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Performance Analysis of the V-BLAST Algorithm:
An Analytical Approach

Sergey Loyka and Francois Gagnon, Senior Member, IEEE

Abstract—A geometrically based analytical approach to the
performance analysis of the V-BLAST algorithm is presented
in this paper, which is based on the analytical model of the
Gramm-Schmidt process. This approach presents a new geomet-
rical view of the V-BLAST and explains some of its properties in
a complete and rigorous form, including a statistical analysis of
postprocessing signal-to-noise ratios for a 2 x n system (where
n is the number of receive antennas). Closed-form analytical
expressions of the vector signal at i¢th processing step and its
power are presented. A rigorous proof that the diversity order
at ith step (without optimal ordering) is (n — m + ) is given
(where m is the number of transmit antennas). It is shown that
the optimal ordering is based on the least correlation criterion
and that the after-processing signal power is determined by the
channel correlation matrices in a fashion similar to the channel ca-
pacity. Closed-form analytical expressions are derived for outage
probabilities and average BER of a 2 X n system. The effect of
the optimal ordering is shown to be to increase the first step SNR
by 3 dB (rather than to increase the diversity order as one might
intuitively expect based on the selection combining argument) and
to increase the second step outage probability twice.

Index Terms—Bit-error rate (BER), fading, MIMO, multi-
antenna system, outage probability, V-BLAST.

I. INTRODUCTION

NFORMATION-THEORETIC considerations show that

the multiple-input multiple-output (MIMO) communication
architecture is able to provide extraordinary high spectral
efficiencies in rich multipath environments, which are simply
unattainable using conventional techniques [1]-[4]. Space-time
coding and/or a special signal processing algorithm is to be
implemented at the receiver in order to achieve at least part
of the MIMO channel capacity. Diagonal Bell Labs Layered
Space-Time (D-BLAST) algorithm has been proposed by
Foschini for this purpose, which is capable of achieving a
substantial part of the MIMO capacity [2]. However, a high
complexity of the algorithm implementation is its substantial
drawback. A simplified version of the BLAST algorithm
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is known as V-BLAST (vertical BLAST). It is capable of
achieving high spectral efficiency while being relatively simple
to implement [5].

Comprehensive evaluation of the system performance is re-
quired because the matrix wireless propagation channel may se-
verely degrade the performance of this algorithm [6]-[8]. Some
preliminary studies including asymptotic analysis and numer-
ical Monte Carlo simulations have been reported in [9]. While
the numerical Monte Carlo approach is useful from many view-
points, the analytical approach provides deeper insight and com-
prehensive understanding of the key points in the algorithm
operation.

In this paper, we develop a unified analytical approach to
the analysis of the V-BLAST algorithm operation based on
some general geometrical ideas. This approach is based on the
closed-form analytical models of the key V-BLAST and asso-
ciated system components—interference nulling from yet to be
detected symbols (Gram—Schmidt orthogonalization process),
interference subtraction from already detected symbols, the
optimal ordering procedure [based on the after processing
signal-to-noise ratio (SNR)], optimal (maximum ratio or
similar) combining, and a statistical (complex Gaussian) model
of the matrix wireless propagation channel. In particular, we
derive closed-form analytical expressions for the signal and
noise vectors at each processing step for wireless channel with
the general correlation matrix. Based on these results, we give
a rigorous proof that the diversity order (i.e., the asymptotic
slope of the outage probability curve) at the ith processing step
is n — m + 7, where n and m are the number of Rx and Tx
antennas correspondingly, for uncorrelated Rayleigh channel
and if no optimal ordering is used. Closed-form analytical
expressions are derived for outage probabilities of a 2 X n
system when the optimal ordering is implemented. The effect
of the optimal ordering is shown to be to increase the first step
SNR by 3 dB (rather than to increase the diversity order as
one might intuitively expect based on the selection combining
argument) and to increase the second step outage probability
twice (this is the “price” to pay for the 3-dB SNR increase
at the first step). Numerical Monte Carlo simulations validate
the analytical results. The analysis results above allow one
to efficiently estimate the average bit-error rate (BER) for a
Rayleigh channel since the probability density function (pdf)
of instantaneous SNR is expressed analytically in a closed
from (as a combination of polynomials and exponents) and,
hence, does not require time-consuming numerical evaluation
(especially in the low-probability region).
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II. V-BLAST ALGORITHM

The V-BLAST algorithm has been discussed in details else-
where [5], [9]. Here, we describe its main points for complete-
ness and in order to introduce notations. The main idea of the
BLAST architecture is to split the information bit stream into
several substreams and transmit them in parallel using a set of
Tx antennas (the number of Tx antennas equals the number of
substreams) at the same time and frequency. At the Rx side, each
Rx antennas “sees” all the transmitted signals, which are mixed
due to the nature of the wireless propagation channel. Using
appropriate signal processing at the Rx side, these signals can
be unmixed so that the matrix wireless channel is transformed
into a set of virtual parallel independent channels (provided that
mutltipath is rich enough).

The following basic assumptions are employed.

* The channel is random, quasistatic (i.e., fixed for every
frame of information bits but varying from frame to
frame), frequency independent (i.e., negligible delay
spread) and with complex additive white Gaussian noise
(AWGN).

* The Tx signal vector is comprised of individual symbol
substreams. No space-time coding is employed. However,
conventional coding can be used for each substream indi-
vidually (but no intersubstream coding is allowed).

* The noise vector is comprised of independent AWGN
components with equal variance.

* The Tx signals, noise and channel gains are independent
of each other.

* Perfect channel knowledge is assumed to be available at
the receiver.

* There is no performance degradation due to synchroniza-
tion and timing errors.

