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Abstract— Optimum power allocation for the V-BLAST 
algorithm, which is based on various criteria (average and 
instantaneous block and total error rates (BLER and TBER)), is 
considered. Closed-form solutions are derived for high-SNR case 
in a Rayleigh fading channel. They are shown to be robust to 
small variations in allocated power and average SNR. It is 
demonstrated that the optimization “on average” is only slightly 
worse than the instantaneous one, albeit the latter requires an 
instantaneous feedback and hence is of higher complexity. The 
generic upper-bound for the SNR gain of any power allocation 
technique is derived. The BLER and TBER optimization criteria 
result in the same performance. Power optimization (of un-
ordered BLAST) and optimal ordering result in almost the same 
performance improvement at high SNR.  

I. INTRODUCTION 
The BLAST algorithm originally proposed by Foschini [1] 

has attracted significant attention in recent years as 
comparatively simple yet optimum solution for signal 
processing at the MIMO receiver. The algorithm however 
suffers from several drawbacks. Its computational complexity 
is still large for many applications, and also the algorithm 
BER performance is degraded by the effect of error 
propagation. Thus, some modifications have been proposed to 
improve the algorithm in these directions [2]-[4]. 

In the present paper, we consider an optimum transmit 
power allocation to improve the BLAST error rate 
performance using various optimization criteria from a unified 
perspective. The optimization criteria considered include 
instantaneous and average block error rate (BLER) and total 
error rate (TBER). It is shown that at high SNR mode, the 
optimization “on average” is almost identical (in terms of the 
average BER) to the instantaneous one for a Rayleigh fading 
channel, when either BLER or TBER used as the optimization 
criteria. Since the optimization “on average” does not require 
instantaneous feedback, its implementation complexity is 
much less as compared to the instantaneous one, especially in 
a fast-fading channel. 

Our optimization results are based on recent analytical 
performance evaluation of the BLAST [6], which allows us to 
derive compact closed-from expressions at high-SNR mode. 
The uniqueness and the robustness of the solution, which 
facilitate the implementation, are proven. A generic upper 
bound and an approximation for the SNR gain of the 
optimization are derived. By considering the power-optimized 
BLAST without optimal ordering and comparing it to the 
unoptimized BLAST with the ordering, it is demonstrated that 
they have almost the same BER performance at high SNR.  

II. SYSTEM MODEL AND THE V-BLAST ALGORITHM 

The following standard baseband MIMO system model is 
adopted in the present paper: 

1
m

i ii x
=

= + = +∑y Hx ξ h ξ    (1) 

where 1 2[ , ,... ]Tmx x x=x  and 1 2[ , ,... ]Tmy y y=y  are the Tx 
and Rx vectors correspondingly, 1 2[ , ,... ]m=H h h h  is the 
n m×  channel matrix, i.e. the matrix of the complex channel 
gains between each Tx and each Rx antenna, ih  is the i-th 
column of H, n is the number of Rx antennas, m is the number 
of Tx antennas, n m≥ , and ξ  is the additive white Gaussian 
noise (AWGN), which is assumed to be 2

0(0, )σ ICN , i.e. 
independent and identically distributed (i.i.d.) in each branch. 
Additionally, we adopt the same basic assumptions as in [5], 
[6]: the channel is i.i.d. Rayleigh fading (the components of H 
are (0, )ICN ), quasistatic, frequency independent; the Tx 
signals, noise and channel gains are independent of each 
other; perfect channel knowledge is available at the receiver; 
there is no performance degradation due to synchronization 
and timing errors. 

The detection of a Tx symbol in the V-BLAST algorithm 
proceeds in steps and includes 3 major procedures at each 
step: 1) interference cancellation from already detected 
symbols, 2) interference nulling from yet-to-be-detected 
symbols, 3) optimal ordering (based on after-detection SNR) 
(a more detailed description of the algorithm can be found 
elsewhere [1] and is omitted here). Since the optimal ordering 
procedure has a significant computational complexity and 
hence is one of the major obstacles to cost-efficient 
implementation (and also is very challenging for analytical 
analysis), we exclude it from the algorithm and further 
demonstrate that an optimum per-stream power allocation at 
the Tx (based on the average BER) allows to achieve the same 
result without high complexity penalty. 

