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Channel Capacity of MIMO Architecture Using the
Exponential Correlation Matrix

Sergey L. Loyka, Member, IEEE

Abstract—Multiple-input multiple output (MIMO) communi-
cation architecture has recently emerged as a new paradigm for
wireless communications in rich multipath environment, which
has spectral efficiencies far beyond those offered by conventional
techniques. Channel capacity of the MIMO architecture in
independent Rayleigh channels scales linearly as the number
of antennas. However, the correlation of a real-world wireless
channel may result in a substantial degradation of the MIMO
architecture performance. In this letter, we investigate the MIMO
channel capacity in correlated channels using the exponential
correlation matrix model. We prove that, for this model, increase
in correlation is equivalent to decrease in signal-to-noise ratio
(SNR). For example, = 0 7 is the same as 3-dB decrease in SNR.

Index Terms—Channel capacity, correlation, MIMO.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) communi-
cation architecture has recently emerged as a new par-

adigm for wireless communications in rich multipath environ-
ment [1]–[4]. Using multi-element antenna arrays (MEA) at
both transmitter and receiver, which effectively exploits the third
(spatial) dimension in addition to time and frequency dimen-
sions, this architecture achieves channel capacity far beyond that
of traditional techniques. In independent Rayleigh channels the
MIMO capacity scales linearly as the number of antennas under
some conditions [1], [3], [4]. However, some impairments of
the radio propagation channel may lead to a substantial degra-
dation in MIMO performance. Some limitations on the MIMO
capacity are imposed by the number of multipath components
or scatterers [4]. Another limitation on the MIMO channel ca-
pacity, which is somewhat analogous to the multiple path limita-
tion, is due to the correlation between individual sub-channels
of the matrix channel [1], [5]–[7]. Increase in the correlation
coefficient results in capacity decrease and, finally, when the
correlation coefficient equals to unity, no advantage is provided
by the MIMO architecture. The effect of fading correlation on
the MIMO channel capacity has been investigated in details in
[5] using an abstract one-ring scattering model. However, this
approach does not allow to study the effect of correlation in an
explicit way (i.e., capacity versus correlation).

Channel capacity of the two-antenna MIMO architecture has
been investigated in [6] as an explicit function of the correlation
coefficient. The general case of-antenna architecture has been
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considered in [7] using the uniform correlation matrix model
(when all the correlation coefficients are equal). This model may
be used for the worst-case analysis or for some rough estima-
tions using the average value of the correlation coefficient. How-
ever, the uniform model is somewhat artificial—one expects that
the correlation of neighboring subchannels is higher than that
of distant subchannels. In this way, we arrive to the exponential
correlation model, which has been successfully used for many
communication problems [8]–[10]. In this letter, we study the
MIMO channel capacity using the exponential correlation ma-
trix model by analytical techniques and derive a simple formula
for the channel capacity indicating its validity range. We prove
that, for this model, increase in correlation is equivalent to de-
crease in the signal-to-noise ratio under some realistic condi-
tions. For example, is equivalent to the 3 dB decrease
in SNR (as compared to the case of ). Finally, we compare
this model with the uniform model and show that the exponen-
tial model predicts better MIMO performance.

II. CHANNEL CAPACITY OF MIMO A RCHITECTURE

For fixed linear matrix channel with additive white
Gaussian noise and when the transmitted signal vector is com-
posed of statistically independent equal power components each
with a Gaussian distribution and the receiver knows the channel,
its capacity is [1]

bits/s/Hz (1)

where is the number of transmit/receive antennas (for the sake
of simplicity we consider here the case when the number of
transmit and receive antennas are equal, but a general case can
be considered in a similar way);is the average signal-to-noise
ratio (SNR); is identity matrix; is the normalized
channel matrix, which is considered to be frequency indepen-
dent over the signal bandwidth; and “” means transpose con-
jugate. We adopt here the following normalization condition:

(2)

where denotes the components of. Hence, when
(completely uncorrelated parallel sub-channels), is the

signal-to-noise ratio per receive branch. Some other kinds of the
normalization can also be used, but in this casewill have a
slightly different meaning.

To study the effect of correlation in an explicit way and
to separate it from the effect of unequal received powers, we
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assume that all the received powers are equal. In this case,
and (1) reduces to [7]:

(3)

where is the normalized channel correlation matrix, ,
whose components are:

(4)

where “ ” denotes complex conjugate. The last equality in (4)
holds due to the assumption of equal received powers. It imme-
diately follows from (4) that .

It should be noted that (1)–(4) hold for a deterministic
channel. When the channel is random (stochastic), the capacity
is random, too. The mean (ergodic) capacity can be defined in
this case [3]. Using the expectation over the channel matrix in
(1), (2) and (4), we obtain the following upper bound on the
mean (ergodic) capacity:

(5)

where is the expectation over the channel matrix. The in-
equality in (5) holds due to Jensen’s inequality and concavity of

function [13]. Thus, our method will provide an upper
bound on the mean capacity. For the sake simplicity, we assume
further that the channel is deterministic, keeping in mind that
the same results hold true for as well.

