
STATISTICAL ANALYSIS OF A MEASURED MIMO CHANNEL 
G. Levin, S. Loyka 

School of Information Technology and Engineering (SITE) 
University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario, K1N 6N5, Canada 

E-mail: {glevin, sloyka}@site.uottawa.ca 
 
Abstract - In this paper we discuss an approach to a rigorous 
statistical analysis of a measured indoor MIMO channel. The 
channel characteristics such as outage capacity and channel 
gain distributions, transmit and receive correlations, and the 
frequency response are statistically analysed under the 
constraint of limited data available. We also compare the 
measured channel to the known analytical MIMO channel 
models in terms of the mean and outage capacity distributions. 
As the result, we show, in a statistically-rigorous way, that the 
measured channel is a non-degenerate frequency-selective 
Rayleigh MIMO channel with significant TX and RX 
correlations.  

Index Terms: wireless communications, MIMO capacity, 
statistical analysis. 

I. INTRODUCTION 
A Multiple-Input-Multiple-Output (MIMO) system is a new 
paradigm in the modern digital wireless communications. 
The capacity of a MIMO channel is substantially higher than 
that of the traditional systems. Telatar in [1] and Foschini et 
al in [2] show that the capacity of an uncorrelated Rayleigh 
MIMO channel grows proportionally to the channel rank and 
linearly depends on a number of receive antennas when the 
number of transmit antennas is asymptotically large.  

The outage capacity of a Rayleigh MIMO channel is 
being studied extensively during last years. The explicit 
expressions for the distribution of the outage capacity in 
some particular cases are derived by Telatar [1] and Simon 
et al [3]. In addition Telatar [1] gives an explicit expression 
for the first moment of the Rayleigh channel outage capacity 
distribution, and then Smith et al [4] give an explicit 
expression for the corresponding second moment. However, 
all those expressions are not closed-form and complex for 
evaluation. 

More simple and closed-form expressions are derived 
by Hachwald et al [5], where the authors give the asymptotic 
distribution of the outage capacity using the results of 
Telatar’s and Foschini’s works and the central limit theorem. 
In particular, Hachwald et al [5] show that the distribution is 
asymptotically Gaussian when the number of transmit and 
receive antennas goes to infinity. In addition, using Monte-
Carlo simulations, Smith et al [4] and Hachwald et al [5] 
show that the outage capacity distribution of an uncorrelated 
Rayleigh MIMO channel converges very fast to Gaussian 
and becomes “virtually indistinguishable” from the Gaussian 
distribution when the rank of the channel matrix greater than 
five [4]. Smith et al [4] also notice that the convergence is  

faster as signal-to-noise-ratio (SNR) becomes smaller. 
Even though the outage capacity distribution of a 

theoretical Rayleigh MIMO channel has been well studied, 
that of a real physical channel remains unknown in many 
practical scenarios. There are many factors such as channel 
cross-correlation, “keyholes”, mutual coupling between 
antenna elements and SNR variations that can significantly 
reduce the capacity of a MIMO system. Only relatively few 
experimental works are available in the literature so far [6]. 

Unfortunately, all the measured results on MIMO 
capacity and other channel parameters were not a subject to 
a rigorous statistical analysis. For instance, the comparison 
of the measured distributions to the theoretical models was 
done mostly visually with no strictly defined criteria. As a 
result, different conclusions were reported in different 
works. To fill the gap and remove the uncertainty of 
conclusions, we develop a statistically-sound approach to the 
analysis of a measured MIMO channel. 

II. MIMO CHANNEL CAPACITY 
Consider a MIMO system with t transmit and r receive 

antennas. Assuming a frequency-independent and quasi-
static channel, the receiving signal is given by the following 
matrix model: 

                                (1)wxHy +⋅= 
where: x  and y  are vectors representing a transmitting 
receiving signals respectively; H  is an instant matrix 
representing the channel; w  is an additive white Gaussian 
circular-symmetric noise. 

The outage capacity outC  of a MIMO channel is 
defined [1] as { }outout CCP <= Pr , where C  is the 
instantaneous capacity for a given channel realization: 

                  (2) )det(log 2
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I  is the identity matrix; ρ  is a signal to noise ratio 
determined as the total average power at a receive antenna 
over the noise power at that receive antenna, and +H  is a 
transpose conjugate of matrix H .  

