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Abstract: In this paper, we give an overview of MIMO 
architecture and the impact of correlation on its operation using 
the correlation matrix approach. First, we derive a universal upper 
bound on the MIMO channel capacity, which is not limited to a 
particular scenario, using the Jensen’s inequality. This bound 
accounts for both transmit and receive branch correlation in such a 
way that the impact of these branches can be estimated separately, 
which simplifies the procedure substantially. Some simple 
analytical results, which quantify the impact of correlation on the 
MIMO capacity in an explicit way, are given. We show that 
correlation increase is equivalent to SNR decrease in some cases. 
The concept of MIMO effective dimensionality is further 
introduced. Using a block correlation matrix model, we show that 
the effect of correlation is to decrease the effective dimensionality. 
We also discuss the paradox of zero correlation and provide a 
statistical explanation for it. We demonstrate why zero mean 
correlation is not a guarantee of high capacity. Finally, we 
introduce the concept of adaptive MIMO architecture and discuss 
the fading reduction provided by it. 
 

I. INTRODUCTION 
 
Multiple-Input Multiple-Output (MIMO) communication 
architecture has recently emerged as a new paradigm for 
very efficient wireless communications in rich multipath 
environments [1-5]. Using multi-element antenna arrays 
(MEA) at both transmitter and receiver, which effectively 
exploits the third (spatial) dimension in addition to the time 
and frequency dimensions, this architecture achieves 
channel capacities far beyond those of traditional 
techniques. Fig. 1 shows the MIMO architecture. Incoming 
bit stream b1b2b3 is splitted into three substreams and 
transmitted by corresponding antennas. At the receiver, a 
vector signal processor is employed to extract the bits from 
the received signal, which is, in fact, the mixture of all the 
transmitted substreams. The function of the vector signal 
processor is to diagonalize the channel matrix. After it, the 
channel looks like n parallel independent subchannels, 
where n is the number of transmit/receive antennas 
(provided that the complete diagonalization is possible – see 
discussion below). Detail technical description of the 
MIMO architecture is available in [3]. 

In uncorrelated Rayleigh channels the MIMO capacity 
scales linearly as the number of antennas [1,2,5]in contrast 
to conventional systems where it scales logarithmically. 
Thus, substantial increase (order of magnitude) in capacity  
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Figure 1. Multiple-input multiple-output communication 

architecture. 
 
is possible. Using a prototype system, as high capacities as 
30-40 bit/s/Hz has been demonstrated in the laboratory 
environment [4], which is simply unattainable using 
traditional techniques. 

However, there are several limitations to the 
performance of this architecture in real-world conditions 
[1,2,6,7]. One of the major limitations is the correlation of 
individual sub-channels, i.e. links between one transmitter 
and one receiver antennas, of the matrix channel, which may 
result in severe degradation of MIMO performance [8-11]. 
We analyze the effect of correlation using the correlation 
matrix approach [9-12, 14, 15]. In Section II, we derive the 
universal upper bound on the MIMO capacity of a 
stochastic channel using Jensen’s inequality. In Section III, 
we give some approximate analytical results, which quantify 
the effect of correlation in an explicit way and provide 
useful insight. In Section IV, we discuss the concept of 
effective dimensionality, which is introduced through a 
comparison of the MIMO capacity for correlated and 
uncorrelated channels. In Section V, we discuss the paradox 
of zero correlation and give a statistical explanation for it. 
In Section VI, we introduce the concept of adaptive MIMO 
architecture. 