Denoting the matrix under the determinant in (3) by, we
obtain:

(6)

where

(7)

and

(8)

Thus, we may present the MIMO capacity in the following
form:

(9)

The first term is the MIMO capacity of parallel completely in-
dependent sub-channels [1] ( in this case) and the second
term is the contribution of the sub-channel correlation. Note that
the second term is negative (or zero) because . For
high SNR ( ), and depends on the corre-
lation matrix only. In fact, is the Gram’s determinant [11].
Thus, in order to estimate the MIMO capacity in a correlated
channel, we need to evaluate .

III. EXPONENTIAL CORRELATION MATRIX MODEL

For this model, the components ofare given by

(10)

where is the (complex) correlation coefficient of neighboring
receive branches (the correlation coefficient of signals in these
receive branches). Obviously, (10) may be not an accurate
model for some real-world scenarios but this is a simple
single-parameter model which allows one to study the effect of
correlation on the MIMO capacity in an explicit way and to get
some insight. It remains to be investigated whether this model
is applicable or not to some specific scenarios. Note, however,
that this model is physically reasonable in the sense that the
correlation decreases with increasing distance between receive
antennas and it also corresponds to some realistic physical
configurations (e.g., [9, p. 26]). Comparison with the recent
measurement results [14] shows also that it provides reasonable
conclusions when applied to a MIMO system.

Substituting (10) into (7) and after some equivalent transfor-
mations of the determinant (the second row multiplied byis
subtracted from the first row, the third row multiplied byis
subtracted from the second row etc.), we arrive to the following:

(11)

A recurrent formula can be derived for from (11) and be fur-
ther used for its numerical evaluation (in this way, we reduce the
computational time substantially as compared to the full matrix
computation for large ). Unfortunately, it is not possible to de-
rive a closed-form analytical expression from (11). But we can
still obtain a simple closed-form expression in a practically-im-
portant case of high SNR ( ), when . In this
case, the main diagonal components only give the primary con-
tribution to :

(12)

and

(13)

In the case of and , we finally obtain:

(14)

In the limiting case of , one obtains from (14):

(15)
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Fig. 1. MIMO channel capacity versus correlation coefficient,� = 30 dB.

When , the last two equations reduce to the well-known
formulas (in this case, ) [1]:

and (16)

Comparison of (14) and (15) with (16) clearly indicates that
the effect of the channel correlation is equivalent to the loss in
the SNR. Hence, for example, is equivalent to 3-dB re-
duction in the SNR. Another possible interpretation of (14) and
(15) is that the correlation of individual subchannels gives an in-
crease in the noise level because for each particular sub-channel
all the other subchannels are just the sources of interference (see,
for example, the detection algorithm in [2]). Note also that the
channel capacity does not depend on the correlation coefficient
phase.

Fig. 1 shows the MIMO capacity of a deterministic channel
versus the correlation coefficient evaluated by the full matrix
computation [see (9) and (10)] and by approximate formulas
(13) and (14) for and 50, and dB. The MIMO
channel capacity evaluated using the uniform correlation ma-
trix model [7] is also shown for comparison. As one may see
from this figure, the accuracy of approximate formulas is quite
good. It should be noted that the accuracy decreases asand

decreases. The uniform model predicts lower capacity, as it
should be (because it is the worst case model—the correlation
between distant receive branches is the same as between neigh-
boring ones). We also see that the MIMO capacity decreases
significantly for to , that agrees well with the known
results on the spatial diversity techniques [12] and with recent
measurements of the MIMO channel [14]. Detailed statistical
analysis using Monte Carlo simulations of a correlated Rayleigh
channel shows that its mean (ergodic) capacity is approximately
20%– 40% smaller than that in Fig. 1 and it decreases with cor-
relation in the same way as in the deterministic case.

IV. CONCLUSION

The MIMO channel capacity depends substantially on the
correlation between individual subchannels of the matrix
channel, reaching its maximum value for zero correlation
(completely independent parallel subchannels). In this letter,
we have developed a method of MIMO capacity estimation
using the correlation matrix approach. In particular, using the
exponential correlation matrix model, we derived a simple
formula for the MIMO channel capacity. The main conclusion
is that the effect of channel correlation is the same as decrease
in the signal-to-noise ratio under some realistic conditions.
For example, is the same as 3-dB decrease in SNR.
The exponential correlation matrix model predicts higher
channel capacity than the uniform correlation matrix model,
as it intuitively should be. While developed for a deterministic
channel, our method provides an upper bound on the mean
ergodic capacity of a stochastic channel as well.
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