The received signal vector r can be presented in the following
complex baseband vector form [9]:

r=Hq+v @8

where q = [q1 ,..., ¢m]T is the transmitted symbol vector, H
is the channel matrix (i.e., the matrix of complex transfer factors
from each Tx to each Rx antenna), and v = [v1 ,..., v,]T is
the noise vector. Presenting the channel matrix in a column-wise
way, H = [hy ,..., h,,], where h; is a column vector of
transfer factors from the 7th Tx antenna to all Rx antennas, the
received signal can be presented as

r:Zhiqi-i-v.
i

The V-BLAST processing begins with the first Tx symbol and
proceeds in sequence to the mth symbol. When the optimal or-
dering procedure is employed, the Tx indexing is changed prior
to the processing. The main steps of the V-BLAST processing
(detection) algorithm are as follows [5], [9].

(2)

1) The interference cancellation step: At the ith processing
step (i.e., when the signal from the ¢th transmitter is de-
tected) the interference from the first 2+ — 1 transmitters,
can be subtracted based on the estimations of the Tx sym-
bols (which are actually assumed to be error-free) and the
knowledge of H.
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2) The interference nulling step: Based on the knowledge of
the channel matrix, the interference from yet to be de-
tected symbols can be nulled out using the Gram—Schmidt
orthogonalization process (applied to the column vectors
of H).

3) The optimal ordering procedure: the order of symbol
processing is organized according to their after-pro-
cessing SNR’s in the decreasing order (i.e., the symbol
with highest SNR is detected first).

III. ANALYSIS OF THE V-BLAST ALGORITHM

For the sake of notational simplicity, we first describe all the
steps without the noise contribution (v = 0), which is added to
the analysis later.

The interference cancellation step can be expressed mathe-
matically in a straightforward way [9]. The received signal after
the cancellation at the sth step is

1—1
rj=r—Y hjj 3)
j=1

where ¢; are the estimations of the already-detected symbols.
In the further analysis, we assume for the sake of simplicity
that they are error-free. If no substream coding is used, the
system performance can degrade considerably in the low SNR
regime due to an estimation error, which can further propa-
gate to the next detection step. However, this effect is negligible
(second-order in terms of probabilities) in high SNR regime [9];
it is also negligible if appropriate substream coding is used so
that BER is low. Hence, we further neglect this effect. It should
also be noted that, as the analysis in Section VI demonstrates
[especially (36)], in order to estimate the total BER, only the
conditional (conditioned on no error at the first step, i.e., no error
propagation) outage probability at the second step is required.
Hence, our analysis will provide a rigorous result in terms of the
total BER.

The interference nulling step is based on the Gram—Schmidt
ortogonalization procedure, which builds a set of orthogonal
vectors from a set of linearly independent vectors. At this
stage, we assume that h; are linearly independent (otherwise
the V-BLAST algorithm must be modified taking into account
all the linearly dependent column vectors and decreasing the
number of independent bit substreams). Using the closed-form
analytical expression for the Gram-Schmidt process [10,
Section IX.6] and after some mathematical development (see
Appendix A for details), we arrive to the following expres-
sion of the received vector after interference nulling out and
cancellation at the ¢th step

N MMy NiMm
"o q’i|h’i| M1
T R Rli+Lm] )
Nm
where |h;| = />, |h;|?, | | means determinant when applied

to a matrix, i, = h;/|h;|,m;n; is the inner product (xy =
S rh_; 2ry}),* denotes complex conjugate, and RI+1™ s the
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normalized instantaneous (i.e., for a given channel realization)

channel correlation matrix built on [, ,; --- 7,,]
1 Mit1Mit2 Nit1Mm
RU+Lm [ Mit2Mit1- 1 Nit2Mm | (5)
MnMig1  MmMige - 1
Determinant in (4) should be understood as the first column
Laplace expansion, det = Z;n:_f“ (=DM M1y,

where Mj; is the minor of the determinant obtained by striking
out jth row and first column. Note that M} is a scalar for every
7 and, hence, the determinant itself is a vector, as it should
be. The signal power for a given channel instant H is simply
expressed as

R

M2 — o212 12 |
e |” = lai " |Rl+Lm]|

(6)
From this result and using (12), it is straightforward to obtain
an instantaneous (i.e., for a given channel H) SNR and, hence,
an instantaneous BER for a particular modulation scheme. It is
instructive to consider the case of m = 2. At the first processing
step, one obtains

Ie71? = |@a|*hi[*(1 = |Ri2]?) @)

where Ri2 = m,m,. Hence, the received power and, con-
sequently, SNR, is determined by the total received power
from the first Tx antenna (transmitting the first bit stream),
e.g., |q1/*|h1|?, and by the normalized channel correlation
coefficient R1,. We would like to emphasize the similarity of
the results above to the analogous results on the MIMO channel
capacity [6], [7], which is also determined by the channel
correlation matrix (especially for the case of 2 x 2 MIMO
architecture, i.e., [11]). One could intuitively conclude from (7)
that the diversity order is n because of |hy|?, which actually
means nth-order maximum-ratio combining (MRC). However,
as we prove later, the effect of the last factor in (7) is such
that the actual diversity order is » — 1. Let us now consider
the optimal ordering procedure. To separate the effect of the
transmitted symbol power (i.e., |q1|?) and of the noise power
from the effect of the propagation channel, we assume that
all |g;| are equal (i.e., constant amplitude modulation) and all
per-branch noise powers are also equal. If the first Tx symbol
is detected first, then the after-processing power is given by
(7). If the second Tx symbol is detected first, then (7) should
be changed to

Ir7|? = |g2|*|ha|*(1 — |R12[?). (®)

When the noise power is equal in all branches, the after-pro-
cessing SNR is proportional to the received symbol power.
Then, the optimal ordering is to detect first the symbol with
the highest |h; 2 i.e., the same as for the selection combining.
However, as we show later, this does not result in the increase
of the diversity order.

