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Abstract 
Traditional viewpoint is that the effect of correlation is to 
decrease MIMO capacity. In this paper, the effect of 
correlation is studied from a different perspective: a 
concept of effective dimensionality (ED) of a MIMO 
system is introduced and investigated using the correlation 
matrix approach. It is shown that the channel correlation 
results in ED decrease. Simple formulas, which give an 
explicit dependence of ED on the channel correlation, are 
given for practically-important cases. A comparison of the 
ED concept with the recently-introduced concept of 
effective degrees of freedom is presented. 
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1. Introduction 
Multiple-Input Multiple-Output (MIMO) communication 
architecture has recently emerged as a new paradigm for 
efficient wireless communications in rich multipath 
environments [1,2]. Using multi-element antenna arrays 
(MEA) at both transmitter and receiver, which effectively 
exploits the third (spatial) dimension in addition to the 
time and frequency dimensions, this architecture achieves 
channel capacities far beyond those of traditional 
techniques. In uncorrelated Rayleigh channels the MIMO 
capacity scales linearly as the number of antennas [1,2]. 
However, there are several limitations to the performance 
of this architecture in real-world conditions [1,3-6]. One of 
the major limitations is the correlation of individual sub-
channels, i.e. links between one transmitter and one 
receiver antennas, of the matrix channel, which may result 
in severe degradation of MIMO performance [3-6]. One 
way to characterise this phenomenon is to consider the 
MIMO system dimensionality. When we have nn ×  
MIMO system (i.e. n transmit and n receive antennas) and 
n parallel independent sub-channels, we say that the 
system dimensionality is n. The MIMO channel capacity 
achieved under these conditions (and also under some 
reasonable assumptions) is maximum. If some, or all, of 
the sub-channels are correlated, the channel capacity 
decreases. Spatial dimensions, which are used through n 
transmit and n receive antennas, provide smaller advantage 

in this case. Hence, we say that the system effective 
dimensionality (ED) decreases. 

We give a definition of the MIMO system effective 
dimensionality through a comparison of the MIMO 
capacity for correlated and uncorrelated channels, and 
investigate it numerically and analytically using the 
correlation matrix approach. We show that strong 
correlation between some subchannels results in ED 
reduction. We also give a comparison of the effective 
dimensionality with the number of effective degrees of 
freedom (EDOF) introduced in [3]. 

By introducing the ED concept, we try to isolate and 
study the effect of correlation. In the ideal MIMO space, 
all the “dimensions” are orthogonal and the capacity 
achieves its maximum. For an actual MIMO space, some 
or all “dimensions” are non-orthogonal (correlated) and the 
capacity decreases. From a viewpoint of system 
performance, it is equivalent to going into a space of fewer 
dimensions. In fact, ED tells us how many of the actual 
number of transmit/receive branches are effectively used. 
In a sense, the ED concept is similar to the power 
efficiency concept, when lossless (ideal) and lossy (actual) 
systems are compared. 

2. Effective Dimensionality of a MIMO 
System 

Under some reasonable assumptions, the channel capacity 
of nn ×  MIMO system is [1]: 

( )2log det /C n+= + ρ ⋅I H H  bits/s/Hz              (1) 

where n is the number of transmit/receive antennas, ρ is 
the signal-to-noise ratio (SNR), I is n×n identity matrix, H 
is the normalized channel matrix, and “+” means transpose 
conjugate. The following normalization of H is adopted in 
this paper [5]: ( ) ntr =+HH , where tr means trace. Then 
ρ/n is per-subchannel SNR. Another normalization can 
also be used but ρ/n will have a different meaning in this 
case. For simplicity, we further consider the case of equal 
received powers in every receive branch. In this case 

2 1ikk h =∑  and (1) simplifies to 

( ) ( )2, log det /C n n= +ρR I R ,                        (2) 



where R is the normalized channel correlation matrix, 
1ijr ≤ , whose components are *ij ik jkkr h h= ∑ , where “*” 

denotes complex conjugate. In fact, rij is the correlation 
coefficient of i-th and j-th receive branches. Strictly 
speaking, this definition is valid for fixed channels only. 
However, an expectation operator can be employed for 
stochastic channels. (2) emphasizes that the MIMO 
channel capacity C(R,n) is a function of the correlation 
matrix R and of the number n of antennas. We define the 
MIMO effective dimensionality en  from the following 
equation: 

( ) ( ), , eC n C n=R I ,                             (3) 

where ( )en,C I  is the MIMO capacity of uncorrelated 
channel and is given by [1]: 