 
II. UNIVERSAL UPPER BOUND ON MIMO CHANNEL 
CAPACITY: CORRELATION MATRIX APPROACH 

 
For a fixed linear n×n matrix channel with additive white 
gaussian noise and when the transmitted signal vector is 
composed of statistically independent equal power 
components each with a gaussian distribution, the channel 
capacity is [1]: 
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where n is the number of transmit/receive antennas (we 
consider here the case when the number of transmit and 
receive antennas are equal), ρ is the signal-to-noise ratio 
(SNR), I is n×n identity matrix, H is the normalized channel 
matrix, which is considered to be frequency independent 
over the signal bandwidth, and “+” means transpose 
conjugate. We adopt here the following normalization 
condition: 

nh
n

ji
ij =∑

=1,

2
 ,                           (2) 

where hik denotes the components of H ( ijh  is the transfer 

factor between jth transmit antenna and ith receive antenna). 
Hence, nρ  is the average per-branch SNR, i.e. ρ is the 
ratio of total received power (in all branches) to the per-
branch noise level. Some other kinds of the normalization 
can also be used, but in this case nρ  will have a slightly 
different meaning. 

When the channel is random (stochastic), then the 
capacity is random, too. The mean (ergodic) capacity can be 
defined in this case as [5]: 
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where ijr  is “instantaneous” correlation matrix, 

∑=
k

jkikij hhr *  ,                               (4) 

ijδ  is Kroneker's delta, < > is the expectation over the 

channel matrix. Note that Eq. (3) does take into account 
correlation occurring at both the transmit and receive ends. 
This equation can be used for statistical (Monte-Carlo) 
simulations to evaluate C  for some specific models of the 

channel matrix. However, these matrix numerical 
computations can be very lengthy, especially when the 
number of antennas is very large. Here we propose to use 
Jensen’s inequality to obtain an upper bound on C . 

According to this inequality and concavity of log det 
function [17], one obtains: 
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where R
ijr  is the correlation matrix of receive branches, 

∑=
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jkik
R
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Note that this correlation matrix does not capture the 
correlation of transmit branches (since k in (6) represents 
the transmit antenna index and it is the same for both 
factors). Thus, the upper limit in (5) can be close to the 
mean capacity when the correlation of receive branches is 
much higher than the correlation of transmit branches and, 
consequently, the effect of transmit branch correlation can 
be ignored. However, if the transmit correlation is higher 
than the receive one, then the upper bound in (5) is not an 
accurate approximation of the mean capacity. Therefore, in 
order to have an upper bound that is as close as possible to 
the mean capacity, one must also account for transmit 
correlation. To this end, the reciprocity of (1) can be used in 
the following way. First, we note that the MIMO capacity 

given by (1) is invariant under the transformation THH →  
(“T” means transpose). This in effect is equivalent to 
reversing the direction of information transmission by 
interchanging transmit and receive ends. Thus, (3) still 
holds true if we define ijr  as: 

∑=
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kjkiij hhr *  ,                          (7) 

Hence, one obtains the second upper bound (the transmit 
bound), 
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where T
ijr  is the correlation matrix of transmit branches, 

∑=
k

kjki
T
ij hhr *  ,                      (9) 

Note that the upper bound in (8) does not capture the 
receive correlation. Therefore, this upper bound will be 
close to the mean capacity when the transmit correlation is 
higher than the receive one. However, if the opposite is true, 
then this upper bound is not an accurate approximation of 
the mean capacity. 

From inequalities (5) and (8) it is clear that a tighter 
upper bound of the mean channel capacity can be obtained 
by combining them. Thus, we form the compound upper 
bound by taking minimum of the two bounds defined above, 

[ ]TRcmp CCC ,min=                       (10) 

This upper bound is much tighter than the receive or 
transmit bound considered separately when the transmit and 
receive branch correlations are significantly different. 

Let us now consider an illustrative example of 
correlated Rayleigh channel. The components of H are 
taken to be identically distributed complex gaussian 
variables (real and imaginary parts are identically 
distributed and independent, i.e. the phase is uniformly  
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Figure 2. MIMO channel capacity and its upper bounds 
versus correlation coefficient 

 
distributed over [ ]π2,0 ) with zero mean and unit variance.  
The correlation matrix of H is assumed to be of the 
following form: 