Let us consider the optimal ordering at the first step for ar-
bitrary m. When the 7th Tx symbol is detected first, the signal
power after interference nulling out is

IR
RO

P; = |g;|*|h;|?

€))
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where R is the full correlation matrix (i.e., builton [, --- 1,,])
and R is the correlation matrix built on all column vectors ex-
cept for ;. Under the assumptions of equal |¢;| and equal |h;]|
(i.e., the same received power from every transmit antenna), the
optimal ordering is to detect first the symbol with the smallest
|R[1]| (while it is unlikely to get equal |h;| in a fading channel,
this assumption allows to isolate the effect of correlation from
the effect of unequal received powers). In fact, this means that
the overall correlation among [9y, ..., 1M;_1, Mig1s---» M)
must be highest and, consequently, the correlation between 7,
and [1y,..., m,_1,M;41.-- - M,,] must be the lowest (this fol-
lows from geometrical interpretation of |R| as a volume in the
m-dimensional space [10]). Thus, the best ordering is to detect
first that symbol whose column propagation vector has lowest
correlation with the other vectors.

Let us now consider the effect of the noise. Equation (4) is
generalized as follows:

vy =T+ Vi (10)
where r()",,; is given by (4) and
L omy M,
v;' _ |R[H‘—’—1m]| Ni+1 Rl (11)
N

Using (11), the after-processing noise power at ¢th step can be
simply expressed as

Py, = (V{[?) = (n = m + i)}

(12)

where 02 = (|v;|?) is per-branch noise power before pro-

cessing, and ( ) is the expectation over noise voltage (see Ap-
pendix A for detailed derivation). Note that the after-processing
noise power is less than the total noise power, which is no?.
This is the consequence of the orthogonal projection performed
by the Gram—Schmidt process (see Fig. 1). One also should
note that the after-processing noise power increases with ¢ (step
index), being the smallest in the first step and the same as the
total noise power in the last step. Geometrical interpretation of
the noise transformation during the V-BLAST processing is the
same as in Fig. 1.

IV. FADING OUTAGE CURVES AND DIVERSITY ORDER

Based on the results above, let us now analyze the signal
fading in the V-BLAST system. In particular, we consider the
outage probabilities [the probability that the signal level is less
than the specified value, which is the same as a cumulative
distribution function (cdf)] and diversity order (the asymptotic
slope of the outage probability curve).

We assume that the channel gains (i.e., the components of H)
are independent identically distributed (i.i.d.) complex Gaus-
sians with zero mean and unit variance (i.e., we consider only
the channel variation due to multipath and ignore the absolute
propagation loss and large-scale variation due to shadowing).
First, we ignore the optimal ordering procedure and prove that
the diversity order at the ith step is (n — m + 7).

To demonstrate the main idea of the proof, let us consider first
the case of n = m = 2, i.e., H = [h; hy]. To be specific, we
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M1 - M}

Fig. 1. Geometric illustration of the interference nulling out step: the
received vector (after the interference cancellation) is decomposed into
orthogonal and parallel components with respect to the space spanned by

{/etaiy1, ..., [etan}.

A
€

v

€

Fig. 2. Geometrical representation of interference nulling out: decomposition
of h; into h;, and h, . e, and e, are basis vectors of the space spanned by
the columns of H (h; and h,).

assume that the first Tx symbol is detected first. The interference
nulling out can be expressed is a general matrix form

ri,=Q-r (13)

where @ is an orthogonal projection matrix, which projects r to
the direction orthogonal to hy. Substituting (13) into (2), one
obtains (since we are interested in the received signal power
only, we ignore noise in this section)

r; =qQ - h;.

This means that the signal after interference nulling out is pro-
portional to that part of h; which is orthogonal to h,, see Fig. 2,
and the signal power ~|hy |2. But the vector magnitude is not
affected by rotation on an arbitrary angle. We rotate [h; hs] as
a whole on angle 1) so that hy is parallel to ez : hy o = 0. This
can be expressed as

(14)

h;=A-h; (15)

where A is the rotation matrix, which satisfies (preservation of
length)

A AT =AY . A=1 (16)

where “+” denotes conjugate transpose. Using (15), one ob-
tains: |hy | = |}~zl,1|. It is straightforward to show using (16)
that the components of h; have the same distribution as the com-
ponents of h; (note that ¢ is independent of h,), i.e., i.i.d. com-
plex Gaussians with unit variance. Hence, |hy | |? is chi-squared
random variable with two degrees of freedom, |hy > ~ x3.
The same is true for the signal power. Thus, the diversity order
in the first step is one. The similar consideration for arbitrary n
leads to the conclusion that |[hy |? ~ X%(n—l) (simply because

1329

h;, has n — 1 nonzero components after rotation) and the di-
versity order is (n — 1).

The case of arbitrary m is somewhat more complex, how-
ever, straightforward to consider in the similar way. First, we
rotate the set [hy , ..., h,,] as a whole so that h,,, becomes par-
allel to e,,,, where e, es , ..., e, are basis vectors of the space
spanned by h;,h, ..., h,,. In the second rotation we keep
h,, fixed (i.e., arotation around the e,,, axis) and position h,,, 1
into the [e,,, 1 €] plane. The rotations are continued until hy
is positioned into the [e; e3 ..., e,,] hyper plane. After the
rotation, hy has (n —m+ 1) nonzero components. Every such
rotation preserves the distribution of the components. Hence,
lhy |2 ~ X%(n—m+1) and the diversity order is (n — m + 1).
Similar consideration for the sth step leads to the conclusion that
I 1[* ~ X3(, 1) and the diversity order is (n—m +1). Note
that the lowest diversity order is at the first step and the highest
is at the last (i.e., n). When n = m, no diversity is obtained at
the first step.