After the interference cancellation and nulling, the 
receiver forms the following decision variable at step i: 

1
1

i
i i i i i j j ijr x x−+ + +

=
= + ∆ +∑w h w h w ξ  ,  (2) 

where + denotes Hermitian conjugate, i i i⊥ ⊥=w h h  are the 
optimum combining weights that completely eliminate the 
inter-stream interference (ISI) from yet-to-be-detected 
symbols and maximize the output SNR, i i i⊥ =h P h , iP  is the 
projection matrix on the sub-space orthogonal to that spanned 
by 1 2{ ... }i i m+ +h h h : 1( )i i i i i

+ − += −P Ι H H H H , where 
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1 2[ ... ]i i i m+ +=H h h h , and ˆj j jx x x∆ = −  represents 
demodulation error at step j, with { }1ˆ j jx D r−=  being the 
demodulated symbol [6]. Based on (2), an exact BER analysis 
is possible in closed form [6]. We outline below the major 
results of this analysis, which further serve as a tool for 
optimization. 

Noise and error independence: It can be shown [6] that the 
optimum weights are orthogonal, 

0  i j i i j j i j+ += = ∀ ≠w w h P P h  . Hence, for given channel H, 
the after-combining noises at different steps are independent 
of each other, 

* 2 2 2
, , 0 0 0;  ~ (0, )p i p j i j ij p

+ξ ξ = σ = σ δ σw w ξ ICN     (3) 

where ,p i i
+ξ = w ξ , and 2

0σ  is the noise variance (note that 
noise independence follows from zero correlation as the noise 
is Gaussian). Hence, the demodulation errors are independent 
too. This facilitates the error rate analysis.  

Instantaneous error rates: The block error rate (BLER), 
which is a probability to have at least one error in the 
demodulated Tx vector, can be expressed as 

111 (1 ( )) ( )m m
B e i e iiiP P P

==
= − − γ ≤ γ∑∏         (4) 

where ( )e iP γ  is the (instantaneous, i.e. for given channel) 
conditional (no errors at the previous steps) error rate at step i, 

2 2
0/i i⊥γ = σh  is the SNR (assuming unit power 

constellation). Evaluation of the BLER is comparatively 
simple as it is independent of the error propagation (and hence 
its quantification is not required). The (instantaneous) total 
error rate (TBER), etP , explicitly includes the error 
propagation terms, which complicates the analysis. 

Average error rates: It can be shown [5] that, in i.i.d. 
Rayleigh fading channels, 2

2( )~i n m i− +γ χ , where “~” means 
“equal in distribution”, and are independent of each other. 
This independence facilitates the evaluation of the average 
BLER BP , 

11 (1 )m
B eiiP P

=
= − −∏                         (5) 

where ( )
MRC

ei n m iP P − +=  is the average conditional error rate at 
step i, and the average error rate with (n-m+i) order maximum 
ratio combining (MRC) is ( )

MRC
n m iP − + , which is known for many 

modulation formats in closed form. For large average SNR 
( 2

0 01/ 1γ = σ >> ), 1 2 ...e e emP P P>> >> >>  due to increasing 
diversity order with step number, i.e. the 1st step error rate 
dominates. Thus, 

1 0  for  1B eP P≈ γ >>                       (6) 

Average unconditional BER for BPSK: In the case of 
BPSK modulation, an exact expression for the average 
unconditional BER at each step and hence for the average 
TBER can be obtained [6]. For simplicity and due to the page 
limit, we consider further the case of 2m = ; the analysis 
extends also to 2m >  [6]. By observing that the last two 
terms in (2) represent “total noise” (the AWGN plus ISI) that 
is Gaussian, whose variance is 22

0 1xσ + ∆ , the unconditional 
(taking into account the error propagation from step 1) BER at 
step 2 for given 2h  (but averaged out over 1h ) is 

( )( ) ( )2
1 12 2 2 2 2 0( ) 2 1 2 4e euP Q P Q P+ = γ − + σ + 

 
h h h  (7) 

where ( )Q ⋅  is the well-known Q-function, and the average 
BER at step 1 is 

1 2
0

1 ( 1) 2
00

1 1 , 
2 2 1

n knMRC k
e n n k

k
P P C

− −

− − +
=

γ−µ +µ   = = µ =    + γ   
∑  (8) 

where !/( !( )!)k
nC n k n k= −  are the binomial coefficients. 