( ) ( )2, log 1 /e e eC n n n= ⋅ + ρI                  (4) 

Thus, the effective dimensionality is the number of 
dimensions of a MIMO system operating over an 
uncorrelated channel, which has the same channel capacity 
as the actual system operating over the actual correlated 
channel (the signal-to-noise ratio ρ being the same for both 
cases). The ED shows how efficiently we use the actual 
receive and transmit branches and is, hence, a system 
performance parameter. In general, (3) is a transcendental 
equation and cannot be solved analytically for en . 
Numerical methods can be applied to solve it. No 
convergence problems are anticipated since both sides of 
(3) are monotonous functions of n. For some specific 
cases, analytical techniques can be used which allow us to 
gain some insight and to obtain simple analytical solutions 
for practically-important cases. 

A similar concept has been introduced in [3] as the 
number of effective degrees of freedom of a MIMO 
system: 

0
(2 )

d
EDOF C

d
δ

δ=
= ρ

δ
                                (5) 

In some cases, the ED and the EDOF give very close 
values while in some other cases their values are very 
different. We give below a comparative analysis of the ED 
and the EDOF for some important cases and discuss the 
implication of their differences for practical system 
performance analysis. Similar parameters have also been 
considered in [7]. 

 

3. The Correlation Matrix Approach 
Let us now consider the case where the correlation matrix 
R has a block diagonal structure: 









=

−kn

k

I0
0R

R                              (6) 

where kn−I  is the ( ) ( )knkn −×−  identity matrix, 0 is the 
zero matrix, and kR  is a kk ×  correlation sub-matrix with 

non-zero components. In this model, only k receive 
branches are correlated; the rest (n-k) branches are 
independent.  

In order to demonstrate how the ED concept works, we 
adopt here the exponential model1 for kR  , which can 
approximate some realistic scenarios [5]: 
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where r is the (complex) correlation coefficient of adjacent 
receive branches. Using (6) and (7), ( )nC ,R  can be 
presented in the following form: 

( ) 2, log 1 det
n

kC n
n

 ρ  = +    
R R ,                   (8) 

where kR  is the following kk ×  matrix: 
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and 
1

1
n n

−ρ ρ β = + 
 

                                 (10) 

A closed-form expression for the kdet R  is derived in 
Appendix A, 

1 2
2 2 2 2 2 2

n n n n

kD
   α + ξ α − ξ − α α + ξ α − ξ          = + + −       ξ             

                     (11) 

where 21 (2 1),  ( 1).r rα = − β − γ = β − , 22 4ξ = α − γ . 

For some practically-important cases, a simplified 
expression may be obtained. For a system having a large 
signal-to-noise ratio ( 1>>nρ ) and a large number of 
antennas (n>>1), after some transformations which do not 
change the determinant, we obtain (see Appendix A for 
details): 

( ) 12det 1
k

k r
−

  ≈ −β R                      (12) 

Approximate solution of (3) then takes the simple form: 

   ( )1en n k≈ − σ −                       (13) 
where 

                                                           
1 other models of R (using, for example, electromagnetic 
simulation) can also be used for the present analysis 
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For 1=r , one obtains 1σ =  and, consequently, 

1+−≈ knne . Thus, the reduction in system effective 
dimensionality n∆  due to the strong correlation of k 
receive branches is 1−≈−=∆ knnn e . This is a physically 
reasonable conclusion because we cannot transmit 
information independently over these k branches but have 
to use them as only one branch. For r=0, 0σ =  and 0=∆n , 
and the system has full dimensionality as it should be. 

The interpretation of this effect in terms of eigenvalue 
analysis is straightforward. For large correlation, 1r → , 

the eigenvalues of kR  can be approximated as (see 
Appendix A): 
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(15) 
Recall that the eigenvalues are the virtual channel gains. 
Hence, we have one full-gain channel and (k-1) channels 
with reduced gains (due to correlation). When 1r = , 

k kλ =  and 1 1... 0k−λ = = λ = , as expected, i.e. there is 
only one channel out of k, and the optimum strategy is to 
do the beamforming and to transmit only one bit stream 
over k channels. k channels are effectively collapsed into 
one. In the case of zero correlation, 0r = , one obtains 

1 ... 1kλ = = λ = , as expected, i.e. there are k channels with 
full gains. It is interesting to note that, despite of the fact 
that (15) has been derived under the assumption of large 
correlation, 1r → , it holds true for 0r =  as well. 