V. THE EFFECT OF OPTIMAL ORDERING

For the sake of simplicity, we assume that all transmitted sym-
bols have the same unit power and that the channel coefficients
are i.i.d. complex Gausians with unit variance and zero mean
(i.e., Rayleigh fading with (|h;;|*) = 1). Since we are inter-
ested in outage probability (i.e., the probability that the received
signal power drops below a given value), we consider the re-
ceived powers only (in each Rx antenna from each Tx antenna).
Normally, outage probability is defined in terms of SNR. How-
ever, since the noise powers in all the receive branches are as-
sumed to be equal and the optimal ordering does not affect noise,
it is equivalent to the definition in terms of signal power.

Under the assumptions above, the vector signal received by
the Rx antennas from the +th Tx antenna is

r, = hL (17)

We consider first 2 x 2 V-BLAST and further it is generalized
to the 2 X n case.

A. 2 x 2 Case

Consider the following transformation of the received vec-
tors (as a whole) illustrated in Fig. 3. Since it is the rotation, the
vector lengths (i.e., the signal magnitudes) as well as the angle
 are not changed. This rotation is similar to the one in the pre-
vious section. Hence, the primed vector lengths have the same
distribution as the unprimed ones, namely

hii > ~x3, hy~x3 |[hf>~x: (18)

Thus, we further use unprimed notations. The components of ho
have the same distributions as in (18). The outage probability
(i.e., cdf) for |hy|? (or |ha|?) is
Pr|h;|? < 2] = Pr[|hy? < 2] = Fi(z) =1 — e “(1 + x)
19)

i.e., the second-order MRC. The optimal ordering procedure
(after the interference nulling) can be described as follows:

81 = max[|hu_|2, |h2J_|2] = (sin Lp)2 max[|h1|27 |h2|2] (20)
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Fig. 3. Rotation of the received vectors by angle .
1.6 s
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angle, deg.

Fig. 4. Probability density function (pdf) of ¢ for various numbers of receive
antennas (n).

where s; is the signal power after the optimal ordering, i.e., we
compare |hy | and |hy, | and take the maximum. In fact, (20)
tells us that the optimal ordering 2 x 2 for system is to detect
first the substream with the largest before-detection power [i.e.,
the max at the right-hand side (RHS) of (20)]. While |h; |? and
|ho |? are X3 (i.e., Rayleigh distributed), taking the maximum
does not result in second-order diversity because they are not in-
dependent, as sin ¢ at the RHS of (20) indicates. Using the fact
that the distribution of max[|hy |?, |ha|?] is F}(z), the distribu-
tion F (z) of s; may be presented in the following form:

T

sin” ¢

Fy(z) =Pr[s; < 2] =Pr {max[|h1|2, |hy|?] <

/2 T
:'/0 Ff% <m>fsa(¢)dﬂ0

where f,,(¢) is the pdf of ¢ (note that it is not uniform). It can
be shown that f,(¢) = sin2¢p (see Appendix B). This pdf is
illustrated in Fig. 4. The most probable direction is 45° as one
would intuitively expect (because |hii[* ~ x3,|hy > ~ x3
and, hence, the most probable values of the abscissa (|hy)|) and
ordinate (|hy |) are the same (see Fig. 3). The probability to get
the angle close to 0° (90°) is very small because it means that
[hy| (Jhi1]) can be any and |hy | (Jhy)|) must be close to 0,
and this probability is small.

It should be noted that (21) holds true in the 2 X n case as well,
provided that the appropriate expressions are used for f,,(¢) and
Fp,(z). Evaluating the integral in (21), one obtains, after some

21
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manipulations, the following simple expression for the outage
probability at the first detection step with the optimal ordering

Fi(z)=1—2e+ (1 + g) 27, 22)

The detailed proof is given in Appendix B. The asymptotic be-
havior of this outage probability (i.e., in the small outage prob-
ability region) is

z — 0. (23)

T
F]_(x) ~ 57

Comparing this with the asymptotic behavior of the Rayleigh
distribution (Fr(z) = x,  — 0), we conclude that the effect
of optimal ordering is to increase SNR (or decrease outage prob-
ability) by 3 dB rather than to increase the diversity order, as one
might intuitively expect based on the selection combining argu-
ment [see (20)]. The reason for this is that |hy | and |ho | are
correlated.

The outage probability at the second detection step can be de-
rived using an expression similar to (20). In particular, we note
that at the second step we have to use the received vector with
the minimum length min[|h; |, |hs|] because the vector with the
maximum length was used in the first step. We also note that
there is no need for interference nulling at this step. Hence

so = min(|h; |?, |hy|*] (24)
and the outage probability Fy(x) is
Fy(z) =Pr[sy < 2] = 1 — [L — Fi(2))?
= Fu(2)[2 = Fy(2)]. (25)
Its asymptotic behavior is
Fy(z) = 2F)(z) =~ 2%, x— 0. (26)

Comparing it with the second order MRC outage probability,
Fure(z) = Fi(v) ~ 12/2, we conclude that the effect of op-
timal ordering at the second detection step is to increase outage
probability twice (1.5-dB loss in SNR). This is the “price” one
has to pay for the 3-dB increase in SNR at the first step. It should
be noted that (25) holds true in the 2 X n case as well, provided
that the appropriate expression is used for Fj,(z).