When ∞→tr, , the outage capacity distribution of an 
uncorrelated Rayleigh MIMO channel is Gaussian for 

0→ρ  and for ∞→ρ  respectively, as shown in [5]. 

III.METHODS OF STASTISTICAL ANALYSIS  
In general, there are two hypotheses considered against each 
other in any statistical test: an assumption on some property 



of the measured data (the null hypothesis 0H ) against the 
possibility that this assumption is not true (the alternative 
hypothesis 1H ) [7]. For this purpose, a test statistics nT  (a 
function applied on the measured data) is calculated using n  
observations and compared to some critical value ε . The 
meaning of ε  depends on the meaning of nT  in each 
particular test. If ε≤nT , 0H  is accepted; otherwise, it is 
rejected. We should stress, that if 0H  is accepted it does not 
mean that the measured data possesses the assumed 
property, it simply means that the test performed did not find 
any statistically significant difference between the observed 
and assumed properties. Apparently, there are two 
probabilities associated with nT  and ε : }{ 0HTP n ε>=α  

(a significance level) and }{ 1HTP n ε≤=β .  
Unlike the computer-based Monte-Carlo simulations, 

the common problem of any measurement is a limited 
number of observations available. Therefore, it is important 
to choose α  and β  (test parameters) properly with 
accordance to the data size, especially when the size is small. 

Let us consider nT  of a monotonically consistent 
statistical test. Then the following is true [7]: 1) for any ε  

0}ε{lim 0 =>∞→ HTP nn  and 2) for any given α  and ε  
there is only one n , such that: 

                           (3)}{ 0HTP n ε>=α 
Apparently, as follows from 1) and 2), for any nm > , 

}{ 0HTP m ε>>α . Moreover, due to the additive property 

of the probability measure for any n }{ 0HTP n ε>  is a 
non-increasing function of ε . Therefore, if ε  is small, either 
α  or n should be large. This is a general conclusion that is 
true regardless of any specifics. 

On the other hand, let us consider β . The exact value of 
β  depends on the actual distribution of the measured data, 
which is unknown in most practical cases. However, in 
general, due to the additive property of the probability 
measure, β  is a non-decreasing function of ε . Thus, if β  is 
low the corresponding α  would be high for given n . 
Therefore, the only way to keep the equality in (3) with 
smaller α  for fixed β  would be to increase the size of the 
acquired data. The relationship given in (3) between ε,n  
and α  is general for any monotonically consistent statistical 
test, however the exact values of ε ,n  and α  depends on a 
particular test to be used. Further, we use three statistical 
tests to analyze the measured MIMO channel: 1) Pearson 

2χ  hypothesis test, to check statistical hypothesis on 
distribution [8]. 2) Generalization of the t-test of correlation 
coefficients, to check whether the sample correlation is 
statistically different from zero [8], and 3) Generalization of 

the F-test (variance ratio test), to check whether two sample 
variances are statistically identical [8]. It can be shown that 
all three tests are monotonically consistent. Moreover, since 
the test statistics distributions of these tests are known [8], 
(3) for the 2χ  test can be written as: 

                (4)
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function, ),()( ∞γ=Γ aa  is the Gamma function, K  is the 
number of intervals of the observed data, and m  is the 
number of moments to be estimated. The meaning of ε  in 
(4) is a critical mean relative deviation of the observed 
histogram from the expected one. 

For the generalized t-test, (3) is given by: 
              (5){ })1()22(5.0exp 22 ε−−⋅ε⋅−=α n 

where ε  is a critical sample correlation.  
And finally, for the generalized F-test, (3) is: 
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where ε  is a critical deviation of a ratio of two sample 
variances from one. 

To represent the general relationship between ε,n  and 
α , α  vs. n  in (4) for different ε  is plotted in Fig.1. 
Clearly, decreasing α  for given n  results in increasing ε , 
what, in turn, increases β . 

0 100 200 300 400

0.01

0.05

0.1

1

Number of Observations, n

Si
gn

ifi
ca

nc
e 

Le
ve

l, 
α

ε=0.047
ε=0.092
ε=0.119

 
Fig. 1. α  vs. n  in the 2χ  test ( 10=K , 2=m ). 

In the following statistical analysis we use (4), (5) and (6) to 
choose appropriate statistical test parameters. 

