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ABSTRACT: The instantaneous quadrature technique is an efficient tool for nonlinear
behavioral-level simulation of RF rrrrr microwave circuits or systems over wide frequency and
dynamic ranges. In order to obtain accurate simulation results, accurate approximation rrrrr

( )representation of the nonlinear transfer functions or factors as well as accurate measure-
( ) ( ) ( )ment or circuit-level simulation of the amplitude AM–AM and phase AM–PM nonlin-

earities are required. In this paper, we consider how to approximate these transfer functions
( )factors using splines, orthogonal and nonorthogonal series expansions, and evolutionary

( )programming techniques genetic algorithm and neural networks with viewpoint of the
( )simulation accuracy. The influence of AM–AM and AM–PM measurement or simulation

inaccuracy and noise on the entire simulation accuracy is also discussed. Series expansion
methods are proposed as a tool to filter out the measurement noise. Q 2000 John Wiley &
Sons, Inc. Int J RF and Microwave CAE 10: 238]252, 2000.

Keywords: behavioral-level simulation; nonlinear transfer function; approximation

1. INTRODUCTION

w xIn the previous paper 1 , we considered a new
Žbehavioral-level technique the instantaneous

.quadrature technique for nonlinear modeling and
simulation of RFrmicrowave communication sys-
tems. This technique combines the advantages of
the two well-known techniques, the quadrature
modeling technique and the discrete technique,
and allows one to simulate the system perfor-
mance over wide frequency and dynamic ranges
Ži.e., to predict harmonics of the carrier frequency

Correspondence to: S. L. Loyka

and even-order nonlinearities, to account for the
Žfrequency response inputroutput matching net-

.works and, in principle, to model the bias decou-
w x.pling network effect 2, 3 . However, in order to

obtain accurate simulation results, one must pay
much attention to the accuracy of the instanta-
neous transfer factors that play a very important
role in the entire simulation process. In particu-
lar, one should pay much attention to the accu-
racy of AM]AM and AM]PM characteristic

Žmeasurements and especially for the second-
.order characteristics , their approximationrrepre-

sentation accuracy, filtering out the measurement
noise, the accuracy of transferring envelope func-

Q 2000 John Wiley & Sons, Inc.
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tions into instantaneous ones, and the accuracy of
instantaneous characteristic approximationrrep-

Žresentation in order to filter out the computa-
.tional noise . This paper is organized as follows.

Section 2 gives methods of the transfer function
approximationrrepresentation. In Section 3, these
methods are validated using measured data for a
microwave amplifier. In Section 4, we discuss the
impact of approximation accuracy and measure-
ment noise on the entire simulation accuracy.

2. REPRESENTATION/////
APPROXIMATION OF TRANSFER
FUNCTIONS

In order to start simulation using the instanta-
neous quadrature technique, one needs the in-

Žstantaneous transfer factors or functions. By
transfer function we mean the output voltage as a
function of the input voltage, and by transfer
factor we mean the voltage gain as a function of

. Žthe input voltage. Usually, fundamental first-
.order and second-order AM]AM and AM]PM

characteristics are measured or simulated by a
circuit-level simulator, and then these character-
istics are transformed into the instantaneous
transfer factors using the integral equation tech-

w xnique 1 . While doing so, one should keep in
mind the following:

Ž1. AM]AM and AM]PM measured or simu-
.lated data are available for a finite set of

points. During simulation, these data are
usually required for another set of points.
Thus, a mathematical technique is required
to transform these data from one set of
points to another. Besides, these data must

Žbe stored in some form look-up tables, for
.example and that technique can also be

used for this purpose. This is a representa-
tion problem.

2. While the importance of higher-order
derivatives of elements’ characteristics for
the nonlinear circuit-level simulation is well

w xrecognized 4]6 , the importance of higher-
order derivatives for the nonlinear behav-
ioral-level simulation is not so well under-

w xstood 7 . Let us now consider this issue in
more detail. Measured or circuit-level simu-
lated AM]AM and AM]PM data contain

Žnot only the ‘‘real’’ characteristics without
. Žany disturbance , but also measurement or

.simulation noise and distortions due to in-
Ž .strument or simulator noise and inaccu-

racy. These distortions and noise may
severely degrade the entire simulation accu-
racy due to a nonlinear character of the
problem. This can be illustrated by the fol-
lowing argument. Let us assume that the
time-domain transfer function is known with
some inaccuracy:

Ž . Ž . Ž . Ž .y x s F x q D F x , 10

where y is the output voltage, x is the input
voltage, F is the ‘‘real’’ transfer function,0

Ž .and D F is a disturbance. Using 1 , we
calculate the output signal in the time do-

wŽ Ž .xmain for given x t and then transform it
to the frequency domain. Obviously, the
output spectrum contains two components,
the ‘‘real’’ spectrum and the disturbance,
due to the linearity of the Fourier trans-
form:

Ž .S s S q DS, 2y 0

where

Ž . Ž . Ž .S s FT F , DS s FT D F , 30 0

and FT is the Fourier transform. We expect
that the analysis dynamic range is at least

w x100 dB 8 . Thus, making a rough estima-
tion, one obtains:

DS - 10y5S and D F - 10y5F ,0, max 0

Ž .4

where S is the maximum level in the0, max
‘‘real’’ spectrum. Hence, if we wish to obtain
the output spectrum within the 100-dB dy-
namic range in a general case, the relative
disturbance level of the transfer function
must be not higher than 10y5 }much
smaller than a typical measurement error.
Fortunately, this consideration says nothing
about the specific spectrum of the distor-
tion. For example, if D F s constant, then
the output spectrum has no distortions ex-
cept at f s 0. One usually does not con-
sider the DC component in system-level
RFrmicrowave applications and, hence, this
spectrum can be considered to be undis-
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torted. The next example is D Fr x s
constant. In this case, we just predict the
transfer gain with an error; all nonlinear

Žproducts are predicted correctly within the
accuracy of the gain prediction}all these

.components are just scaled by this constant .
Ž .Thus, 4 can be relaxed to, say, D F -

y2 Ž .10 F 1% accuracy . When D F has0
nonzero higher derivatives, it may generate
nonlinear noise which will disturb the non-

Žlinear products we are looking for for ex-
ample, some specific intermodulation prod-

.ucts . Thus, it is very important to consider
not only the magnitude of the transfer func-

Ž .tion distortion error , but also its spectrum
Ž .higher-order derivatives : we can afford
some higher-level disturbance in the trans-
fer function, but only with a specific spec-
trum. An efficient way to analyze and to
control the spectrum of the distortions is to
use a series expansion of the transfer func-

Žtions the envelope as well as instantaneous
.ones . We should note that DS has usually

a noise-like form of quite a small level,
while S represents the required spectrum0
plus nonlinear distortions. Hence, when DS
is smaller than all the spectral components
in S that are under consideration, D F has0
not much influence on the simulation accu-
racy. This is the case when all the consid-
ered spectral components are of high

Ženough level in the large-signal regime, for
.example . D F decreases the simulation ac-

curacy of mainly small-level spectral compo-
nents.

3. Taking into account the previous item, one
Žshould ‘‘filter out’’ the measurement or

.simulation noise of the envelope and in-
stantaneous transfer functions before start-

Žing simulation we shall consider this item
.in detail below . Series expansion can be

used for this purpose. We just decrease the
expansion order in order to suppress the

Ž .higher-order noise disturbance compo-
nents. However, we should not decrease it
too much because it gives rise to the ap-

Žproximation error using this series, we ap-
proximate the ‘‘real’’ transfer function with

.larger error . Obviously, there is some opti-
mum value for the series expansion order,
which depends on the transfer function it-

Žself as well as on the measurement simula-

. Žtion noise level. However, to the best of
the authors’ knowledge, there is no mathe-

.matical technique to find this optimum.

In the mathematical language, the problem of
Ž .transfer function factor representation can be

formulated as follows. We know transfer func-
Žtions AM]AM and AM]PM, or in-phase and

.quadrature components for a finite set of points
Ž .from measurements or circuit-level simulation :

Ž . Ž .y s F x , 5i i

where y is the output amplitude or phase, and xi i
is the input amplitude, but the simulation usually
requires this function to be defined over a contin-

Žuous interval strictly speaking}for another fi-
nite set of points, but it is more convenient to
consider a continuous interval because we do not

.know this set in advance :

Ž . w x Ž .y s F x , x g yx , x . 6max max

Ž . Ž .Thus, we need a method to obtain 6 using 5 .
w xSeveral such methods are available 9]15 , which

make use of

1. splines
2. Bessel series
3. sinercosine series
4. Chebyshev polynomial series
5. power series
6. interpolating polynomials
7. evolutionary programming techniques

Ž .genetic algorithm and neural networks
8. wavelets

w xSince splines are a very traditional tool 16 , we
shall not discuss it in detail. However, we should
note that they usually provide the best accuracy
Ž . w xin terms of transfer function representation 9 ,
but do not allow one to filter out the measure-
ment noise. Thus, the overall simulation accuracy
is not very good when the measurement noise
contribution is substantial. Interpolating polyno-
mials are also widely used for such a problem
w x10]11 , but, unfortunately, they also do not allow
one to filter out the measurement noise and their
accuracy is not very good. On the contrary, a
series expansion gives us a good possibility to
filter out the measurement noise by changing the

Žexpansion order. The approximation representa-
.tion accuracy can also be quite good if the ex-
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pansion order is chosen appropriately. Thus, we
consider these methods in more detail.

2.1. The Approximation ///// Representation
Using Bessel Series

In this case, we represent the transfer function in
the following form:

N

Ž . ŽŽ . . Ž .y x s a J 2n q 1 j x , 7aÝ n 1
ns0

N

Ž . ŽŽ . . Ž .y x s b J 2n q 1 j x , 7bÝ n 0
ns0

where J and J are the zero- and first-order0 1
Bessel function of the first kind, correspondingly,
and

p
Ž .j s . 8

2 xmax

Both expansions are valid over the interval x g
w x Ž .yx , x ; 7a is used for the odd part ofmax max
Ž . Ž .y x and 7b is used for the even part. Why is

this particular form of the Bessel series expansion
used? First of all, we use J and J because they1 0
are odd and even functions, correspondingly.

w xSome additional motivation is as follows 17 . A
typical odd transfer function has a form shown in

ŽFigure 1 solid line; this is a typical example of a
.saturating nonlinearity . We choose the scaling

Ž .factor inside the Bessel functions in 7 in such a
way that the first term resembles the transfer
function and, at the same time, does not diverge
substantially from it near the ends of the approxi-

Ž .mation interval see Fig. 1, dashed line . Higher-
order expansion terms correct the divergence in-