B. 2 X n Case

In this case

ha|* ~ X3, @27
n—1 p

T
Fi(a) = Prllf* <a] =1-e7" )" o
k=0

2 2 2
|h1L| ~ X2n—2> h1|| ~ X2,

(28)
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The same distributions hold true for hy as well. Using a tech-
niques similar to that in ([12], p. 191), it can be shown that in
this case f,(¢) = 2(n — 1)(sinp)?" =3 cos ¢ (see Appendix
B for details). This pdf is illustrated in Fig. 4 for n = 2,3,4.
The most probable direction shifts to the right (90°) when n in-
creases, starting from 45° for n = 2. This is what should be
intuitively expected because hy ~ x3 and [hyy |* ~ X3, _,,
and, hence, the most probable value of the ordinate (|h; |) is
greater than the most probable value of the abscissa (|hyj||) (for
n > 2), and the former increases with n while the later is fixed.
Using (21) and the pdf above, one obtains

/2
R = [ R (55 ) oo do

1

= (n - 1)/F3 (5) -2t

0

(29)

After some manipulations, (29) reduces to
n—2

Fi(z)=1—(n—1)e™" [2(2%

i=0
— e T[b; + (233)"1(;1-]):51'] (30)

where

i

(=1)i=™(n —i—2)!

—  (n—m-—1)m!
_ : —1)*
k=0 "
21 2n—2 n—2 (J—TL '2 j
=T Z Z R — k) S

j=i+n k=j—n+1

The details of the proof are given in Appendix B. Hence, a gen-
eral form of Fy(z) is

Fi(z) =1 —pi(z)e™™ + pa(x)e ™"

where p1 (z) and po () are polynomials of degree at most (n—2)
and (2n — 3) correspondingly. The asymptotic behavior of the
outage probability is

(32)

Fu(a) ~ — (5)”_1, 2z — 0. 33)

(n—1)!1\2
Comparing it with (n — 1) order MRC asymptotic behavior,
FPyre(z) = (1/(n — 1)1)a"1, we conclude that the effect of
the optimal ordering at the first detectlon step is to increase SNR
by 3 dB rather than to increase the diversity order. It is inter-
esting to note that the conclusion proved to be true for 2 x 2
system, is also true in the general 2 x n case. The outage proba-
bility at the second detection step is given by (25), where F}, ()
is that in (28). We do the same conclusion as in the 2 X 2 case:
the effect of optimal ordering at the second detection step is to
increase the outage probability twice. This is the “price” to pay
for the increased SNR at the first step.

It should be noted that F5 represents a conditional (condi-
tioned on no error at the first step, i.e., no error propagation)
outage probability at the second step. Assuming that an error at
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the first step automatically results at an error at the second step,
unconditional outage probability can be estimated as follows:
F} = F5(1 — Py) + Py, where P is the BER at the first step.
Clearly, F} is lower limited by P;. Note that error propagation
does not affect the first step outage probability. As the analysis
in the next section shows, in order to evaluate the total BER one
needs the conditional outage probability only.

VI. AVERAGE BER ANALYSIS

Using the results above we can analyze now average BER
performance for a particular modulation format in the same
way as it is done for diversity combining systems (see, for
example, [14] for detailed discussion). In doing so, we have to
use the instantaneous SNR distributions derived above. Hence,
the average BER will be different at different processing steps
since the SNR distribution varies from step to step and since
the noise power also varies from step to step. It should be
noted that, while the V-BLAST is a coherent algorithm (and,
hence, an MRC combining can be used), we carried out the
analysis above in terms of total post-processing signal and
noise powers and this implicitly corresponds to noncoherent
equal gain combining (EGC). Thus, we further assume that this
type of combining is employed. While practical applications of
noncoherent EGC may be limited, the mathematical analysis
becomes tractable analytically and some important insights
may be obtained in this way. It will also provide a lower bound
on the MRC performance, which is known to be superior to
EGC.

The purpose of this section is to illustrate the analytical BER
analysis, which is possible using the results above, rather than
to give a comprehensive exposition of the topic.

We consider first the case of 2 x 2 system. Generalization
to 2 X n systems is straightforward (however, it involves more
lengthy mathematics). The average BER at ¢th processing step
can be expressed as

oo

Pe;= /Pi(V)PR(W) dry

0

(34)

where P.(7) is the instantaneous BER or probability of error
(i.e., for a given instantaneous SNR «), and p;(7y) is the SNR
pdf at the sth step, which can be obtained from the outage prob-
ability expressions derived above

d d 2

where 7y is the average before-processing SNR per branch per
transmitter (i.e., when only one transmitter is active), which is
assumed to be identical for all branches and for both transmit-
ters. Since the analysis above was carrier out for a normalized
signal power, the outage probabilities (cdfs) in terms of instan-
taneous SNR are obtained by substitution z — -y /7 for the first
step and by  — 2 /g for the second one (the factor 2 is due to
the fact that the total post-processing noise power at the second
step is twice of the branch noise power—see (12)). In fact, the
average BER at the second step as defined by (34) ignores the
error propagation from the first step, i.e., it is a conditional BER
(conditioned on having no error at the first step). This is exactly
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what one needs to evaluate the total probability of error, i.e., the
probability that there is at least one error (either at first step, or at
second, or at both). The total instantaneous probability of error
is

P, e,tot

:Pe,l +Pe,2(1_Pe,1) (36)

where P, 1 = P.(71) is the instantaneous BER and v, is the in-
stantaneous SNR, both at first step, P. 2 = P.(2) is the condi-
tional instantaneous BER and +y, is the instantaneous SNR, both
at second step. Note that (36) is rigorous and it accounts for the
propagation of error (through the first term in (36), which de-
scribes 2 events: (i) error at first step and no error at second; (ii)
error at first step and error at the second step). The total average
BER is

Pe,tot = <Pe,1>'yl + <P€,2>’Y2
<P.i+P.p

- <Pe.,1Pe,2>71-,'Yz
(37)

where (z) is the expectation of x (over channel fading), P. 1 =
(Pej1)y, and P.» = (Pe 2)~,. The third term in (37) cannot
be easily evaluated since y; and -y, are not statistically inde-
pendent. Hence, we use the upper bound at the right and, using
Monte Carlo simulations, show that this bound is very tight (the
difference in BER is less than 10% for 49 > 5 dB). An in-
tuitive explanation for this is that the third term in (37) is a
“second-order” one and, hence, for reasonably large average
SNR it should not affect significantly the total average BER.