IV. MIMO CHANNEL STATISTICAL ANALYSIS 
In this section we analyze the experimental data based on the 
measurements of the 8x8 5.2 GHz indoor MIMO channel 
reported in [6]. However, the procedure is general enough to 
be applied to any channel. The MIMO channel was 
measured at 193=F  frequency bins equally spread over 



120MHz frequency band at the central frequency of 5.2GHz. 
At each frequency bin, 130=n  spatial realizations of the 
8x8 MIMO complex channel matrix were taken at 8 
different locations (Rx1, Rx2,…, Rx7, and Rx9) and 3 
different directions (D1, D2, and D3) in each location. As a 
result we have (3x8x130x193x8x8) 6-dimensional complex 
channel transfer matrix (for details see [6]). In further 
discussion, we will denote by ),( fnH  the thn  spatial 
realization of the 8x8 complex channel matrix measured at 

thf  frequency bin in a considered location and direction. 
Below we compare the outage capacity distribution of 

the measured channel to the Gaussian model in [5] in a 
statistically-rigorous way. For this purpose, we initially test 
whether the channel is Rayleigh distributed, uncorrelated, 
frequency flat and non-degenerated. At the end, we study 
how fast the outage capacity distribution of the measured 
channel converges to the Gaussian model with respect to 
different MIMO system orders )( tr ×  and SNR. 
1. Channel Gain Distribution 
In order to analyze the gain distribution of the measured 
channel, we considered ),( fnijH , 130..1=n , for different, 
i , j , f , and for different locations and directions. Each 

ijH  was normalized giving a set of normalized matrices W  
whose ji,  element was defined as: 

( ) )()(),(),( fffnfn
ijijijij HHHW σ−=       (7) 

where )( fijH  is the sample mean, and )(2 f
ijHσ  is the 

sample variance of ijH  with respect to n . 

The 2χ  test was applied on the set of ),( fnijW , 
130..1=n . As a null hypothesis, it was assumed that each 

ijW  is Rayleigh distributed. All ijW  were arranged in 

10=K  intervals to provide at least five expected ijW  

falling into each interval [8]. The significance level we chose 
is 05.0=α , which based on (4) corresponds to 119.0=ε  
for 130=n . This is a compromise between low α  and not 
very big ε . For every considered configuration, the 
assumption that ijW  is Rayleigh distributed was accepted. 

We also noticed that the measured channel does not have 
line-of-sight (LOS) component, since the estimated LOS 
factors )()( ff

ij
ij H

H σ  are very low (around -30dB) in 

each considered configuration. 
2. Tx and Rx correlations 
In order to test TX and RX correlations, we estimated 
sample correlations between different antenna elements in 
the transmitter and the receiver at different frequencies bins, 
locations and directions. Then, we applied the generalized t-
test of correlation, where 0H  means that the measured 
MIMO channel is Rayleigh distributed and uncorrelated 

both at the transmitter and the receiver. We chose 05.0=α , 
which based on (5) corresponds to 054.0=ε  given 

8130 ⋅=⋅=⋅ rntn  observations. Only in few cases the null 
hypothesis was accepted, in all the others the test shows that 
there is a statistically significant correlation (in some cases 

)75.0>  between different antenna elements at the 
transmitter and the receiver. Therefore, unlike some MIMO 
channel models, the measured MIMO channel cannot be 
considered uncorrelated. We also observed much more 
severe correlation at the receiver than at the transmitter. We 
explain this by the fact that the angular spread is smaller in 
the transmitter rather than in the receiver. 
3. Channel frequency response 
To test the channel frequency response, we considered the 
following ratio in each location and direction: 

            (8))()(),( 2
2
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2
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for every i , j , 1f  and 2f . 0H  is that the measured indoor 
MIMO channel is Rayleigh distributed and it has identical 
power gain over all measured frequency bins, i.e. it is flat 
within the considered frequency band of 120MHz at 
5.2GHz. We chose 1.0=α , which following (6) 
corresponds to 205.0=ε  for 130=n .  

For all considered configurations, 0H  was rejected, i.e. 
the channel has different power gain at different frequency 
bins. Therefore, the channel is statistically frequency 
selective within the considered frequency band. 
4. Outage Capacity Distribution 
Using (2), the sample outage capacity )(nC  of the measured 
MIMO channel was calculated as: 

( )∑ =
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F
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At each location and direction the channel matrix was 
normalized over all measured frequencies and spatial 
realizations so that: 
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We also noticed that { } 8),(1 1 =∑ ∑= =
n
i

F
j jiRank H  (the full 

rank of H ) in all locations and directions. Therefore, the 
measured channel is non-degenerated or it has no 
“keyholes”. 