Figure 1. A typical odd input]output voltage transfer
Ž .function solid line and the first-order expansion term

Ž . Ž .in 7a dashed line .

side the interval and have small value at the ends.
Ž .If one includes the even-order terms 2nj x in

Ž .7 , the approximation error will decrease. How-
ever, the number of terms is two times higher in
this case, which substantially increases the simu-

Žlation time. Comparing these two expansions with
.and without even-order terms for the same num-

ber of terms, we find that the approximation error
is approximately the same. An additional argu-

Ž .ment for using only odd-order terms in 7 is that
if the first-order envelope transfer function is

Ž .expanded as in 7a , we can use its expansion
coefficients in order to expand the instantaneous

Žtransfer function in the sine series see eqs.
Ž . Ž . w x.30 ] 32 in 1 ; thus, we do not need to solve the
integral equations to transform the envelope
transfer function into the instantaneous one in
this case.

Ž .We should note that the basis functions in 7
are not orthogonal ones; thus, we need some
untraditional technique to calculate the expan-

Ž .sion coefficients a . The least-squares methodn
together with the singular-value decomposition
Ž .SVD technique can be used in the following way
w x16 . We calculate the expansion coefficients in
such a way that the following expression is mini-

Ž .mized the least-squares method :

2N
2 Ž . Ž .« s a f x y y « min, 9Ý n n i iž /

ns0

� 4where y , x are the measured points of thei i
w Ž .xtransfer function see 5 , i s 1, M, and M is the

Ž .number of the measured points, and f x are then
Ž .basis functions J or J . Using a standard ap-1 0

Ž .proach, we obtain from 9 the well-known matrix
equation,

Ž .A ? a s b, 10

where

Ž . Ž .A s f x , b s y ; 11in n i i i

Ž .10 is a typical system of linear equations. How-
ever, when solving this system, we may encounter

Ž .the following two problems: 1 the system matrix
A is near singular and, consequently, the accuracy
of a traditional solution technique will be very

Ž .poor, and 2 the number of measured points is
larger than the number of expansion terms, M )

w Ž . xN q 1 the system 10 is overdetermined . The
latter problem appears because one wishes to use
as many measured points as possible in order to
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improve the simulation accuracy, and the number
of expansion terms is limited because one needs

Žto filter out the measurement noise or because
.of the limited computer resources . Besides, it is

more convenient to vary M and N independently
to optimize the simulation technique for a partic-
ular problem. The former problem may appear
due to a particular choice of the basis functions.

Ž .In order to solve 10 under these circumstances,
w xwe can use the SVD technique 16 . We represent

A in the form:

N

Ž .A s w U V , 12Ýin k ik nk
ks0

where w are the singular values, and the ma-k
trixes U and V are orthogonal in the sense that
their columns are orthogonal:

M N

Ž .U U s V V s d , 13Ý Ýi k in jk jn k n
is1 js0

and d is the Kronecker’s delta. A procedure tok n
w xcalculate w, U, and V is given, for example, in 16 .

Ž .An approximate solution of 10 , which minimizes
< < 2the difference A ? a y b , is given by the follow-

ing expression:

N M U bi j i Ž .a s V . 14Ý Ýn n jwjjs0 is1

We can use this approach for the series expan-
sion using not only Bessel functions, but also

Žother nonorthogonal basis functions power se-
.ries, for example . The SVD technique performs

quite well even for highly overdetermined systems
Ž .say, when M s 100 and N s 10 .

In order to obtain an accurate approximation,
the number of measured points M must be large

Ž .enough say, 100 . . . 1000 . If it is not, the approxi-
mation accuracy may be poor. However, it can be
improved in the following way. We build a contin-
uous transfer function using the measured points
and splines in between these points. Further, we

� 4determine another set of points y , x , i s 1, M*,i i
Žusing this function, where M* is large enough. In

this way, we practically do not lose the accuracy if
a sufficient number of the measured points is

.used, say, if M ) 20 . . . 50. Using this method,
one can also locate the sample points x in ani
arbitrary way without any dependence on the

Žmeasured points of course, within the same in-

.terval . This is very important for the Chebyshev
Ž .approximation see Sec. 2.3 .

2.2. The Approximation ///// Representation
Using Sine ///// Cosine Series

This is a conventional approach}we just use a
modified Fourier series to represent the transfer
function,

N

Ž . ŽŽ . . Ž .y x s a sin 2n q 1 j x , 15aÝ n
ns0

Nb0Ž . Ž . Ž .y x s q b cos 2nj x , 15bÝ n2 ns1

Ž .where 15a is used for an odd transfer function,
Ž .and 15b is used for an even one. The motivation

for this particular form of the expansion is similar
Žto that of the Bessel series expansion. see Sec.