T
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where R
ijR  and T

ijR  are uniform correlation matrixes of the 

receive and transmit branches correspondingly, 
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where 10 ≤≤ r . In fact, (11) assumes that the receive and 
transmit branches are correlated independently on each 
other (which may be justified by the presence of local 
scatterers near both ends). Fig. 2 shows the mean capacity 
of this channel, obtained by extensive numerical simulations 
(Eq. 3), and the receive (Eq. 5), transmit (Eq. 8) and 
compound (Eq. 10) bounds. In this example, 0=r  
corresponds to uncorrelated receive branches and full 
correlation of the transmit ones; 1=r  corresponds to full 
correlation of receive branches and uncorrelated transmit 
ones. The compound bound provides a good approximation 
to the mean capacity while the receive or transmit bounds 
alone are not accurate for the whole range of r. It is also 
interesting to note that the maximum capacity is achieved 
for 5.0=r . This indicates that decrease in capacity is 
usually due to that side (transmit or receive) which has 
higher correlation. Thus, a rough estimation of the capacity 
may be obtained by considering only the higher correlated 
side.  

Note that the compound upper bound accounts for the 
Tx and Rx correlations in such a way that their impact can 
be estimated separately. Thus, a conclusion can be made as 
to which site contributes more to capacity reduction, which 
is not easy to do using the mean capacity or the capacity-
versus–outage distribution. 

III. SOME ANALYTICAL RESULTS 

Using the upper bound on MIMO channel capacity 
derived above, one may apply the analytical results on the 
MIMO capacity of a deterministic channel [9-12] to the 
case of random channel, i.e. to obtain the upper bound. For 
simplicity, we assume here that the transmit branches are 
not correlated and the correlation impact is due to the 
receive branch correlation. Obviously, the impact of 
transmit branch correlation can be estimated in a similar 
way and the combination of the results is trivial. It is also 
assumed that the receive power is identical for all the 
receive branches. In this case, 

1
2
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and ijr in (4) is the normalized correlation matrix, 1≤ijr . 

The effect of unequal received powers can be considered in 
a straightforward way [9]. 

We start with the uniform correlation matrix model, 
when all the correlation coefficients are equal and real [10], 
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This case is somewhat artificial because one expects that the 
correlation of neighbouring branches is larger than that of 
distant branches. However, the case of equal correlation 
coefficients provides a worst-case estimation and some 
insight into MIMO operation in correlated channels, so it 
deserves to be considered (besides, one may interpret r as 
an "average" correlation coefficient). After some 
mathematical development for a practically-important case 
of 10 <≤ r  and 1/ >>ρ n , we present the upper bound (5) 
in the following form: 
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As a detail analysis shows, the channel capacity decreases 
substantially only for r ≥ 0.5 – 0.8, what agrees well with 
the recent measurements of the MIMO channel [16]. In the 
limiting case of ∞→n , one obtains from (15): 

( )
2ln

1 r
C

−ρ
≈∞                           (16) 

When r=0, the last two equations reduce to the well-known 
formulas (in this case, H=I) [1]: 
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Comparison of (15) and (16) with (17) clearly indicates that 
the effect of the channel correlation is equivalent to the 



 

decrease in the SNR. Hence, for example, r=0.5 is 
equivalent to 3 dB reduction in SNR. Another interpretation 
of (15) and (16) is that the correlation of individual sub-
channels gives an increase in the noise level because for 
each particular sub-channel all the other sub-channels are 
just the sources of interference. 

Let us now consider the case of exponential correlation 
matrix [12], 
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Obviously, (18) may be not an accurate model for some 
real-world scenarios but this is a simple single-parameter 
model which allows one to study the effect of correlation on 
the MIMO capacity in an explicit way and to get some 
insight. It remains to be investigated whether this model is 
applicable or not to some specific scenarios. Note, however, 
that this model is physically reasonable in the sense that the 
correlation decreases with increasing distance between 
receive antennas. Thus, it should be more accurate than the 
uniform model above. In a practically-important case of 
high SNR ( 1>>ρ n ), n>>1 and r<1, (5) can be reduced 
to: 
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In the limiting case of ∞→n , one obtains from (19): 
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Comparison of (19) and (20) with (17) clearly indicates that 
the effect of the channel correlation is equivalent to the 
SNR loss, the same as for the uniform model above. Hence, 
for example, r=0.7 is equivalent to 3 dB reduction in the 
signal-to-noise ratio. Note also that the channel capacity 
does not depend on the correlation coefficient phase.  

