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Abstract

The ground impedance matrix elements of a multiconductor overhead transmission line do not have analytical inverse Fourier

transforms in the time domain. Thus, in general, the ground transient resistance matrix elements are to be determined numerically.

Using the low-frequency approximation analytical expressions are available for the ground transient resistance. These expressions

present however a singularity at t�/0 and require a careful treatment in a direct time domain analysis. In this paper, we show that

the singularity in the ground transient resistance is due to the low frequency approximation. Also, we show that at early times, the

ground transient resistance elements tend to an asymptotic value, which depend on the line geometrical parameters and ground

relative permittivity. Finally, we propose new expressions which are analytical, non-singular, and which describe, within the limits of

transmission line theory, both the early-time and late-time behavior of ground transient resistance in a more accurate way.
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1. Introduction

Recent studies dealing with transients in overhead

transmission lines due to indirect lightning effects have

shown the importance of taking into account the finitely

conducting ground in the transmission line equations

(e.g. [1�/3]). This results in an additional longitudinal

impedance term in the transmission line equations which

is called the ground impedance matrix [4]. The general

expression for the elements of the ground impedance

matrix are not suitable for a numerical evaluation since

they involve integrals over an infinitely long interval.

However, reasonably simple expressions have been

proposed in the literature which have been shown to

give very accurate results [3] in the frequency range

typical of transient surges propagating on transmission

lines.

A direct time domain resolution of transmission line

equations is sometimes preferred to a frequency domain

analysis because of its straightforwardness and its

capability in handling nonlinear phenomena such as

corona effect and/or presence of protective components

such as surge arresters.

On the other hand, one major difficulty of a direct

time-domain analysis of transmission line equations is

related to the presence of frequency-dependent para-

meters such as ground impedance, which appear in the

equations through a convolution integral. Considering

the low frequency approximation, analytical expressions

have been derived for the ground transient resistance

matrix elements in the time domain [5,6]. However, these

expressions present a singularity at t�/0 and require a

careful treatment in the resolution algorithm [3,7].
In this paper, we will show that the presence of this

singularity is due to the low frequency approximation,

and that such a singularity is not present in the general

expression of the ground transient resistance. Also, we

will propose a new analytical and non-singular expres-

sion that describes, within the limits of transmission line

theory, both the early-time and late-time behavior of

ground transient resistance in a more accurate way.
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The geometry we will refer to is presented in Fig. 1.
We consider a uniform overhead multiconductor trans-

mission line above a finitely conducting ground char-

acterized by its conductivity sg and its relative

permittivity org.

2. Ground impedance expression

Several expressions for the ground impedance have

been proposed (e.g. [8�/20]). Here, we will use those

proposed by Sunde [10] essentially for two reasons:

1) It can be shown that the general more rigorous

expressions derived using scattering theory reduce

to the Sunde approximation when considering the

transmission line approximation [4].

2) The ground impedance calculated using the Sunde

expressions are shown to be accurate within the

limits of transmission line approximation [4].

The general expression for mutual ground impedance
between two conductors i and j derived by Sunde is

given by [10]
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where hi , hj and rij are geometrical parameters as

defined in Fig. 1, and gg is the wave propagation

constant defined as

gg�
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Adopting a low frequency approximation, the general

expression Eq. (1) reduces to the well-known Carson’s

expression
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when sg�/vo0org.

It has been shown in [3] that the validity of the above

Carson’s approximation extends to frequencies of about

a few MHz, for typical overhead power lines and for
ground conductivities of about 0.01 s/m. For faster

electromagnetic sources, or poorer ground conductivity,

the general expression Eq. (1) or their accurate loga-

rithmic approximations (see [3] for a review) should be

used to obtain more accurate results.

It is worth mentioning that the presence of a finitely

conducting ground results in another additional trans-

verse term in the transmission line equations: the so-

called ground admittance Y ?gij
(e.g. [4]). However, it can

be shown that the contribution of this term for typical

overhead power lines remains negligible.

In Fig. 2, we have presented a comparison between

½Z ?g½ and vL ? on the one hand, and between 1/½Y ?g½ and

1/vC ? on the other hand, with L ? and C ? being the per-

unit-length inductance and capacitance of the line,

respectively, for a 10-m high wire above ground. It can

be seen that while the ground impedance is a non-

negligible fraction of vL ?, 1/½Y ?g½ is about 5 orders of

magnitude lower than 1/vC ?.

3. Ground transient resistance analytical expressions

The time-domain ground transient resistance matrix

[j ?gij
] elements are defined as (see e.g. [7])

Fig. 1. Definition of the geometry.

