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On MIMO Channel Capacity, Correlations, and Keyholes: Analysis of
Degenerate Channels

Sergey Loyka, Member, IEEE,and Ammar Kouki, Senior Member, IEEE

Abstract—It has recently been demonstrated that zero cor-
relation of a random multiple-input multiple-output channel is
not a guarantee of its high capacity. Degenerate channels exist,
which have zero correlation and still low capacity. In this letter,
we provide a statistical analysis of this phenomenon, formulate
the general condition for a channel to be degenerate, and propose
a method to estimate its capacity.

Index Terms—Channel capacity, correlation, keyhole, multiple-
input multiple-output (MIMO).

I. INTRODUCTION

CHANNEL capacity of multiple-input multiple-output
(MIMO) communication architecture is usually thought

of as limited by correlation. It is low for highly correlated
channels and it is high when the correlation between individual
subchannels (i.e., links between one transmit and one receive
antenna) of the matrix (MIMO) channel is zero. However, an
elegant example has been presented in [1], which demonstrates
that zero correlation is not a guarantee of high capacity, i.e.,
the channel may have zero correlation and still only a single
degree of freedom. These are so-called degenerate channels or
keyholes.

In this letter, we provide a statistical explanation of this phe-
nomenon and, in particular, we emphasize that one should dis-
tinguish between “instantaneous” and “mean” (or conventional)
correlation. We also present a general statistical criterion for the
channel to be degenerate and propose a method to estimate the
capacity of such channels.

II. K EYHOLE

An elegant example of a 2 2 channel, which has zero corre-
lation and still only one degree of freedom (i.e., nonzero eigen-
value of , see (2), or nonzero singular value of), has been
presented in [1]. A brief description of this example is given
below for completeness. Consider a 22 MIMO system in a
rich multipath environment where all the components of the ma-
trix channel are uncorrelated complex Gaussian variables. This
channel has two degrees of freedom and, consequently, high ca-
pacity, because by using appropriate signal processing at the re-
ceiver, it can be transformed into two “virtual” parallel inde-
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Fig. 1. Example of a degenerate 2� 2 channel with a keyhole.a , a , b , and
b independent complex Gaussian variables.

pendent channels. Now let us place a screen with a small hole
(keyhole) between transmit and receive arrays (see Fig. 1). The
signal radiated by the transmit array can propagate to the receive
array only through the keyhole. The channel matrix in this case
takes the following form [1]:

(1)

where is the scattering cross-section of the keyhole,and
are the channel coefficients from the transmit array to the key-
hole, and and are the channel coefficients from the keyhole
to the receive array. All coefficients are independent complex
Gaussian variables. Clearly, the entries ofare uncorrelated.
However, this channel has only one nonzero singular value (by
construction) and, hence, there is only one degree of freedom,
meaning that the channel capacity is low. Such a channel may
be referred to as a degenerate channel. Some more realistic ex-
amples of such channels have also been discussed in [1].

III. CAPACITY OF RANDOM (STOCHASTIC) MIMO CHANNEL

The capacity of a fixed linear matrix channel with
additive white Gaussian noise (AWGN) and when the trans-
mitted signal vector is composed of statistically independent
equal power components, each with a Gaussian distribution, and
when the receiver knows the channel, may be presented in the
following form [2], [3]:

bits/s/Hz (2)

where is the number of transmit/receive antennas,is the
signal-to-noise ratio (SNR), is identity matrix, are
the entries of the channel correlation matrix

(3)

is the normalized channel matrix (frequency independent
over the signal bandwidth), i.e., the normalized transfer factor
from th transmitter to theth receiver, and denotes complex
conjugate. When the channel is random, the correlation matrix
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and the capacity are random as well. In this case, we call“in-
stantaneous” correlation (i.e., for a given channel realization) to
distinguish it from conventional or “mean” correlation (with the
expectation over the channel matrix), andis “instantaneous”
capacity (i.e., the capacity of a given channel realization). Fur-
ther, the distribution function of may be determined [2], or,
alternatively, the mean (ergodic) capacity may be considered [4]

(4)

where is the expectation over the channel matrix. Using
Jensen’s inequality and concavity of function [5], one
obtains the following upper bound on :

(5)

where is “mean” (conventional) correlation of the receive
branches

(6)

Thus, the mean (or conventional) correlation provides the upper
bound on capacity and says nothing about its mean or instanta-
neous values. This upper bound is not necessarily close to actual
capacity and, as a detailed analysis shows [6], may be far away
from the mean capacity in many cases.