We further assume that noncoherent binary orthogonal FSK
is used (other modulation schemes can be analyzed in a similar
way; however, analytical analysis may not be always possible),
whose instantaneous BER is [14]

() = go (-1).

Using (34), (35), and (38) one obtains

1w W 1 1
Pe,1—2 2_{_%-1- > (4+%+(4+%>2) (39)
16 128
CRE RN CEE RN
Using (37), (39), and (40), the total average BER can be easily
estimated using the tight upper bound in (37). Asymptotically,
at high average SNR regime (75 — 00), one obtains

P~ L_./ P.o= 1—62 (41)
270 Yo
As it follows from (39) and (40), (41) provides good approxi-
mations provided that 7y > 4 (first step) and 7y > 8 (second
step). Note that in high SNR regime the total average BER is
dominated by the first-order term

(38)

Py = (40)

Prw~ P+ Pam P o
27
which agrees well with intuitive expectation. These analytical
results were validated using extensive Monte Carlo simulations
as discussed in the next section. Comparing (41) and (42) with
(23) and (26) one may conclude that the average BER at high
SNR regime behaves in the same way as the outage probability
(up to a constant), as it is the case for conventional diversity

(42)
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combining systems. Comparing (41) to the average BER of a
conventional noncoherent FSK, we conclude that the effect of
the optimal ordering is to increase SNR asymptotically by 3 dB.
The generalization of the results above for 2 X n system
is straightforward (however, it involves more lengthy mathe-
matics). We give here the final results for the average BER

1 75w -1 \'"
671:__7_2 o, (20D
2 2 & 2(n—1)+7

__2n 3

i+l
Jo B M 43
+4;Lﬂz(4(n_1 (43)
2n,
P.,=
? <4n+%> <4n+vo>
_ 2n-—1
"o
- ) (44)
i 22, <4n+%>
where
bi, ) S n—2
pi= {2n_107‘ ntl, t=2n—1
(i—1)!
;= 45
f kzz;n k' Z —1- ) ( )
The asymptotic behavior at high SNR regime is
n—1 n
1 -1 2
Poy = (”_ ) . Poow <:”> @6
T2\ Yo

Similarly to the case of 2 x 2 system, these approximations
are accurate provided that that 75 > 4(n — 1) (first step) and
Yo > 4n (second step). For n = 2, these equations reduce to
(39)—(41), as it must be.

Similarly to diversity combining systems [14], binary DPSK
will perform better by 3 dB in terms of average SNR. Coherent
modulation/demodulation formats can be analyzed in a similar
way. Consider, for example, coherent binary phase-shift keying
(BPSK) whose instantaneous BER is [14]

R = QW/Z), Q) = o= 7exp (-g)dt. )

We further use a modified form of (34) to simplify the develop-

ment
/ pi(7)Pe(7y) dy = / Fi(vy dv
0 0

where F{(v) = F1(v/70), F5(v) = F2(27/70). Equation (48)
allows for a closed-form solution. In the case of a 2 x 2 system,

it is especially simple
1 Yo 1 Yo
Pe.,1=——\/ V0_+_\/ 70_(1—{—
2 1+% 2V2+7%

(48)

1
) @«
4<2+%>> )

— 1 Yo 1 1 3
Pog=— 42 <_ _ — 2) . (50
2 4470 4+7%  2(4+%)
The asymptotic behavior of BER for large average SNR is
1
e o Pe N5 51
1 5 2 2 b
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Outage probability curves of the V-BLAST algorithm forn = 3,

Comparing it with (41), we note that, similarly to conventional
systems, there is 6-dB; improvement at first step with respect to
noncoherent FSK. Comparing it with a conventional BPSK, the
3-dB improvement due to the optimal ordering is also obvious.
The second step improvement is a bit less than 6 dB. second-
order diversity is also apparent at this step. Similar analysis can
be done for a 2 X n systems. However, the expressions become
more complicated.

VII. NUMERICAL MONTE-CARLO SIMULATIONS

In order to validate the analytical results above, we use
numerical Monte Carlo simulations for mm = 2. First, the
V-BLAST algorithm outage curves have been simulated
without the optimal ordering. No difference has been observed
between the analytical results above, which are shown as MRC
curves on the graphs, and the Monte Carlo simulations (thus, the
analytical results are not shown on the graphs), which validates
the analytical results. Second, the V-BLAST outage curves
have been simulated with the optimal ordering procedure.
Some of the results are presented in Figs. 5—7. No significant
difference has been found between analytical outage proba-
bility results and Monte Carlo simulations. This validates our
conclusion that the effect of the optimal ordering is to increase
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signal power (and SNR) rather than to increase the diversity
order. However, as shown on Fig. 7, it is difficult to observe this
tendency using Monte Carlo simulations for reasonable outage
probabilities when n > 4. The small difference between ana-
lytical and Monte Carlo results observed in these graphs may
be attributed to three main reasons. First, we used histograms
of 0.2-dB width to build the curves and this contributes to the
small shift observed. This width is a compromise between the
number of Monte Carlo simulations (trials) required (10% for
Fig. 7) and time/computing power available. Decreasing the
width results in smaller shift but it increases the “noise” from
interval to interval for a given number of simulations. On the
other hand, the number of simulations required is limited by
the computer power available. Second, since we used only
108 trials for Fig. 7, some inaccuracies are produced at small
probabilities (like 10~7). Third, performing 10® Monte Carlo
simulations may reveal some limitations of the random number
generator we used (in particular—its uniformity). Of course,
this effect is much more pronounced for a really large number
of simulations and is negligible otherwise.