Fig. 3 shows the upper bound of MIMO channel 
capacity versus the correlation coefficient evaluated by the 
full matrix computation (Eqs. (5) and (18)) and by (19) for 
n=10 and 50, and ρ=30 dB. The MIMO channel capacity 
evaluated using the uniform correlation matrix model (see 
(14)) is also shown for comparison. As one may see from 
this figure, the accuracy of approximate formulas is quite 
good. It should be noted that the accuracy decreases as n 
and ρ/n decreases. The uniform model predicts lower 
capacity, as it should be (because it is the worst case model 
– the correlation between distant receive branches is the 
same as between neighbouring ones). We also see that the 
MIMO capacity decreases significantly for r>0.5-0.8, that 
agrees well with the know results on the spatial diversity 
techniques [18] and with recent measurements of the MIMO  
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Figure 3. MIMO capacity upper bound versus 
correlation coefficient for exponential and uniform 
models. 

 
channel [16]. Detailed analysis using Monte-Carlo 
simulations shows that the mean capacity is approximately 
20 to 40% smaller then the upper bound above. 

IV. EFFECTIVE DIMENSIONALITY OF MIMO SYSTEM 
 
For simplicity, we further consider the case of equal 
received powers in every receive branch (see (13)). In this 
case, (1) simplifies to [10, 11]: 

( ) 
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where R is the normalized channel correlation matrix 

( )1≤ijr  whose components are given by (4). Eq. (21) 

emphasizes that the MIMO channel capacity C(R,n) is a 
function of the correlation matrix R and of the number n of 
antennas. We define the MIMO effective dimensionality en  
from the following equation: 

( ) ( )enCnC ,, IR = ,                         (22) 

where ( )en,C I  is given by (17) for enn = . Thus, the 
effective dimensionality is the number of dimensions of a 
MIMO system operating over an uncorrelated channel, 
which has the same channel capacity as the actual system 
operating over the actual correlated channel (the signal-to-
noise ratio ρ being the same for both cases). The ED shows 
how efficiently we use the actual receive and transmit 
branches and is, hence, a system performance parameter. In 
general, (22) is a transcendental equation and cannot be 
solved analytically for en . Numerical methods can be 
applied to solve it. No convergence problems are 
anticipated since both sides of (22) are monotonous 
functions of n. For some specific cases, analytical 
techniques can be used which allow us to gain some insight 



 

and to obtain simple analytical solutions for practically-
important cases. A similar concept to the ED has been 
introduced in [8] as the number of effective degrees of 
freedom of a MIMO system: 
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In some cases, the ED and the EDOF give very close values 
while in some other cases their values are very different. We 
give below a comparative analysis of the ED and the EDOF 
for some important cases. Similar parameters have also 
been considered in [2]. 

Let us now consider the case where the correlation 
matrix R has a block diagonal structure: 
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where kn−I  is the ( ) ( )knkn −×−  identity matrix, 0 is the 
zero matrix, and kR  is a kk ×  correlation sub-matrix with 
non-zero components. In this model, only k receive 
branches are correlated; the rest (n-k) branches are 
independent. In order to demonstrate how the ED concept 
works, we adopt here the exponential model for kR  given 
by (18). Other models of R (using, for example, 
electromagnetic simulation) can also be implemented. Using 
(21) and (24), ( )nC ,R  can be presented in the following 
form: 
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where kR  is the following kk ×  matrix: 
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Unfortunately, it is impossible to obtain a closed-form 
expression for the kRdet  in general cases. Still, for some 
practically-important cases, a simplified expression may be 
obtained. For a system having a large signal-to-noise ratio 
( 1>>nρ ) and a large number of antennas (n>>1), after 
some transformations which do not change the determinant, 
we obtain [12]: 
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Approximate solution of (22) then takes the simple form: 
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For 1=r , one obtains 1=γ  and, consequently, 