Fig. 1 shows n∆  as a function of r  for different 
values of k computed using (12) and (13) and by numerical 
solution of (3) using (6) and (7). As one may see, (12) and 
(13) provide quite a good approximation. An interesting 
question, however, is how strong should the correlation be 
for 1n k∆ ≈ − . A detailed analysis (as well as an 
examination of Fig. 1) gives the following rough 
estimation:  

( )1 / 2r n≥ − ρ                             (16) 

For the scenario of Fig. 1, one obtains: 0.995r ≥ . Thus, 

for almost all practical cases (when / 1nρ >> ) n∆  will be 
smaller than 1k − . 

Let us now compare the ED and the EDOF concepts for a 
practically-important case of 1>>ρ n  and n>>1. A detail 

analysis shows that for 1=r  and 0=r  the ED and the 
EDOF give approximately the same prediction. But in 

between these two extreme cases their values are different. 
One may wonder: why? Both parameters have very similar 
physical meaning and both characterize the system 
performance from the same viewpoint. However, in the ED 
concept the real system performance (channel capacity) is 
compared to the ideal system performance, which operates 
over uncorrelated parallel subchannels, for the same total 
transmitted power that is distributed between the effective 
dimensions only, not between the actual number of 
transmitters. On the other hand, EDOF is determined 
through variation in SNR, i.e. in the transmitted power, 
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for fixed channel correlation. The total transmitted power 
is always distributed between the actual number of 
transmitters. Both concepts can be used for estimating 
MIMO system performance but from different viewpoints. 
In the EDOF concept, the effect of SNR is emphasized 
and, hence, it is more relevant when one wants to know 
how the actual system performance varies with transmitted 
power for fixed correlation. On the contrary, the effect of 
channel correlation is emphasized in the ED concept and, 
consequently, it is more relevant when one wants to know 
how the system performance varies with channel 
correlation for fixed power. In general,  a definition of the 
number of dimensions of a MIMO system depends on a 
problem considered. 

It should be noted that the concept of effective 
dimensionality introduced in this paper are somewhat 
similar to the concept of effective diversity order, which 
was successfully used in the analysis of diversity 
combining techniques over correlated channels [10]. 

 

4. Comparison to Other Correlation Matrix 
Models 
Let us now examine the effective dimensionality loss in 

correlated channels for various correlation matrix models. 
This allows one to find how sensitive the results above are 
with respect to correlation model variations. 

Figure 1. Reduction in ED/EDOF versus the magnitude 
of correlation coefficient, n=10, ρ=30 dB. 



Specifically, we examine the uniform model, the three-
diagonal model and the squared exponential model. For the 
uniform model, 

[ ] { }1,
, Im 0

,k ij
i j

r
r i j

=
= = ≠

R ,                  (17) 

assuming that r is real, the eigenvalues can be found 
explicitly in a closed form, 

1 1... 1k r−λ = = λ = − , 1 ( 1)k k rλ = + −            (18) 

and the capacity can be expressed in a closed-form as well 
[14]. For the tri-diagonal model, 
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R                     (19) 

the eigenvalues can be expressed in the following closed 
form [13], 

1 2 cos
1i

i
r

k
π

λ = −
+

,                      (20) 

Note that the model is physical only when 
11

cos
2 1

r
k

−π <  + 
,                     (21) 

i.e. for large k, 1/ 2r < . Otherwise, as it can be seen from 
(20), some eigenvalues are negative, which is not possible 
for a physical correlation matrix that is always positive 
definite. For the squared-exponential model, which can be 
obtained based on some physical arguments [11,12],  
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the eigenvalues are not known in a closed form and 
numerical techniques should be used.  

Comparing all 4 models, one may note that the uniform 
model presents a worst-case since all the branches are 
equally correlated (in real world, correlation decreases for 
widely-separated antennas, which is not accounted for in 
the uniform model). The exponential model is more 
physical since it accounts for the correlation decrease for 
widely-separated antennas. The squared exponential 
model, which is based on some physical arguments 
[11,12], also accounts for the correlation decrease for 
distant antennas. In fact, it predicts faster decrease in 
correlation then the exponential model does. Finally, the 
three-diagonal model accounts for the correlation between 
neighboring antennas only assuming no correlation 
between distant antennas, which may be considered as the 
best-case scenario. The reason for this model being non-
physical at 1/ 2r >  is that it is not physically possible to 
have strong correlation between adjacent antennas and no 
correlation for the others. Based on this reasoning, one 
may expect that the capacities of the three-diagonal, 
squared exponential, exponential and uniform models 

correspondingly will satisfy to the following inequality: 
3d se e uC C C C≤ ≤ ≤ . However, as a detailed numerical 