. w x2.1 17 . For instance, only even-order terms
w Ž .x Ž .cos 2nj x are used in 15b because odd-order

w ŽŽ . .xterms cos 2n q 1 j x have zero value at the
ends and, consequently, would not approximate

Žcorrectly the transfer function which is not equal
.to zero at the ends . The same argument explains

Ž .why only odd-order terms are used in 15a . The
expansion coefficients are calculated by the well-

Žknown formulas the discrete form of these for-
.mulas is used :

M2
ŽŽ . . Ž .a s y sin 2n q 1 j x , 16aÝn i iM is1

M2
Ž . Ž .b s y cos 2nj x , 16bÝn i iM is1

where

M 2 xmax Ž .x s 1 y , i s 1, M. 17i ž /2 M

If the number of measured points M is not large
Ž .enough 100 . . . 500 or if they are located not as

Ž .in 17 , one can use splines in the same way as in
the preceding section. Note that the transfer
functions are usually measured over the interval

w x Ž .x g 0, x , but, as required by 17 , x gmax i
w xyx , x . In order to overcome this difficulty,max max

Ž . Ž .we assume y yx s yy x for the first-order
Žtransfer function because only the odd part of

the transfer function generates spectral compo-
. Ž .nents within the first harmonic zone and y yx
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Ž .s y x for the second-order one. Note also that
Ž .both expansions 16 are valid over the interval

w xx g yx , x . Outside this interval, they gen-max max
erate a periodic continuation of the function.

2.3. The Approximation ///// Representation
Using Chebyshev Polynomials

Chebyshev polynomials are widely used for nu-
merical analysis due to their exceptional proper-

w x Žties 18 . The most important ones for our partic-
. Žular application are their fast convergence it is a

common belief that Chebyshev expansions are
w x.among the most rapidly converging ones 18 and

their orthogonality over a discrete set of points
Ž .not only over a continuous interval , which gives
us the possibility to use the fast Fourier transform
for the expansion coefficient evaluation. The
Chebyshev polynomial expansion can also be used
for filtering out the measurement noise.

In the Chebyshev series expansion method, the
transfer function is represented in the following
form:

Na0Ž . Ž .y x s q a T xrx ,Ý k K max Ž .2 18ks1

w xx g yx , x ,max max

Ž . Žwhere T x are the Chebyshev polynomials thek
. Ž .basis functions . Note that 18 can be applied to

an odd function as well as to an even one or to
wsome combination if one applies it to an odd

function, for example, even-order coefficients will
Ž .xbe automatically equal to zero}see 19 .

The expansion coefficients can be calculated using
the polynomial orthogonality over a continuous

w xinterval or a discrete set of points 18 ,
correspondingly:

Ž . Ž .2 y x ? x T x1 max k Ž .a s dx , 19aHk 2'p y1 1 y x
M2

Ž . Ž .a s y T x , 19bÝk i k iM is1

Ž .where x s cos 2p irM . The last equation isi
more convenient for computation because it in-
cludes the finite set of points; thus, we can use
the measured values of the transfer functions

Ždirectly however, we must measure the transfer
.function nonuniformly}at x . It should be notedi

that the former equation is also useful}it can be
w xused to estimate the coefficient aliasing effect 18

Ždo not confuse it with the spectrum aliasing
.effect}see below and, consequently, to estimate

the required number of points M. Note that
sample points x are located in a nonuniformi
way. If the measured points are uniformly located
or if their number is not large enough, one can
use splines as in Sections 2.1 and 2.2 in order to
transform these points to x .i

When evaluating the expansion coefficients,
one should keep in mind the following:

1. The number M of the measured points
should be large enough that these points
represent adequately the continuous func-
tion; otherwise, large errors in the simula-
tion results are possible. For smooth func-
tions, practical values of M equal to 10]100;
for fast-changing functions, practical values
equal 100]1000. A general rule of thumb is
that the change in the transfer function for
successive points should not be larger than
0.5]3 dB. This rule is valid for both formu-

Ž .las 19 .
2. The number M of points is also of great

importance for the expansion coefficient
Ž .calculation using the discrete formula 19b

w xdue to the coefficient aliasing effect 18 . In
general, the expansion coefficients calcu-
lated by the continuous and discrete formu-
las are not equal:

a s a y a y ak k 2 Myk 2 Mqk

qa q a y ??? ,4 Myk 4 Mqk

Ž .k s 0, N, 20

where a and a denote the expansion co-k k
Ž . Ž .efficients calculated by 19a and 19b , cor-

respondingly. In order to get a good accu-
racy for a , one must use large enough M,k
such that a , a , a , . . . < a .2 Myk 2 Mqk 4 Myk k
A particular value of M depends on a par-
ticular transfer function. A general rule of

Ž .thumb is that M G 3]10 N.
3. In general, one should not use a too high-

order expansion to filter out the measure-
ment noise}the lower the order of expan-
sion is used, the more measurement noise is
filtered out. One should also take into ac-
count that too low-order expansions should
not be used since the simulation accuracy
would be very poor. A particular choice of
the expansion order depends on the mea-

Žsurement noise level measurement accu-
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.racy and on fine details of the transfer
function.

When one compares the Chebyshev polynomi-
als method with the interpolating polynomials

w x Ž .method 11, 19 , it can be seen from 20 that
Žinterpolating polynomials used for the approxi-

.mation will give higher-order coefficients with
poor accuracy due to the aliasing effects because
for interpolating polynomials M s N q 1. Due to
this equation, they are also not optimal since
there is no freedom in the choice of the number
of points}one cannot use a large number of
measured points for lower-order polynomials. The
Chebyshev expansion method has this degree of
freedom, which is its substantial advantage over
the interpolating polynomial method.

