the correlation matrix of the original noise vector is

(A2)

where the expectation is over the noise, the correlation matrix
of the projected noise is

(A3)

where we used the following property of the projection matrix:
(the first equality can be easily verified

using (A1); the second one follows from the fact that the second
projection is always redundant). Clearly, the noise is correlated.
Let us consider the MRC for the correlated-noise case. To sim-
plify the notations, we further drop index . The output signal of
the combiner is

(A4)

where is the weight vector, and is the after-
projection signal; for simplicity, we further assume that
(this does not affect the weight vector). The output SNR (to be
maximized) is

(A5)

where and are the signal and noise powers at the combiner
output, and is the signal instantaneous correlation

matrix. The weight vector that maximizes (A5) can be found
by using the Cauchy–Schwartz inequality [14]

(A6)

where , . The equality in (A6) is achieved
with

(A7)

This gives the generic form of (up to a scalar factor) achieving
the maximum

(A8)

where . We choose , which gives

(A9)

Note that one may also choose , i.e., the projection does
not affect the MRC weights and, despite the noise correlation
due to the projection, the classical MRC solution still applies.
The maximum output SNR is

(A10)

Remarkably, the output SNR is not affected by the noise cor-
relation and is the same as if the noise were i.i.d. in each branch
(after projection). We attribute it to the special structure of the
projection matrix (A1). (A10) clearly indicates that the analysis
in terms of the total signal power is equivalent (up to a con-
stant) to the analysis in terms of the SNR if the MRC is used
after the orthogonal projection.
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