Averaging out (7) over 2h , one obtains: 

( )2 2 1 21 11u e e eP P P P P= − +               (9) 

where 2 ( )
MRC

e nP P= , and ( )2
21 ( ) 01/( 4)

MRC
nP P= σ +  is the 

average probability of error propagation. The average TBER 
and BLER can be immediately evaluated using (6)-(9). Large 
SNR approximations for 2n =  are especially simple, 

( )1
1 2 21 212

0 00

1 3 1 3,  ,  ,  1
4 5 2 2016

e
e e et

PP P P P P≈ ≈ ≈ ≈ + ≈
γ γγ

(10) 

By comparing etP  in (10) to that without error propagation, 
1 0/ 2 1/(8 )et eP P′ ≈ ≈ γ , one concludes that the effect of error 

propagation is to increase the average TBER by 14%, i.e. not 
catastrophic at all. However, as the comparison of 2eP  and 

2uP  demonstrates, the error propagation has a profound effect 
on the 2nd step BER (reducing the diversity order from 2 to 1). 

III. OPTIMUM POWER ALLOCATION 
Under the total Tx power constraint, individual (per stream) 
powers can be optimally allocated in such a way as to 
minimize the TBER or the BLER, either instantaneous or 
average. While the instantaneous (i.e. for each channel 
realization) power allocation requires an instantaneous 
feedback channel (to supply the Tx end with the optimum 
allocation for each channel realization), the average power 
allocation does not require instantaneous feedback (only the 
average SNR needs to be known at the Tx end) and hence 
does not incur significant penalty in complexity. 

To account for unequal Tx power distribution, let us 
introduce the power allocation vector 1 2[ , ,... ]m= α α αα . The 
total power constraint is 

1
m

ii m
=
α =∑                                 (11) 

and uniform (unoptimized) power allocation considered above 
corresponds to 1 2 ... 1mα = α = = α = . The analysis in Section 
II has to be modified by introducing new step SNRs i i i′γ = α γ  
so that 

1( ) 1 (1 ( ))m
B e iiP P

=
′= − − γ∏α                    (12) 

where we have explicitly indicated the BLER as a function of 
α  (it is of course a function of 0γ  as well). Similarly, 

( )et etP P= α , 1( ... )ui ui iP P= α α , and the same relations hold 
true for the average error rates. Eq. (8) is modified  
by the substitution 0 1 0γ → α γ : 1 ( 1) 1 0( )

MRC
e nP P −= α γ ,  

and (9) is modified to 

( )2 2 1 21 11 2 2 1 1 2 1( , ) ( ) 1 ( ) ( , ) ( )u e e eP P P P Pα α = α − α + α α α  (13) 
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where ( )2
21 ( )1 2 0 1( ) /( 4 )

MRC
nP Pα = α σ + α , 2 ( ) 2 0( )

MRC
e nP P= α γ .  

Optimum power allocation using the average BLER: For 
this optimization, the average BLER is minimized under the 
constraint (11). Using the Lagrange multiplier technique for 
constrained optimization with the Lagrangian 

( )1( ) ( ) m
B iiL P m

=
= + λ α −∑α α ,     (14) 

the optimum α  are found from 

( ) ( ) 0,  1...Bi iL P i m∂ ∂α = ∂ ∂α + λ = =α α ,  (15) 

where λ  is the Lagrange multiplier, which is found from the 
constraint (11) (i.e., (15) and (11) are considered together as a 
system of equations).  