When the number of points used for the ex-
pansion coefficient calculation is large enough,
computational time can be too long. A fast Fourier

Ž .transform algorithm FFT can be employed in
this case to speed up the computation in the

Ž .following way. Equation 19a can be written in
w xthe following form 18 :

p2
Ž . Ž . Ž .a s y cos u ? x cos ku du . 21Hk maxp 0

Ž .Sampling y cos u ? x for discrete points u in amax i
uniform way, we can apply FFT to calculate the
expansion coefficients:

w w Ž .xx Ž .a s Re FFT y cos u ? x . 22k i max

A large number of sample points u should bei
used in order to avoid the spectrum aliasing ef-
fect due to the FFT use. In this case, we also get

Ža large number of coefficients half the number of
.u . Lower-order expansion can be obtained byi

Žomitting higher-order terms due to the orthogo-
.nality of the Chebyshev polynomials . Thus, we

Ž .need actually to compute FFT in 22 only for the
Žrequired coefficients usually, it is a small fraction

.of the total number .

2.4. The Approximation ///// Representation
Using Evolutionary Programming
Techniques

Two kinds of evolutionary programming tech-
niques are currently used for the approximation
of nonlinear transfer functions: the genetic algo-

Ž .rithm GA and neural networks. Further, we
consider in detail the use of the genetic algorithm

for evaluating the series expansion coefficients
w x20 and its application to behavioral-level simula-
tion.

The genetic algorithm appears to be a very
effective tool for many kinds of RF problems
w x21]24 . GA methods differ from conventional

Ž . Žones in that a they operate on a group or
.population of trial solutions at the same time,

Ž . Žand b they use stochastic operators selection,
.crossover, and mutation to explore the solution

domain in search of an optimal solution. Gener-
ally, a genetic algorithm method performs the
following main operations:

1. Encode the solution parameters as genes,
and create a string of the genes to form a
chromosome. In our case, series coefficients
are used as genes.

2. Generate a starting population.
3. Assign fitness values to individuals in the

population.
4. Perform reproduction through the fitness-

weighted selection of individuals from the
population.

5. Perform recombination and mutation to
produce members of the next generation.

Steps 4 and 5 are performed until the termination
Žcriterion is met either the number of generations

.or the fitness value is used as the criterion .
Although a binary-coding is used more fre-

quently, we use here a real-coding in which real-
value parameters are used as genes, because
physical-problem codings work better if they re-

w xsemble the parameters they model 22 . Binary
tournament selection strategy is used for the re-
production due to faster operation and the ab-

w xsence of convergence problems 22 . In our case,
the fitness function is defined to be the maximum
difference between the transfer function and its
approximation by the series expansion:

Ž .Fitness a ??? a1 N

N

Ž . Ž .s max y x y a f x ,Ýi k k iž /
ks1

Ž .i s 1, M, 23

where f are the basis functions. The differencek
Ž .is estimated at sample measured points x . Ini

many cases, this fitness function is more appropri-
ate for nonlinear analysis problems than, for ex-

Žample, the root-mean square difference see, for
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example, the considerations given in the begin-
.ning of Sec. 2 . The single-points crossover is

used, in which a random point in parents’ chro-
mosomes is selected and the portions of the chro-
mosomes beyond the selected point are ex-
changed. The probability of crossover p s 0.7cross
is chosen, since it is reported to be the optimal

w xvalue 22 . During the mutation operation, a gene
in a chromosome is changed with the probability
p s 0.001]0.1. Higher probabilities give fastermut
convergence in the initial phases. Usually, pmut
corresponds to at most the mutation of one or
two genes per chromosome and at least a few

w xchromosomes per generation 22 . For a real-
coding, the gene mutation is a small random
perturbation of its initial value:

Ž . Ž .g s g q 0.1 G 0, 1 , 24ˆ max

where g and g are gene values after and beforeˆ
the mutation, correspondingly, g is the maxi-max

Ž .mum value of the gene, and G 0, 1 is the random
Gaussian-distribution number with the mean
value s 0 and the standard deviation s 1. Elitist

Žstrategy is also employed the best individual from
the previous generation is inserted into the next
one if the fitness value of the best individual in
the next generation is lower than in the previous

.one . The choice of the initial population may
substantially influence the GA performance.
Therefore, some a priori knowledge should also
be used.

Thus, using the genetic algorithm together with
Ž . Žthe fitness function given by 23 or any other

.appropriate fitness function , we can evaluate the
expansion coefficient a in a new way. In order tok
improve the computational efficiency of this

Ž .method, we use the following: a the coefficients
calculated by a conventional approximation

w Ž . Ž . Ž .xmethod see, for example, 14 , 16 or 19 are
included in the initial population, giving a good
starting point for the directed random search

Ž .performed by the GA, b the initial population
genes are generated using the Gaussian distribu-
tion with the mean equal to the conventional

Ž .expansion coefficients item ‘‘a’’ , and the stan-
dard deviation equal to 10]50% of the mean

Ž .value, c more advanced forms of the genetic
w xalgorithm can also be used 24 .