Fig. 2. (a) Comparison between the ground and impedance and vL ?ii .
(b) Comparison between the inverse of the ground admittance and

1/vC ?ii , for a 10-m high wire above the ground (sg�/0.01 s/m, org�/

10).
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To the best of our knowledge, analytical expressions

for the inverse Fourier transform are not available for

the ground impedance matrix terms. Thus, the elements

of the ground transient resistance matrix in time domain

have to be, in general, determined using a numerical

inverse Fourier transform algorithm.
In the low-frequency approximation (sg�/vo0org),

however, it is possible to find an analytical inverse

Fourier transform for the ground impedance. This was

first derived by Timotin [5] for the case of a single-

conductor line (diagonal terms of the ground transient

resistance matrix). It reads
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in which tgij
�/hi

2m0sg and erfc is the complementary

error function defined as
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The Timotin expression has been later extended to the

case of a multiconductor line [6]. For convenience, we

report hereunder the expression for the general term j ?gij

of the ground resistance matrix
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in which Tij and uij are defined as follows
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4. On the singularity in the ground transient resistance

analytical expressions

The expressions Eq. (4) and Eq. (6) are singular for
t�/0. Indeed, it can be shown that

lim
t00

j?gii
:

m0

2p
1ffiffiffiffiffiffiffiffiffiffi
ptgii

t
p (8)

lim
t00

j?gij
:

m0

2p
1ffiffiffiffiffiffiffiffiffiffi
pT

ij
t

q cos

�
uij

2

�
(9)

This singularity is due to the low-frequency approx-

imation used in deriving Eq. (4) and Eq. (6) and it is not

present otherwise [21]. Indeed, considering the diagonal

terms of the general expression Eq. (1) it can be shown

[2] that
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and applying the initial value theorem, we get
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In a similar way, considering the mutual terms of Eq.

(1), it can be easily demonstrated that
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and therefore
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Eq. (11) and Eq. (14) show that the ground transient

resistance tends to an asymptotic value when t 0/0. It is

interesting to note that this asymptotic value is ex-

pressed in terms of the line height and the ground

relative permittivity and is independent of the ground

conductivity.
Fig. 3 illustrates the singular behavior of the Timotin

formula in the early-time region. As it can be seen from

this figure, the low frequency analytical expressions Eq.

(4) and Eq. (6) are not able to reproduce accurately the

early-time behavior of ground transient resistance. In

fact, according to a fundamental property of the Fourier

transform, the early-time behavior of a time-domain

function requires the knowledge of the function spec-
trum up to the very high-frequency region.

It is worth noting that indeed any low-frequency

approximation, and not only the one considered here,
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will give incorrect results for the early-time region

[21,22]. Consider the inverse Fourier transform y (t ) of

a function Y (v )

y(t)�
1

2p g
�

��

Y (v)ejvtdv (15)

If Y (v) is a constant, then y (t )�/0 for all t "/0 (due

to the oscillating factor ejvt in the integrand in Eq. (15)).
If Y (v ) is not a constant but it is varied slowly enough

in comparison to ejvt , then the infinite integration limits

can be reduced to finite ones since the integration

subinterval for which jv jt �/1 does not give a substan-

tial contribution to the total integral due to the fast-

oscillating factor ejvt . The subinterval in which jv jt �/1,

gives a substantial contribution since the factor ejvt does

not oscillate in this subinterval. Taking into account the
above considerations, Eq. (15) can be reduced to

y(t):
1

2p g
vmax

�vmax

Y (v)ejvtdv (16)

where

vmax:
1

t
(17)

Thus, in order to calculate y (t0), the spectrum of y (t)
must be known up to vmax�/1/t0. Similarly, if we know

the function Y (v ) up to vmax, then we can calculate y (t)

for t E/1/vmax. If y (t ) must be calculated for smaller

values of t , Y (v ) have to be known for larger values of

v .

Let us now turn our attention to j ?gij
(t ). Since in the

low-frequency approximation Z ?gij
(v ) is known up to

frequencies for which v�/sg/(o0org), j ?gij
(t) can be

correctly estimated using Eq. (4) and Eq. (6) only for

t�tmin�
o0org

sg

(18)

For times earlier than tmin, the simplified equations

Eq. (4) and Eq. (6) give rise to significant inaccuracies. It

is however important to remind that the above conclu-

sion applies within the limits of the transmission line
approximation1. Approximate closed form expression

for the ground transient resistance in the early-time

region has been proposed in [23].