In order to analyze the distribution of the outage 
capacity, we considered the adjusted sample outage capacity: 

                      (11)( ) CCnCnC σ−= )()(ˆ 
where C  is a sample mean, and 2

Cσ  is a sample variance of 
C  with respect to n . The 2χ  test was then applied on Ĉ  in 
different locations, directions, ρ  and different channel 
orders. To test different orders ( tr × ) the right-upper 
corners with appropriate size were picked up from the 8x8 
MIMO channel matrices and substituted into (9). Following 
the Gaussian model of the outage capacity distribution given 



in [5], 0H  is that Ĉ  is Gaussian with zero mean and unit 
variance. All Ĉ  were arranged in 10=K  intervals to 
provide at least five expected Ĉ  falling into each interval 
[8]. Since the number of observation we had in each tested 
location and direction is 130=n , we chose 1.0=α , which 
corresponds to 092.0=ε  in (4), see Fig. 1. 

Some of the results are presented below. The measured 
test statistics nT  of the 2χ  test in location Rx7D3 for 
different orders and dB20=ρ  are given in Tab. 1. If 

ε≤nT , 0H  was accepted and the corresponding cell is 
shadowed. 

r \ t 1. 2. 3. 4. 5. 6. 7. 8. 
1. 0.12 0.03 0.03 0.05 0.09 0.06 0.11 0.11 
2. 0.12 0.10 0.07 0.01 0.04 0.05 0.09 0.09 
3. 0.10 0.06 0.09 0.08 0.09 0.03 0.06 0.11 
4. 0.03 0.09 0.14 0.12 0.07 0.07 0.05 0.11 
5. 0.09 0.08 0.10 0.06 0.06 0.07 0.06 0.06 
6. 0.07 0.11 0.11 0.05 0.06 0.04 0.06 0.07 
7. 0.08 0.15 0.17 0.04 0.07 0.08 0.11 0.11 
8. 0.05 0.07 0.20 0.04 0.07 0.11 0.11 0.16 

Tab. 1 Results of 2χ  test in Rx7D3 for different MIMO 
orders ( tr × ), dB20=ρ  and 092.0=ε . 

Following the Gaussian model [5], 0H  is supposed to be 
more frequently accepted for higher orders as well as for 
lower ρ , as suggested in [4]. However, as the order of the 
MIMO channel increases the 2χ  test does not give 
systematically the expected results (see Tab. 1). The same 
was observed when ρ  decreases.  

As known, the 2χ  test gives an integral evaluation of a 
measured distribution. However, from the practical point of 
view, it is also important to know the outage capacity 
distribution on the distribution tales where outP  is low, i.e. 
in the region of the high quality of service. In order to 
evaluate Ĉ  differentially in the region of small probabilities, 
we built the sample distributions of Ĉ  computed for 
different locations, directions, orders and ρ . As an example, 
this distribution for the 2x2 MIMO channel is given for 

dB20=ρ  in Fig. 2. We also give the σ±  error range given 
130=n  and plot Gaussian CDF with zero mean and unit 

variance assumed in 0H . As can be seen, the deviation of 
the sample distribution of )(ˆ nC  from the Gaussian CDF 
computed in Rx4D1 and Rx7D3 exceeds the σ±  error 
range. Especially, this deviation is large on the tales for 

1.0<outP . 
Unfortunately, no conclusions can be made as to 

whether the outage capacity distribution of the measured 
channel follows the Gaussian model. In fact, 1.0=α  and 

092.0=ε  are too large to make adequate decisions. As 
stated above, the only way to reduce α  and ε  
simultaneously is to increase n . The appropriate number of 
measured observations, we propose for future experiments, 

is about 300=n . Then as follows from Fig. 1, for 05.0=α  
the corresponding critical value is 047.0=ε . On one hand 
the proposed n  is quite moderate; on the other hand, since 
both α  and ε  as twice as lower then their current values, 
the accuracy of the 2χ  test will increase. 
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Fig. 2. 2x2 MIMO channel adjusted outage capacity sample 

CDF in different locations ( dB20=ρ ), see (11). 
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