1+−≈ knne . Thus, the reduction in system effective 
dimensionality n∆  due to the strong correlation of k receive 
branches is 1−≈−=∆ knnn e . This is a physically 
reasonable conclusion because we cannot transmit 
information independently over these k branches but have to 
use them as only one branch. For r=0, 0=γ  and 0=∆n , 
and the system has full dimensionality as it should be. Fig. 4 
shows n∆  as a function of r  for different values of k 

computed using (29) and (30) and by numerical solution of 
(22) using (24). As one may see, eqs. (29) and (30) provide 
quite a good approximation. An interesting question 
however is how strong should the correlation be for 

1−≈∆ kn . A detailed analysis (as well as an examination 
of Fig. 4) gives the following rough estimation: 

( )ρ−≥ 2/1 nr . For the scenario of Fig. 4, one obtains: 

995.0≥r . Thus, for almost all practical cases (when 

1/ >>ρ n ) n∆  will be smaller than 1−k . 
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Let us now compare the ED and the EDOF concepts for 

a practically-important case of 1>>ρ n  and n>>1. A detail 

analysis (as well as Fig. 4) shows that for 1=r  and 0=r  

the ED and the EDOF give approximately the same 
prediction. But in between these two extreme cases their 



 

values are different, as Fig. 4 illustrates. One may wonder: 
what is the reason for this difference? Both parameters have 
very similar physical meaning and both characterize the 
system performance from the same viewpoint. However, in 
the ED concept the real system performance (channel 
capacity) is compared to the ideal system performance, 
which operates over uncorrelated parallel subchannels, for 
the same total transmitted power. The ideal system is taken 
as a reference. Thus, one may conclude that in the ED 
concept the total transmitted power of the ideal system is 
distributed between the effective dimensions only, not 
between the actual number of transmitters. On the other 
hand, EDOF is determined through variation in SNR, i.e. in 
the transmitted power, for fixed channel correlation. There 
exists no explicit reference (ideal) system in this case and 
the total transmitted power is always distributed between the 
actual number of transmitters. Both concepts can be used 
for estimating MIMO system performance but from 
different viewpoints. In the EDOF concept, the effect of 
SNR is emphasized and, hence, it is more relevant when one 
wants to know how the actual system performance varies 
with transmitted power for fixed correlation. On the 
contrary, the effect of channel correlation is emphasized in 
the ED concept and, consequently, it is more relevant when 
one wants to know how the system performance varies with 
channel correlation for fixed power. 

It should be noted that we assumed in this Section that 
the channel is deterministic. If it is random (i.e., Rayleigh 
fading) then the capacity is random as well. In this case, one 
needs to use the upper bound (10).  Thus, the results above 
hold for the capacity upper bound of a random ergodic 
channel. However, as detailed analysis shows, the upper 
about above is usually only 20-40% larger than the mean 
capacity (this is roughly the same as for conventional SISO 
systems). The type of channel coefficient distribution has no 
major impact on capacity, the main impact is due to channel 
correlation. 

 
V. PARADOX OF ZERO CORRELATION 

 
MIMO channel capacity  is usually thought of as limited by 
correlation: it is low for highly correlated channel, and it is 
high when the correlation between individual sub-channels 
(i.e. links between one transmit and one receive antenna) of 
the matrix (MIMO) channel is zero. However, an elegant 
example has been presented in [19], which demonstrates 
that zero correlation is not a guarantee of high capacity, i.e. 
the channel may have zero correlation and still only a single 
degree of freedom (these are so called degenerate channels 
or keyholes). However, no explanation has been provided to 
this phenomenon. In this section, we provide a statistical 
explanation of this phenomenon and, in particular, we 
emphasize that one should distinguish between 

“instantaneous” and “mean” (or conventional) correlation. 
We also present a general statistical criterion for the channel 
to be degenerate and propose a method to estimate the 
capacity of those channels. 