In order to demonstrate the efficiency of this
method, we consider further the Chebyshev poly-
nomials as basis functions and apply GA to evalu-

ate the expansion coefficients. However, the use
of GA is not limited to this particular kind of
basis functions}any other basis functions can

Ž .also be used including nonorthogonal ones . The
use of Chebyshev polynomials for the nonlinear
transfer function approximation gives many ad-
vantages due to the exceptional properties of

w xthese polynomials 18 , and, as with every polyno-
mial expansion, it gives the possibility to control
the spectrum expansion, avoiding in this way the
spectrum aliasing effect. It is a common belief
that Chebyshev polynomials give the best polyno-
mial approximation to a given function on the

w xminimax criterion 18 . This is exactly true when
the approximation error is a polynomial. Here, we
show that the GA method allows one to build a
better polynomial approximation than the Cheby-
shev one on the minimax criterion. For this pur-
pose, we used the instantaneous transfer function
of a single-stage microwave amplifier, which has
been calculated from the measured first-order
envelope transfer function using the integral

w xequation approach 1 . Further, we calculated the
expansion coefficients a using the conventionalk

w Ž .xapproach eq. 18b and the GA method de-
scribed above. Since the performance of the ge-
netic algorithm depends substantially on the ini-
tial population generated, we used some physical
observations in order to improve the algorithm
performance. In particular, we used the fact that
the expansion coefficients calculated by the con-

w Ž .xventional method eq. 19b are quite close to the
optimal ones. Hence, we used the conventional
expansion coefficients in the initial population,
and the maximum coefficient values were set equal
to the conventional coefficients. This approach
speeds up the GA method substantially. Figure 2
shows the GA flow chart diagram used for the
evaluation of the Chebyshev expansion coeffi-
cients. The population size was set equal to 100
individuals. The termination criterion used was
the number of iterations equal to 1000. Some
particular results are shown in Table I. The main
result is that the GA method gives the maximum
difference between the transfer function and its
approximation, which is on average 1.2]1.5 times
smaller than the conventional Chebyshev expan-
sion method. Figure 3 shows the convergence
curves of the GA approximation method. As can
be seen from this figure, the GA method con-
verges at approximately 100 . . . 200 iterations.
Typical computational time on a Pentium II com-

Ž .puter is several hours for 1000 iterations .
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Figure 2. Flow chart diagram of the genetic algorithm
employed for the evaluation of the Chebyshev expan-
sion coefficients.

TABLE I. Comparison of the Conventional and GA
Approximation Errors of the Instantaneous Transfer
Function of a Microwave Amplifier

Conventional GA
Expansion Approximation Approximation

Order Error Error

4 0.034 0.029
6 0.036 0.024

10 0.015 0.0094
14 0.012 0.009

Figure 3. Typical convergence curves of the GA ap-
Žproximation method approximation error versus the

.number of iterations .

Some additional testing of the GA method was
Žmade using a hyperbolic tangent function. This

function is frequently used in nonlinear simula-
.tion of active circuitry. Figure 4 shows the ap-

proximation error for the conventional method
and for the GA method applied to the approxi-
mation of this function. It can be seen from this
figure that the approximation curve peaks for the
classical Chebyshev series are not of equal ampli-
tude. It means that this approximation is not

w xoptimal on the minimax criterion 18 and may be
further improved. At the same time, all peaks of
the GA method curve are almost equal, indicat-
ing that this approximation is very close to the
optimal one.

Figure 4. Approximation error of the conventional
Ž .Chebyshev series dashed line and the GA method

Ž . Žsolid line for N s 9 hyperbolic tangent was used as a
.testing function versus input signal value.
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Thus, the GA approximation method is a ro-
bust approach that gives many advantages, includ-
ing optimization possibilities, global search for
the optimal solution, improvement in the approxi-
mation accuracy, easy implementation of various
approximation criteria, etc. We should also note
that in general the GA method operates well for
almost every kind of transfer function, without

Žany strict requirements continuous or bounded
.derivatives, etc. . Improvement in the approxima-

tion accuracy by 1.2]1.5 times when compared to
the conventional Chebyshev polynomials ap-
proach, which is sometimes considered to be the
best polynomial approximation, is possible by us-
ing the GA method. Hence, it seems that this
method can potentially give the best possible
polynomial approximation.

Another evolutionary programming technique,
which is extensively used for RFrmicrowave ap-

w xplications, is neural networks 25]30 . The use of
neural networks for function approximation is
based on the universal approximation theorem,
which generalizes approximations by finite Fourier

w xseries 25 . Multilayer neural networks trained by
the odd and even backpropagation algorithms

w xwere used in 26 for approximating transfer func-
tions. It was demonstrated that neural network
models provide better accuracy than the classical
analytical models of traveling-wave tube ampli-
fiers. However, it has not been demonstrated that
the neural network models perform better than
some numerical models, for example, the series
expansion models discussed above. Thus, this is-
sue requires further investigation.

3. VALIDATION OF THE
APPROXIMATION METHODS

In order to validate the approximation methods
given above, the first and second order envelope

Ž .transfer functions AM]AM of a MMIC ampli-
Žfier were measured we do not consider AM]PM

.in this example due to its small values and trans-
formed into the instantaneous transfer factors

w xusing the integral equation technique 1 . Figure 5
shows the first-order voltage transfer factors
Ž .gains and Figure 6 shows the second-order ones.
Note that the instantaneous transfer factors usu-

Žally have more complex form more oscillations,
.more rapid changes, etc. than the envelope ones.