Fig. 8 shows the average BER performance of 2 x2
V-BLAST as discussed in the previous section. Since no
difference has been found between numerical Monte Carlo
simulations and analytical results in (39) and (40), numerical
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results are not shown. As Fig. 8§ indicates, the upper bound in
(37) is indeed a tight one for approximately v > 5 dB. The
second step BER dominates the first step BER at ¥ < 13 dB
and when v > 13 dB the first step BER is dominant. The
contribution of P, > to the total average BER is negligible and,
hence, (42) holds true at approximately 4 > 20 dB. In this
region, the total average BER is totally dominated by the first
step BER and the second step BER can be ignored in estimating
the total BER. Fig. 9 demonstrates that similar conclusions
hold true for n = 3 as well.

VIII. CONCLUSION

Using a closed-from model of the Gramm-Schmidt process,
we have developed an analytical approach to the performance
analysis of the V-BLAST algorithm. In particular, closed-form
analytical expressions have been presented for the signal and
noise vectors at sth processing step, as well as for the outage
probabilities. The after-processing signal power is determined
by the channel instantaneous correlation matrices (in the same
fashion as the channel capacity is). The optimal ordering is
proved to be equivalent to the least correlation criterion.

Performing the statistical analysis analytically for a Rayleigh
uncorrelated channel, we have proved that the diversity order at
ith processing step is (n — m + i), provided that no optimal
ordering is used. For the 2 x n system, the effect of the op-
timal ordering at the first detection step is to increase SNR by
3 dB rather then to increase the diversity order (as one might
intuitively expect based on the selection combining argument).
For the second detection step, the effect of the optimal ordering
is to increase the outage probability twice. This is the “price”
to pay for increased SNR at the first step. However, the diver-
sity order at the second step is n. Thus, 3-dB increase in outage
probability will not degrade the overall performance since the
original outage probability is low (for reasonably large SNR).
On the contrary, it is important to improve the first step SNR
since the diversity order is (n — 1), less than at the second step.
Numerical Monte Carlo simulations validate the analytical re-
sults above. While Monte Carlo simulations are very lengthy for
small outage probabilities, the numerical evaluation of the ana-
Iytical expressions above is computationally efficient.
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Based on the distributions of instantaneous SNR derived
above, we further analytically analyze the average BER
performance assuming noncoherent EGC and noncoherent or-
thogonal FSK. Rigorous and approximate (at high SNR regime)
closed-form expressions are given. Similar to the case of con-
ventional diversity combing systems, the asymptotic behavior
of the average BER resembles that of the corresponding outage
probability (up to a constant). Other modulation/combing
format can be analyzed in a similar way (however, analytical
analysis may not be always feasible, at least in a reasonably
simple form).

APPENDIX A

A closed-form analytical model of the Gramm-Schmidt
process is given in [10, Section IX.6]. Let us consider the ist
processing step. Assuming that the first (z — 1) symbols are
detected without errors and the interference cancellation is
accomplished, the received vector at this step is

1—1 m
r,=r-— thQk = thQk-
k=1 k=i

The orthogonal projection of r into the space spanned by

(A

{/eta;y1 ..., [etay} is given by [10]
[ | Mi+1
—1 R i+1,m
ro_
Yl T TRELm | (A2)
Mg - 0
The component of r; orthogonal to {9, ,..., n,,} is
L =TT
: | Ni+1
1 R i+1,m .
= —| R m | (A3)
Tl il T

Taking into account (A1), we note that the last row in the nu-
merator determinant in (A3) includes components proportional
to first to (m — ¢)th rows, which can be dropped out because
they do no affect the determinant value. Thus, the only com-
ponent of r’ that gives contribution to the determinant is h;g;.
Consequently, (A3) reduces to

Nit1
I‘I» . q,|hl| R[i+1,m] e
i, = |R[i+1,m]| M,
M+ M n;
(A4)

Relocating the last row to the top position and the right column
to the left position, one obtains

n; ;7541
Nit1

N:Mm
RS |R[i+1,m]|
Nm

R+ (A3)
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which is the same as (4). The signal power is:
i, [P =l (A6)

Substituting (A6) into (AS), we obtain

7;T; N:Mi+1 N:Mm
|I'I' |2 _ ql|h2| ‘,l'i-‘rlrg
Ll = |R[i+1,m]| Rli+1.m]
N T
(A7)

We note that the first column in the numerator determinant in
(A7) includes components proportional to second to (m — ¢ +
1)th columns, which can be dropped out. Consequently, (A7)
reduces to

- 1 0741 N1,
|I'I» |2: |q1| |h1| N1 )
4,1 |R[l+1,m] | . R[L+1vm]
N,
R[iJn]|
1 12h (2 |
= lail"hil [RE+1ml] (A8)