IV. CAPACITY OF 2 2 MIMO CHANNEL

Consider the specific case of a 22 MIMO channel. In this
case, (2) takes the following explicit form:

(7)
where is the normalized correlation coefficient ( )

(8)

In fact, and represent the normalized received power in
the first and second branches, respectively, and do not affect the
number of nonzero eigenvalues (as we show below). The eigen-
values of can be obtained from the following equation:

(9)

The singular values of are the square roots of [4]. Thus,
correlation has the major impact on the number of degrees of
freedom (i.e., nonzero singular or eigenvalues): there are two
degrees of freedom when , and only one when

(as long as the received powers are not zero). Note that the
number of degrees of freedom does not depend onand .

When the channel is random, the mean (ergodic) capacity
may be defined using the expectation over the channel matrix
in (7) [see (4)] [4]. A detailed analysis using Monte–Carlo sim-
ulations of a correlated Rayleigh channel and of the channel in
[1] shows that the impact of and on the mean capacity
is much smaller than that of (the same conclusion may be
obtained using Jensen’s inequality). For example, Fig. 2 shows
the rigorously computed mean capacity (i.e., using expectation

Fig. 2. Mean capacity of the correlated Rayleigh channel and of the keyhole
channel in [1] versus SNR (�).

of (7) over channel realizations) and its approximate value, as-
suming , of the correlated Rayleigh channel (with
normalized correlation coefficient equal to 0.8) and of the key-
hole channel in [1]. Obviously, and have a small effect on
the mean capacity. This conclusion agrees well with the eigen-
value analysis above. Thus, to separate the effect of correlation
from the effect of per-branch SNR and to study it in the explicit
form, we further assume that . In this case, the
mean capacity depends on only, which is “instantaneous”
correlation coefficient and can be presented as follows:

(10)

where is the probability density function (pdf) of
and is the range of . Thus, the mean capacity depends
on the pdf of , not only on its mean value. In general, the
mean correlation is not a reliable tool in estimating the MIMO
capacity of a random channel. Let us now consider an illustrative
example, when with equal probability. Obviously,
the mean correlation is zero, but the mean capacity is low and
there is only one degree of freedom just because . The
next example is the one presented in Section II. In this case

(11)

where , . Again, because
and are independent and uniformly distributed, but the

mean capacity is low and there is only one degree of freedom
because .

From the considerations above, we may conclude the fol-
lowing.

• The capacity of deterministic channels is maximum when
[see (7)]. However, as the examples above show,

it is wrong to state the same about random channels using
the mean correlation, i.e., zero mean correlation of a
random channel is not a sufficient condition of maximum
mean capacity. Using inequality (5), we conclude that it
is the necessary condition (i.e., if the mean correlation is
high, then the mean capacity is necessarily low).

• Referring to (7), we conclude that the sufficient condition
to achieve high capacity is low-mean magnitude corre-
lation. For example, if , then there are two
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Fig. 3. MIMO capacity using root mean square (RMS), mean magnitude, and
mean correlation versus RMS correlation for� = 20 dB.

degrees of freedom and the mean capacity is maximum
simply because in this case.

The general conditions for a channel to be degenerate are

and (12)

From a practical viewpoint, may not be equal to one but
be close to it. The capacity will be low in this case as well. In
particular, it will be low when [3], [8]. In
the case of degenerate channels, the mean correlation does not
provide an accurate estimation of the capacity. Fig. 3 illustrates
the channel capacity for pdf of of the following form:

(13)

where is normalizing constant anddetermines the root mean
square (RMS) value of (note that may be negative as
well as positive). All the curves in Fig. 3 were generated using
(7) with . Mean capacity curve was obtained
by averaging (7) with respect to (13). Capacity using an RMS
correlation curve and capacity using a mean magnitude correla-
tion curve were obtained using (7) with set to be equal to

and , correspondingly. Capacity using a mean
correlation curve was obtained in a similar way. Obviously, the
mean correlation is zero and its use for estimating the capacity
will give an incorrect result. As Fig. 3 indicates, a more accu-
rate estimation of the capacity of degenerate channels can be ob-
tained using RMS or mean magnitude correlation. The results in
[8] suggest that the similar conclusions should hold for ,
as well.
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