Let us now consider 2x2 deterministic MIMO channel. 
(1) takes the following form in this case: 
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where 12R  is the normalized correlation coefficient 

( 112 ≤R ), 
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In fact, 11r  and 22r  represent the normalized received 
power in 1st and 2nd branch correspondingly. Hence, the last 
term in (31) describes the effect of SNR. The eigenvalues λ  
of ijr  can be obtained from the following equation: 

( ) 01 2
1222112211
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 −+λ+−λ Rrrrr          (33) 

The singular values of ijh  are square roots of λ  [5]. Thus, 

correlation has the major impact on the number of degrees 
of freedom (i.e., non-zero singular or eigenvalues): there are 
two degrees of freedom when 112 <R  and only one when 

112 =R , as long as the received powers are not zero. 

When the channel is random, the mean (ergodic) 
capacity may be defined using the expectation over the 
channel matrix in (31) (see eq. (3)) [5]. Detailed analysis 
using Monte-Carlo simulations of the correlated Rayleigh 
channel and of the channel in [19] shows that the impact of 
the second term in (31) on the mean capacity is much 
smaller than that of the first term for 1>>ρ . The same 
conclusion may be obtained using Jensen’s inequality. The 
second term mainly accounts for varied received powers. 
On the contrary, correlation has the major impact on the 
mean capacity. Hence, to isolate and study the effect of 
correlation, we neglect the second term. In this case, the 
mean capacity depends on 12R only, which is 
“instantaneous” correlation coefficient, and can be 
presented as follows: 

( ) ( ) 121212

12
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where ( )12Rf  is the probability density function (PDF) of 
R12, and DR12 is the range of R12. Thus, the mean capacity 
depends on the PDF of R12, not only on its mean value. In 
general, the mean correlation is not a reliable tool in 
estimating the MIMO capacity of a random channel. 



 

Let us now consider an illustrative example, when 
112 ±=R  with equal probability. Obviously, the mean 

correlation is zero but the mean capacity is low and there is 
only one degree of freedom just because 112 =R . The next 

example is provided in [19]. In that case,  

( )21
12
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where ( )11 arg b=ϕ , ( )22 arg b=ϕ , and b1 and b2 are 
scattering coefficients (see [19] for detail discussion). 
Again, 012 =R  because 1ϕ  and 2ϕ  are independent and 

uniformly distributed, but the mean capacity is low and 
there is only one degree of freedom because 112 =R . From 

the considerations above, we may conclude the following: 
§ The capacity of deterministic channel is maximum 
when 012 =R  (see (31)). However, as the examples above 
show, it is wrong to state the same about random channel 
using the mean correlation, i.e. zero mean correlation of a 
random channel is not a sufficient condition of maximum 
mean capacity. Using inequality (5), we conclude that it is 
the necessary condition (i.e., if the mean correlation is high, 
than the mean capacity is necessarily low). 
§ Referring to eq. (31), we conclude that the sufficient 
condition of high capacity is low mean magnitude 
correlation. For example, if 012 =R , then there are two 

degrees of freedom and the mean capacity is maximum 
simply because 012 =R  in this case. 
The general conditions for a channel to be degenerate are, 

012 =R   and  112 =R                   (36) 

From practical viewpoint, 12R  may not be equal to 1 but 

be close to it. The capacity will be low in this case as well. 
In particular, according to the results of Section III, it will 
be low when 8.05.012 −≥R . In the case of degenerate 

channels, the mean correlation does not provide an accurate 
estimation of the capacity. Figure 5 illustrates the channel 
capacity for PDF of R12 of the following form: 

( ) 1,exp 12
12

12 ≤








α
⋅= R

R
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where c is normalizing constant, and α determines the root-
mean-square (RMS) value of R12 (note that α may be 
negative as well as positive). Obviously, the mean 
correlation is zero and its use for estimating the capacity 
will give an incorrect result. As figure 5 indicates, a more 
accurate estimation of the capacity of degenerate channels 
can be obtained using RMS or mean magnitude correlation. 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

7

8

9

10

11

12

 mean capacity
 capacity using RMS correlation
 capacity using mean magnitude correlation
 capacity using mean correlation

C
ap

ac
ity

, b
it/

s/
H

z

RMS correlation  

Figure 5. MIMO capacity using RMS, mean magnitude 
and mean correlation versus RMS correlation for ρ=20 
dB. 