analysis demonstrates (see Fig.2), it is not that simple. The 
reason behind this is that the eigenvalues and the 
correlation matrix entries are related in a very complicated 
way. For example, almost all the entries of the squared-
exponential model (except for the diagonal ones) are 
smaller than those of the exponential model, but some of 
the eigenvalues of the latter are nonetheless larger than 
those of the former. A detailed analysis shows that the 
uniform model capacity is always smaller than that of the 
exponential model and that the squared exponential model 
capacity may be smaller or larger than that of the 
exponential model, depending on correlation and SNR 
values. It is interesting to note that all the models (except 
for the double-diagonal one, which is “pathological” at and 
above r=0.57, see (21)) predict almost the same behavior 
of the capacity versus correlation. Hence, the result seems 
to be of a general nature because it is quite model-
independent. 

Fig. 3 compares loss in ED for all 4 models. The results 
are again quite model-independent that suggest they may 
be of a general nature. 
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Figure 3. Loss in ED versus correlation coefficient for 
various models, n=5, ρ=30 dB. 

Figure 2. Capacity versus correlation coefficient for 
various models, n=5, ρ=30 dB. 
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As Fig. 4 suggests, there is some variation due to the SNR. 
In particular, the difference between the models slightly 
increases as the SNR decreases. The squared exponential 
model does provide better performance and the uniform 
model provides the lower bound on the performance (i.e. 
the worst-case scenario) at 10dBρ = . The generic tendency 
remains however the same. Overall, as the SNR increases 
all the curves approach closer and closer the unit step 
function at r=1. 
 

5. Conclusions 
The effective dimensionality characterizes the MIMO 
system performance in a realistic environment, i.e., how 
efficiently we use multiple transmit and receive branches 
in a correlated channel. We have investigated it using the 
correlation matrix approach and have shown that for 
strongly-correlated k receive branches the reduction in ED 
is approximately k-1. Roughly speaking, ED is a factor in 
front of log(1+SNR) after correlation has been taken into 
account. Its purpose is to compare the actual system 
performance to that of the ideal system, whose channel 
capacity is maximum, and to characterize in this way the 
effect of correlation. For example, when k receive branches 
are completely correlated (r=1), this factor is (n-k+1) 
instead of n. The comparison of EDOF and ED shows that 
the former gives a more optimistic prediction of the system 
performance in a correlated channel. 
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6. Apeendix A 
We use the following equivalent transformation of the 
determinant:  
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Figure 4. Loss in ED versus correlation coefficient for 
various models, n=5, ρ=10 dB. 
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Where we (a) first multiply each row (except for the first 
one) by *r  and substract it from the previous row, and (b) 
multiply each colum by r  and substract it from the 
previous one (except for the first column). The last 
determinant can be presented in the following recursive 
form: 

2
1 2k k kD D D− −= α − γ                      (Α2) 

where 21 (2 1),  ( 1).r rα = − β − γ = β − . This is a difference 
equation [10] and its solution can be presented as: 
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                     (Α3) 

where 22 4ξ = α − γ . 

In high SNR mode, / 1 1nρ >> → β ≈ , this can be 
approximated as, 

( ) 121 1
k

k
kD r

−
−≈ α = −                      (Α4) 

This approximation is accurate provided that r  is not too 
close to 1. 

More accurate approximation for kD  can be derived as 
follows [5]. We start with the second determinant in (A1) 
and note that, in high SNR regime, / 1 1nρ >> → β ≈ , the 
upper diagonal elements (above the main diagonal) are 
very small and, hence, can be neglected. Then,  
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Using a similar approach, we can now estimate the 
eigenvalues of kR . We start with the eigenvalue equation, 

0k − λ =R I                                      (A6) 

and, using the transformations similar to (A1), transform 
the determinant to the following form: 

0 ... 0
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0 0 0 ... 1

k

α γ
γ α γ

− λ = =γ α

− λ

R I                (A7) 

where ( ) ( )2 21 1 ,  *r r rα = − − λ + γ = λ . For 1r → , an 

approximate solution of (A7) can be obtained as follows. 
Using (A3) and keeping the first-order terms in ξ , which 

is very  small when 1r → , one obtains 
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(k-1) smallest eigenvalues are  
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and the largest eigenvalue is 
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Note that for 1r = , k kλ =  and 1 1... 0k−λ = = λ = , as 
expected. Detailed numerical analysis shows that the 
largest and the smallest eigenvalues are predicted quite 
accurately, and that the prediction accuracy is worse for 
the eigenvalues in between. However, when computing the 
capacity these inaccuracies tend to compensate each other 
so that the capacity is predicted quite accurately. 

 

 