5. New expressions for the ground transient resistance

matrix elements

We have seen that the singularities in the analytical

expressions Eq. (4) and Eq. (6) are due to the low-

frequency approximation. The ground transient resis-
tance determined by numerical inverse transform tends

to an asymptotic value at early times, as described by

analytical equations Eq. (11) and Eq. (14). This ob-

servation leads us to propose new analytical and non-

singular expressions for the ground transient resistance

given by
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Note that the above equations combine the late-time

response described by the low-frequency expressions Eq.

(4) and Eq. (6), and the early-time response given by the
asymptotic value of the ground transient resistance

(Eqs. (11) and (14)).

Fig. 4 illustrates the proposed expressions which are

not singular and also extend, within the limits of

Fig. 3. Comparison between the Timotin analytical formula Eq. (4)

and the inverse Fourier transform of Z0
gii
=jv in the early-time region

(10-m high, Single-conductor line above a conducting ground with

sg�/0.01 s/m and org�/10).

1 The transmission line theory itself is a low frequency approach,

and therefore, it cannot predict accurately the very early-time response

of the line, for which radiation from the line should be taken into

account. This is the case when the basic TL assumption*/transverse

dimensions lower than the minimum significant wavelength*/is not

satisfied. In other words, the transmission line theory applies when

v�/2pc /h , where h is the line height and c is the speed of light. This

means that the transmission line theory can only predict the temporal

response of the line for times t �/tminTL �/h /(2pc ).
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transmission line theory, the validity of the original

analytical expressions to the early-time region.

In order to illustrate the adequateness of the proposed

expression, consider an overhead wire of radius a�/5

mm located at a height h�/10 m above ground. The
ground conductivity and relative permittivity are respec-

tively equal to 0.001 s/m and 10. Consider a current

propagating waveform consisting of a linear front with a

risetime tr followed by a constant amplitude of 1 A.

Consider now the per-unit-length voltage drop due to

the ground transient resistance given by

v?g(t)�g
t

0

j?gii
(t�t)i(t)dt (21)

We have computed the above expression for different

values of the current risetime (tr�/100 ns, 500 ns, 1 ms),

and using for the transient ground resistance (a) the

general expression Eq. (3) obtained using an inverse

FFT algorithm of the Sunde expression Eq. (1), (b) the

low frequency formula by Timotin Eq. (4), and (c) the

proposed expression Eq. (19). The results are shown in
Fig. 5.

As expected, the late-time response of the two

analytical expressions (Timotin’s and the proposed

Fig. 4. Comparison between the proposed expression (19), the

Timotin analytical formula (4) and the inverse Fourier transform of

Z0
gii
=jv in the early-time region. 10-m high, single-conductor line above

a conducting ground (a) sg�/0.01 s/m and org�/10; (b) sg�/0.001 s/m

and org�/10.

Fig. 5. Per-unit-length voltage drop due to the ground transient

resistance computed using the general expression Eq. (3), the formula

by Timotin, and the proposed expression. 10-m high conductor above

ground (sg�/0.001 s/m and org�/10). (a) 100 ns risetime; (b) 0.5 ms

risetime, (c) 1 ms risetime.
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formula) are almost identical. However, in the early-

time region, the response of the line is better reproduced

with the new proposed expression, especially for fast

rising signals. Note that for the considered case (10-m
high line), the transmission line approximation is still

applicable for a pulse with 100 ns risetime. For faster

risetimes, however, the minimum wavelength would

become comparable to the height of the line and the

TL approximation looses its validity. For this reason,

we do not present results relevant to risetimes shorter

than 100 ns.

6. Summary and conclusion

The ground impedance matrix elements of a multi-

conductor overhead transmission line do not have

analytical inverse Fourier transforms in the time do-

main. Thus, in general, the ground transient resistance

matrix elements have to be determined numerically.
Using the low-frequency approximation, analytical

expressions have been proposed for the ground transient

resistance. These expressions present however a singu-

larity at t�/0 which requires to be carefully treated in a

direct time domain resolution algorithm. We have

shown that the singularity in the ground transient

resistance is indeed due to the low frequency approx-

imation, and that, at early times, the ground transient
resistance elements tend to an asymptotic value, which

depend on the line geometrical parameters and the

ground relative permittivity.

New expressions for the ground transient resistance

are proposed which are analytical, non-singular, and

which describe, within the limits of transmission line

theory, both the early-time and late-time behavior of

ground transient resistance in a more accurate way.
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