Similar to (A3) and (AS5), the noise vector after the interference
nulling out can be presented as

v V011 Vi
1 n,
" __ 1+1
Vi T R Rli+1m] (A9)
N

which is equivalent to (11). The instantaneous noise power,
|V”|2, is

7

VP = v

|V|2 Vi1 Vi,
_ 1 Vit
- |R[i+1,m]| R[i+1m]
Vi
o2 VMg
= |V| |R[i+17m]|
V011 Vit2 Vi
o |MigaMivn 1 Mi+27m
Nni+1 "lm"li-i—Z T 1
+ -+ M
|R[i+1,m] |
V141 V142 Vi,
y 1 Mip1Mit2 M1 | (A10)
N—1Mi+1 Mm—-1Mit2 Nr—1"Mm

where we expanded the determinant along the first column.
Using the following identity

((vmy)(vn,)) = oimm; (A1)
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where the expectation is taken over noise, and 0?7 = (|v;|?) is
per-branch noise power before processing (note that we assume
that all branches have equal and uncorrelated noise), we obtain
the following:

Py, = ([v{]*)

2
_ 2 01
= noj |R[i+1’m]|
1 Mit1Miy2 Mit1Mm
s | Mit2Mi41 1 Ni2Mm
N i+1 ”m"i—l—Z T 1
(=)™ "ot
Tt R
NMit1 MMiy2 1
y 1 M1y Mip1Tm
Nm—1Mi+1 M—1"i42 N—1Mm
=nol -0 —---—of=(n—m+i)oi. (Al2)

In order to obtain the last two equalities in (A12), we exchanged
the position of some rows in the determinants to get R[] in
each term of the sum. This proves (12).

APPENDIX B

To find the pdf of ¢, we follow the same approach asin [12, p.
191]. The variable v = tan ¢ = |hy |/[hy)| has the following
distribution [12, p. 237]:

2u

—_— > 0.
1+u)2 "=

fu(“): (B1)

Hence, the pdf of ¢ is

1

fo(e) fu(tan ) = sin 2,

To prove (22), we start with (21)
77/2 ) T
Pl <l = Ale) = [ R (5 ) ) de @9
0 sin” ¢

First, we transform the integral in (B3) to the following form:

1 oS} 2
_ 2 (T _ Fy (at)
Fi(z) —/0 Fy (t)dt—/1 2 dt.

The transformations are performed using sequentially the sub-
stitutions sin® ¢ — tand ¢t — 1 /t. Further, using (B2) and (19),
the last integral in (B4) is transformed to

(B4)

Fl(.Z‘) =1- ZEQ(JJ) + EQ(ZI)

—2xE(x) 4+ 20E1(22) + ze™®  (B5)
where
s e—:pt
Bu(o) = [ i (B6)
1
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is the integral exponential function [13]. We further use the fol-
lowing recursive rule:

1

Epi1(z) = E(e—w —zEp(z)), k=1,2,3,... (B
to express 5 using F; and obtain
x
Fi(z)=1-2"" + (1 + 5) =2 (BS)

which is the same as (22).
The general 2 X n case is considered in a similar way. The pdf
of the variable u can be shown to be the following [12, p. 237]:

2(n — u’n=3
u - re— > 0 B
fulw) = = v (B9)
and, hence, the pdf of ¢ is
fol9) = o Fultan )
P) = 77 75 Jullane
’ |de/dul
=2(n—1)sin®" 3 p-cosp, ¢e[0,7/2]. (B10)
To prove (30), we start with (29)
1
Fi(z)=(n—1) /F, 24 (B11)
0
Using (28), we transform it to
Fi(z)=1-2(n—1)I1+ (n—1)I3 (B12)
where
n—1 m I n—=1
I = W/eTt”_Z_mdt = B m(2)
m=0 0 m=0
(B13)
n—1n-1 k4+m 1
_ T 7fl n—2—k—m
.[3 = ol /e t dt
k=0 m=0 0
n—1n-—1 xk'l'm
= o] En_k—m(22) (B14)
k=0 m=0
Using the recursive rule (B7), we obtain
k— 1
—1—1
Epsi(z) = e=* )!
=0
ok
—i—uEl(x), k=123, ... (B15)

k!

When n — k —m < 1in (B14), we use the following relation
[13]:

E_i(x) /t’“e*“dt
1

= klg—k1 —fzf—' k=1,23,....(B16)

=0
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Combining (B15) and (B13), one obtains

n—1 n—m-—
Fn —m —k—2)la™
h=e"), ; —m-DT

nml

nlzn_ _1

It is straightforward to show that the last sum in (B17) equals to
zero. Hence

B17)

n—2 .
o —i—2)!
I,=¢ 2; at al_z T (B18)
which is in agreement with (30) and (31).
We further present I3 as follows:
n—1 )
Iy=1Is + Isp, I =) dia’E,_i(22), 15
i=0
2n—2 )
= Z d;x' i (22),
2! ,
) 1r<n
7!
d; = 7§ 1 . (B19)
— . >N
(i — k)’ =
e k(i — k)!
Using (B15), one obtains
n—1 n—m—
3 3 b
=0 k=0
+ E1(2z)(— i 2)~" dm
! — (n—m—1)!
—1)k2ktm(p — k —m —2)!
L)) (n o ) (B20)
(n—m —1)lm!

It is straightforward to show that the second sum in (B20) equals
to zero. Hence, (B20) reduces to

n—2
_ e—2x Z bm.’Em
m=0
m
by = Z bk,m—k
k=0

=(=2)"(n—m —z'kzzo i

In a similar way, combining (B16) and (B19), one obtains

n—2
I3 = e_2x(2:17)n_1 Z Cmx™,
Z Z lkl :

] m+n k=j—n+1

Combining (B18), (B21), and (B22), one obtains (30) and (31).
This concludes the proof.

(B21)

(B22)
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