Uniqueness of the solution: It can be shown that (15) has a 
unique minimum (in terms of ( )BP α ), for any diversity 
combining technique (not only the MRC) and any modulation 
format, whose BER can be represented as a linear 
combination (with non-negative coefficients) of ( )Q aγ  
and/or exp( )b− γ . This facilitates numerical evaluation as 
there is only one global minimum.  

For high SNR, (12) is approximated as 

 ( )
( )

2 1

1 04

im
i

B n m i
i i

C
P −

− +
=

≈
α γ

∑α  (16) 

and, using the Newton-Raphson method, a compact and 
accurate analytical solution to (15) can be obtained, which is 
especially simple (and insightful) for 2m = , 

1

11 2 11
0

32 1 ,  2 ,  
8( 1)( 1)

n

n
n

c nc
nn

+

+
+

 
α ≈ − α = −α =   −+ γ 

 (17) 

Fig. 1 compares the approximate solution above with the 
accurate numerical solution. Clearly, the approximate solution 
is accurate for 0 10dBγ ≥ . Additionally, since the average 
BLER (and also the TBER) is not very sensitive to small 
variations in α , the approximate solution results in almost the 
same average BLER (TBER) as the accurate numerical one 
also for 0 10dBγ < . Thus, (17) can be used for the whole 
range of 0γ  without significant performance degradation. 
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Fig. 1. Optimum power allocation for 2x2 V-BLAST with BPSK 
modulation for various optimization strategies.  
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Fig. 2. Average TBER of 2x2 V-BLAST with BPSK modulation for 
various optimization strategies. 

It follows from (17) that 1 2α →  (i.e. almost all the power 
goes to the 1st Tx) as 0γ → ∞ , and 1α  is quite close to 2 for 
finite 0γ . Referring to (10), this is explained by the fact that 
1st step has lowest diversity order (n-1) and hence its error rate 
dominates. The power allocation algorithm tries to reduce the 
BER by allocating more power to the 1st stream and thus 
reducing the 1st step BER. 

Robustness of the solution: Let us show that small 
deviations in α  do not affect the BLER significantly. As 

optα , given by (17), is a solution to the constrained 
optimization problem, the Lagrange multiplier λ  serves as a 
measure of sensitivity of ( )BP α  to changes in α , 

B iPλ = −∂ ∂α . It can be shown that, in a high SNR range, 
the Langrange multiplier is given by 
 2

0 1n mA − +λ ≈ γ � , (18) 

where A  is a moderate constant. This indicates that ( )BP α  is 
insensitive to a small deviation in α . 

Robustness of the solution suggests even further 
simplification in system design: using only one fixed value of 
α , e.g. [ ]1.5 0.5=α , one can still get performance 
improvement for a wide range of 0γ , since the BLER is not 
too sensitive to α , and optα  changes slowly with the SNR, as 
Fig. 1 demonstrates. Such simplified system does not require 
any feedback at all.  

Average vs. instantaneous optimization: From Fig. 2, one 
concludes that the average and instantaneous optimizations 
are equivalent at high SNR. Clearly, the average allocation is 
preferable to use as its complexity is much less both in terms 
of computations and the feedback channel required (only one 
computation of optα  is required as long as 0γ  stays the same 
and only 0γ  needs to be fed back to the Tx end) compared to 
instantaneous one (each channel instant requires its own 
optimization and feedback session). As the detailed analysis 
below demonstrates, these conclusions also hold if TBER is 
used as an optimization criterion. 

Optimum power allocation using average TBER:  In a 
similar way, the average TBER can be used (in (14)) as a goal 
function in the Lagrange multiplier technique to find the 
optimum power allocation. Numerical analysis demonstrates 
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that, for 2m = , the TBER is convex in α  and hence the 
optimum solution is unique for arbitrary SNR. This solution 
can be found numerically, and for high-SNR mode an 
approximate (but accurate) closed-form analytical solution 
can be obtained using the Newton-Raphson method. In this 
mode, the average TBER (assuming BPSK modulation) can 
be approximated as (a proof is omitted due to the page limit), 

( ) 2 1

1 0

3 2,  
2( ) 4

im
i i

et in m i n m i
i i

C m iP
m

−
− + − +

=

β − +
≈ β =

α γ
∑α  (19) 