Hence, it is more difficult to approximate the
instantaneous factors than the envelope ones. Be-

Ž .Figure 5. First-order instantaneous dashed line and
Ž . Ž .envelope solid line voltage transfer gains factors of

a microwave amplifier.

low, we consider the approximation of the instan-
taneous factors to test approximation methods
using real-world data. Figure 7 shows the maxi-

Ž .mum normalized to the factor maximum value
approximation error of the first-order instanta-
neous transfer factor approximated by Bessel, Co-
sine, and Chebyshev series. The Bessel series

Žgives the best approximation in terms of approxi-
.mation accuracy for N - 20, and the cosine se-

ries gives the best approximation for N ) 20. The
Chebyshev series gives the worst approximation
in terms of maximum approximation error. How-
ever, it has the advantage that it is a polynomial
approximation, and, consequently, gives a finite
spectrum expansion. Hence, it allows one to con-

Žtrol the spectrum expansion by choosing an ap-
.propriate expansion order and to avoid in this

way the spectrum aliasing effect completely. None

Ž .Figure 6. Second-order instantaneous dashed line
Ž . Ž .and envelope solid line voltage transfer gains factors

of a microwave amplifier.
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Figure 7. Comparison of first-order transfer factor
approximation by Bessel, cosine, and Chebyshev series.

of the other methods has this capability: they
mitigate the spectrum aliasing effect by setting

Žhigh-enough sampling frequency with same mar-
.gin ; however, this does not remove this effect

completely and some distortions are always pre-
sent over the analysis frequency range. It should
be pointed out that this feature is very important
when, for example, a low-noise circuit is analyzed
and, consequently, high spectral purity must be
maintained. The spectrum aliasing effect also lim-

Žits the analysis dynamic range due to the distor-
.tion of low-level spectral components . In general,

the approximation method should be chosen
keeping in mind the problem under considera-
tion.

Figure 8 shows the approximation error of the
second order transfer factor. As one may see
from this figure, the Bessel and Sine series pro-
vide approximately the same approximation accu-
racy and the Chebyshev series provides worse
accuracy. Hence, for a given approximation accu-
racy, the Chebyshev series will require higher

Žapproximation order more approximation terms

Figure 8. Comparison of second-order transfer factor
approximation by Bessel, sine, and Chebyshev series.

.and, consequently, more computational time than
the Bessel and sine series. However, as it was
already noted, the Chebyshev series has the ad-
vantage of providing finite spectrum expansion.
One may also note that the second-order factor
approximation results in higher approximation er-
ror than the first-order one or, for a given approx-
imation error, requires a higher-order approxima-
tion.

Another important point is a dependence of
the approximation accuracy on the sample point

Ž .number M . When approximating a function,
one needs to know how to set M to minimize the
approximation error. Figures 9]11 show the maxi-
mum normalized approximation error as a func-
tion of the sample point number. Using these

Figure 9. Normalized approximation error of the first-
Ž . Ž .solid line and second-order dashed line transfer

Ž .factors as a function of the sample point number M
for the Bessel expansion; N s 30 and N s 50 for the
first- and second-order, correspondingly.

Figure 10. Normalized approximation error of the
Ž . Ž .first- solid line and second-order dashed line trans-

Ž .fer factors as a function of the sample number M for
the sinercosine expansion; N s 30 and N s 50 for the
first- and second-order, correspondingly.
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Figure 11. Normalized approximation error of the
Ž . Ž .first- solid line and second-order dashed line trans-

fer factors as a function of the sample point number
Ž .M for the Chebyshev expansion; N s 30 and N s 50
for the first- and second-order, correspondingly.

data, we may formulate the following rule of
thumb:

Ž . Ž .M G 2 % 5 N. 25

It should be noted that the best approximation
accuracy does not mean the best overall simula-
tion accuracy. The overall simulation accuracy
depends strongly not only on the maximum ap-
proximation error, but also on a particular ap-

wproximation error ‘‘spectrum’’ i.e., with what ac-
curacy we approximate higher-order derivatives;

Ž . Ž .xsee Sec. 2 and eqs. 1 ] 3 . This issue requires
further investigation.

Inaccuracies in AM]AM and AM]PM mea-
Žsurement or simulation including distortions and

.noise also influence substantially the overall sim-
ulation accuracy. Careful choice of particular ap-
proximation type and order may improve the ac-
curacy. We consider this issue in more detail in
the next section.

4. APPROXIMATION ACCURACY AND
MEASUREMENT NOISE

The series expansion methods presented in the
preceding sections are quite efficient tools for the
approximationrrepresentation of nonlinear trans-
fer functions for behavioral-level simulation.
However, due to the nonlinear character of the
problem, special attention must be paid to the
approximation accuracy}even small inaccuracies
in the transfer function approximation may result
in very large inaccuracies in the final simulation

results. The main method to control accuracy of a
series expansion is through an appropriate choice

Ž .of the expansion order N : if one wishes to
increase accuracy, the expansion order should be
increased. Of course, there are some limitations
to such increase due to the numerical stability of
a computational algorithm. However, usually
these limitations are quite large and do not in-
fluence substantially a practical choice of the

Žexpansion order. For example, for the Chebyshev
expansion, this limit is about 150]200, which is

.far beyond a practically required expansion order.
There is a more serious limitation to the ex-

Ž .pansion order}the measurement or simulation
Žnoise which is always present in measured simu-

.lated AM]AM and AM]PM data, as shown by
Ž . Ž .eq. 1 . What we need is to approximate F x as0

accurately as possible and, at the same time, to
Ž .suppress D F x as much as possible.