It is interesting to note that the eigenvalue approach, 
which is widely used for the MIMO system analysis, is 
more formal mathematically and does not provide this 
insight. 

 
VI. FADING AND ADAPTIVE MIMO ARCHITECTURE 
 

In general, MIMO architecture can provide four advantages: 
(1) high channel capacity, (2) low fade depth, (3) low 
cochannel interference, (4) highly secure communication. 
However, all these advantages cannot be achieved at the 
same time. Thus, an adaptive MIMO architecture can be 
built, which operates in one of the four modes: (1) high 
capacity mode (few tens or even hundreds bit/s/Hz), (2) low 
fading mode (10-30 dB reduction in fading), (3) low 
interference mode (5-15 dB reduction in intereference), (4) 
high security mode. 

In the low fading mode, the fade depth level for MIMO 
architecture is substantially smaller than for SISO or SIMO 
systems because the diversity order of MIMO system is n2 , 
and SISO and SIMO systems – 1 and n correspondingly 
(however, some space-time coding is required for MIMO 
system to achieve this diversity order). Besides, the MIMO 
system efficiently exploits diversity at both Tx and Rx sites. 
Thus, for example, no any advantage is provided by SISO 
or SIMO if fading is correlated at Rx site, but MIMO 
provides fading improvement even in this case (if Tx site 
fading is not correlated). Hence, the MIMO system 
availability is twice that of SIMO, if Tx and Rx fadings are 
not correlated. The outage probability versus fade depth 
curve slope is 10n2 dB/decade for MIMO, compared to 10n 
and 10 dB/decade for SIMO and SISO correspondingly. 
Hence, the advantage of using MIMO is high even for 
moderate n. 

 
 



 

VII. CONCLUSION 

In this paper, we have given a review of MIMO architecture 
and the impact of wireless channel correlation on its 
operation. The use of Jensen inequality allows one to 
estimate the MIMO channel capacity through the upper 
bound on it. Using the original and transposed channel 
matrix, the compound upper bound is formed, which 
accounts for both transmit and receive branch correlation in 
such a way that the impact of these branches can be 
estimated separately, which simplifies the procedure 
substantially. Extensive numerical simulations confirm that 
this bound is a quite accurate estimation of the mean MIMO 
capacity. The statistics of amplitude distribution of the 
matrix channel coefficients has no significant impact on the 
capacity – the main impact is due to correlation. 

Using the bound above, we applied the results on MIMO 
capacity of deterministic channels to a random channel, i.e. 
estimated the capacity upper bound using the uniform and 
exponential correlation matrix models. These estimations 
agree well with the recent measurements of the MIMO radio 
channel. We have also shown that the increase in correlation 
is equivalent to the decrease in SNR. 

The concept of MIMO effective dimensionality has been 
introduced and studied. Its purpose is to compare the actual 
system performance to that of the ideal system, whose 
channel capacity is maximum, and to characterize in this 
way the effect of correlation. Roughly speaking, ED is a 
factor in front of log(1+SNR) after correlation has been 
taken into account. 

We have discussed the paradox of zero correlation and 
provided a statistical explanation for it. In particular, we 
have shown that one should distinguish between “average” 
(conventional) and “instantaneous” correlation. High 
magnitude correlation is the solution to this paradox. Zero 
average correlation is not a guarantee of high capacity. On 
the contrary, zero or low mean magnitude correlation is 
indeed a guarantee of high capacity. Mean magnitude or 
RMS correlation should be used for the capacity estimation 
of degenerate channels. 

Finally, we have introduced the concept of adaptive 
MIMO architecture, which can achieve one or combination 
of some of the advantages provided by the MIMO 
architecture, and discussed fading in MIMO systems. 
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