Since ( )etP α  is convex (because each term in the sum is 
convex), the solution to the optimization problem is the 
unique global minimum. For the case of 2m = , the solution 
is particularly simple: 

1

11 2 11
0

2 1 ,  2 ,  
4( 1)( 1)

n

n
n

c nc
nn

+

+
+

 
α ≈ − α = −α =   −+ γ 

 (20) 

Clearly, this power allocation is close to that in (17), which is 
also obvious from Fig. 1 and hence the choice of the 
optimization criteria (either BLER or TBER) does not affect 
significantly the final result. This is not a surprise as the 1st 
step error rate is dominant (due to the lowest diversity order) 
in terms of both the average BLER and TBER and hence most 
of the total Tx power goes to the 1st Tx. 

Optimum power allocation using instantaneous 
BLER/TBER: Similarly to the average power optimization 
above, the instantaneous power can be optimally allocated 
using either BLER or TBER as the optimization criteria. 
Since an analytical solution is challenging, a numerical 
technique can be used. The optimum allocation in terms of 
BLER is unique for any modulation whose BER can be 
represented as linear combination (with non-negative 
coefficients) of ( )Q aγ  and/or exp( )b− γ  . The uniqueness 
of the TBER-based optimum power allocation is an open 
problem (numerical evidence suggests that this allocation is 
unique). 

Fig. 2 compares the average BER of instantaneous and 
average power optimization. Clearly, the results are quite 
close to each other, especially for 0 20dBγ ≥ . Essential 
difference between these two is that the instantaneous 
optimization performs better in terms of instantaneous BER, 
especially for some channel realizations that do not favor the 
average power allocation. Our main conclusion here is that 
the average power optimization can be used instead of 
instantaneous one at high SNR without any visible BER 
penalty but with much less complexity. 

SNR gain of optimization is the difference in SNR required 
to achieve the same performance rate for optimized and 
unoptimized systems, i.e. 

( ) ( )1 ,..., ,...,opt opt
B m BP Pα α = α α ,  (21) 

and the gain is ∆γ = α . For optimized by BLER V-BLAST, 
the gain in SNR is bounded as 

m∆γ ≤     (22) 

Proof: It is easy to see from (5) that ( )1 ,...,B mP α α  
decreases by each ,  1, ,i i mα = … . Further, from the total 
power constraint (11) i mα ≤ . Hence,  

( ) ( )1 ,..., ,...,opt opt
B m BP P m mα α ≥ ,  (23) 

and comparing this to the definition of the gain (21), one 
concludes that m∆γ ≤ . 

It should be noted that this conclusion holds true for any 
modulation format and any power allocation strategy. It also 
holds true if the average BLER is used as a criterion of 
optimization rather than the instantaneous one. 

If TBER is used to define the optimization gain in (21) 
instead of BLER, the optimization brings about 2 dB gain at 
high SNR rather than 3 dB (for 2m = ). This is explained by 
the increased probability of the error propagation 21P  for the 
optimized system. Indeed, when most of the power is 
allocated to the 1st Tx, the 1st step BER is reduced 
significantly. But if the error does occur at the 1st step, its 
amplitude is higher than for an unoptimized system. It can be 
shown that for high SNR in this case 21 1 2P ≈ , rather than 
1/5, as for an unoptimized system. The total BER for the 
optimized 2 2×  system in high SNR mode, when compared 
to that for the unoptimized one, is given by (see (10)): 

( ) ( )
( )

01
21

0

3 / 20 ,  unoptimized
1

2 3/ 32 , optimized
e

et
PP P

 γ≈ + ≈ 
γ

     (24) 

From (24), one can clearly see that (for 2m = ) the gain of 
optimization amounts to 8/5, or 2 dB.  

For 2m = , the SNR gain of the optimum power allocation 
is almost the same, at high SNR, as that of the optimal 
ordering procedure (see [5] for details). The computational 
complexity, however, of the former is much less than that of 
the latter. Hence, the average power optimization can be used 
instead of the optimal ordering. 
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