Ž .When we consider the ‘‘spectrum’’ of D F x
Ž .in terms of expansion coefficients a , we findk
that it mainly contains high-order components;
the contribution of lower-order components is

Žquite small of course, their levels depend sub-
.stantially on a particular scenario . On the con-

Ž .trary, the ‘‘spectrum’’ of F x contains mainly0
low-order components with higher-order compo-
nents being much smaller. Thus, when we in-

Ž .crease the expansion order, the accuracy of F x0
approximation increases, but, at the same time,
the noise contribution to the approximated char-

w Ž .xacteristic due to D F x also increases. This situ-
ation is illustrated by Figure 12. The optimum
value of the expansion order corresponds approx-
imately to the point where both curves intersect.
Unfortunately, to the best of the authors’ knowl-
edge, there is no mathematical technique to de-

Ž .Figure 12. Approximation error solid line and mea-
Ž .sured noise contribution dotted line as functions of

the expansion order.



Loyka and Mosig250

termine the optimal order. A practical method to
Ždo this is to increase the expansion order starting
.from some small value, say, N s 5 . . . 10 until

Žthe simulation accuracy for example, the accu-
.racy of intermodulation product prediction starts

to decrease.
It should be pointed out that the simulation

noise is usually much smaller than the measured
one. Figure 13 gives an example of measured and

ŽHB-simulated AM]PM functions different am-
plifiers were used for the measurement and simu-

.lation . As one can see from this figure, the
Ž .measurement noise ripples on the curve is much

higher than the simulation one. Thus, some mea-
sures must be taken in order to suppress the
noise. One possible solution is to use during the
measurements the time averaging option of the
network analyzer. However, it does not allow
suppressing noise completely. Besides, there is
another distortion of the AM]PM data, due to
the measurement instrument inaccuracy. Under
these circumstances, we can use the series expan-
sion as a tool for suppressing the measurement

Žnoise including the measurement inaccuracy
.component by controlling the expansion order.

Thus, before transforming AM]AM and AM]PM
measured data into the instantaneous transfer

w xfactors 1 , we employ the series expansion of
Žthese data actually, the in-phase and quadrature

.transfer functions are expanded . For simulated
AM]AM and AM]PM data, this procedure is
not required due to the small level of the simula-
tion noise. However, special measures must be

Ž .Figure 13. Measured solid line and HB simulated
Ž . Ždashed line AM]PM characteristics different ampli-

.fiers were used for the measurement and simulation .

taken to ensure a high accuracy of the simulated
Ždata for example, high relative accuracy and a

large number of frequencies should be set during
.the HB simulation .

In order to illustrate the influence of the mea-
surement noise on the simulation accuracy, we
measured and simulated intermodulation prod-
ucts in the microwave amplifier considered in
Section 3. Figure 14 shows the fundamental com-

Žponent and third to ninth order IMPs N s 24;
Chebyshev polynomial series was used for the

.instantaneous transfer function expansion . As
one may see from this figure, the simulation accu-

Žracy is quite good over a wide dynamic range in
.excess of 130 dB for the optimum approximation
Žorder N s 24 even seventh- and ninth-order

.IMPs are predicted quite accurately . However,
the dependence of the simulation accuracy on the
approximation order is highly nonmonotonous:
increase in the approximation order over the opti-
mum value results in an accuracy decrease rather
than increase. Figure 15 gives the maximum simu-

Žlation error over the entire simulation dynamic
.range for the fundamental tone and IMPs versus

approximation order. The point N s 24 corre-
sponds to an optimum value for almost all nonlin-
ear products; further increase in N yields an
increase in the simulation error, especially for
higher-order nonlinear products. At the same
time, as Figure 7 shows, the approximation error

Ž .decreases monotonically for N ) 15 as N in-
creases. Thus, the dependence of the simulation
accuracy on the approximation accuracy is highly
nonmonotonous: increase in the approximation
accuracy does not guarantee an increase in the
entire simulation accuracy. We attribute this fact

Žto the measurement noise and other meas-

Figure 14. Measured and simulated third- to ninth-
Žorder IMPs of the microwave amplifier N s 24; solid-

.line}simulated, squares and triangles}measured .
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Figure 15. Maximum simulation error over the entire
simulation dynamic range versus approximation order
Ž .Chebyshev series was used .

.urement inaccuracies impact as well as to the
Ž .inaccuracies computational noise, etc. of trans-

forming the envelope transfer functions into the
instantaneous ones.

Some other factors contributing to the simula-
tion inaccuracy are the following:

w x1. The bias decoupling network effect 3, 9
that is not taken into account in a conven-
tional simulation. In principle, this effect
can be modeled by the instantaneous
quadrature technique.

2. The difference between static and dynamic
wAM]AM and AM]PM characteristics 3,

x31 .
w x3. The thermal tone spacing effect 32 .

w x4. Memory feedback effects 3 .

5. CONCLUSION

In this paper, we considered the methods of non-
linear transfer function approximation for behav-
ioral-level simulation. Series expansion methods
were proposed as an efficient tool for filtering out

Žthe measurement noise and other measurement
.inaccuracies . The use of the genetic algorithm

for approximation problems enables one to im-
prove the minimax approximation accuracy over
traditional techniques. The impact of the approxi-
mation accuracy and measurement noise on the
entire simulation accuracy was also discussed. The
approximation methods proposed were validated
using measured data for a microwave amplifier.
Possible topics of further investigations are the
development of a general mathematical tech-
nique for finding the optimal expansion order,
improvement in the GA method computational

Žefficiency using the gradient descent method, for
.example , and a detailed investigation of the im-

Ž .pact of the transfer function disturbance D F
spectrum on the entire simulation accuracy.
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