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Fig. 24. Spectrum of the HC16 at�40 �C.

Fig. 25. Spectral emissions as a function of temperature.

into the structure of emissions from VLSI devices and has allowed
us to begin building a database. The creation of this database will
allow us to be able to compare any and all changes that are made at
the device level and at the software level.

Additionally, observation of so many spectrums has enabled us
to begin speculating about possible analytical models for describing
the emissions from VLSI devices. The measured spectrums are seen
to have rapid variations across the measured band. Two explanations
come to mind. The first is that the spectrum is a result of an ensemble
of pseudorandom binary processes. The second is that the spectrum is
the result of an excited two-dimensional electron gas in the underlying
substrates of the device. The second explanation is described in the
companion paper to this paper. It has the merit that it explains the
temperature dependencies of the measured spectrums while the first
explanation cannot.

The measured levels of the 16-bit devices are significant for
electromagnetic interference. The levels are high enough for coupling
to occur between the processor and other regions of the PCB. This has
been seen to occur in certain automotive applications. The processor
has been seen to be the source of common mode currents that have
been coupled to the module I/O connector. These currents in turn,
drive the electrical system harness.
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A Simple Formula for the Ground Resistance Calculation

Sergey L. Loyka

Abstract—Simple approximate formulas for the ground resistance and
the potential distribution that have quite good accuracy are presented.
The use of these formulas can simplify and make faster the calculation
of ground path coupling.

Index Terms—Ground-path coupling, ground resistance, potential dis-
tribution.

I. INTRODUCTION

A common ground path is a way of coupling between a disturbing
source and a victim circuit. This kind of coupling has got a detailed
consideration in the literature. The resistance between electrodes and
the potential distribution are important quantities for the coupling
calculation [1]. The resistance between the two electrodes on a finitely
conducting plate of thicknesst and of infinite extent is given by [1]
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wherea is the electrode radius,d is the separation between the two
electrodes, and� is the plate conductivity. The geometry of the
problem is shown on Fig. 1.

As it is pointed out in [1], “.. . .each term in the sum behaves
asymptotically as1=n and, consequently, is not strictly summable
independently. However, the two terms in the sum, when taken
together, fall off faster than1=n, and the infinite series converges.”
To determine the exact degree of the falling off, we bring the
two terms in the sum to the common denominator and multi-
ply the numerator and the denominator by the same expression
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Fig. 1. Two identical hemispherical electrodes of radiia on a lossy infinite
plate of thicknesst.

a2 + (2nt)2 + d2 + (2nt)2 and obtain
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where

� = a2 + (2nt)2; � = d2 + (2nt)2: (3)

Using (2) and (3), we see that the expression under the sum in (1)
falls off as 1=n3.

Unfortunately, there is no closed-form expression for the resulting
summation in (1), so a numerical calculation must be used [1].
However, an approximate closed-form expression can be obtained
in order to avoid numerical calculations.

II. SIMPLE FORMULA FOR THE GROUND RESISTANCE

An approximate estimation for the infinite series

S =

1
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F (n) (4)

can often be obtained by the substitution of the series by an integral
[2, pp. 17–26]
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Here we use this approach to obtain an approximate estimation for
(1), substituting the infinite series by the following integral:

S �
1

2t

1

1

1

a

2t

2

+ x2
�

1

d

2t

2

+ x2

dx: (6)

Using a closed-form expression for this integral [4], we obtain the
following simple formula for the ground resistance:
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Fig. 2 showsRab as a function oft calculated by (1) and by (7). As
it can be seen from this figure, (7) gives quite a good approximation
for Rab for the whole range oft.

III. A PPROXIMATE FORMULAS FOR THE POTENTIAL DISTRIBUTION

Simple approximate formulas for the potential distribution can be
derived in a similar way. Let us consider, for example, the potential

Fig. 2. The resistance between the two electrodes as a function of the plate
thickness(a = 1; d = 10; � = 1).

Fig. 3. Excitation circuit—victim circuit coupling on opposite sides of a
lossy infinite plate.

Fig. 4. Coordinate system for Fig. 3.

distribution on the bottom of the plate (the excitation circuit is located
on the top of the plate) [1]
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where

ra = (x+ d=2)2 + y2; rb = (x� d=2)2 + y2 (9)

andI0 is the injected current. The details of geometry are shown on
Figs. 3 and 4 or in [1, p. 98].
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Fig. 5. Potential as a function of the plate thickness(ra = 2; rb = 3;
� = 1; I0 = 1).

Substituting the infinite series in (8) by an integral similar to (6),
we obtain the following approximate expression:
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This formula gives a good approximation for (8) whent< ra; rb.
But, unfortunately, the accuracy of this formula is not very good for
t> ra; rb: the error is about 10 dB. A more accurate approximation
of (8) for this case can be obtained in the following manner. Let us
transform (8) to the form similar to (2)
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where
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b
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For large values oft(t> ra; rb); we use the following approxi-
mation:

� � � � (2n� 1)t: (13)

Substituting (13) into (11), after some manipulations we obtain
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Thus, one can use (10) for small values oft(t< ra; rb); and
(14) for large values oft(t> ra; rb). Fortunately, there is the third
possibility: we can correct (10) using (14) and obtain the following
formula which has better accuracy for the whole range oft than (10)
and (14) used together:
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(Why so? To arrive to this formula, one should expand the
logarithm in (10) into the series of1=t up to the second order and
to compare the result with (14) deriving in this way the correction
factor for rationsra=t and rb=t. Note that this correction does not
have any effect for small values oft.) Fig. 5 shows that (15) is in a
good agreement with (8) for the whole range oft.

In a similar way, we can obtain an approximation for the potential
distribution on the top of the plate [1, (3.87)]).
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Complex Antenna Factor of a V-Dipole Antenna
with Two Coaxial Feeders for Field Measurements

Hisato Hosoyama, Takashi Iwasaki, and Shinobu Ishigami

Abstract—In transient field measurements, an antenna with wide-band
performance both in amplitude and in phase is desired. The complex
antenna factor (CAF) is an appropriate characteristic of such an antenna.
It is convenient that the CAF of the wide-band antenna is able to be
calculated easily. For this purpose, a V-dipole antenna with a balun
consisting of two coaxial feeders is investigated. The calculated complex
antenna factors are compared with the measured values. The results
show that the V-dipole has the wide-band performance and the CAF
is calculable.

Index Terms—Calculable antenna, complex antenna factor, moment
method, reference antenna, three antenna method, transient field sensors,
V-dipole antenna.

I. INTRODUCTION

In the time-domain measurements of transient electromagnetic
fields caused by electrostatic discharges (ESD), the output signal
waveform of a sensor is different from the input electromagnetic
waveform due to the frequency characteristics of the employed
antenna and circuits. The output waveform is represented as a
convolution integral of the input waveform and the impluse response
of the antenna system. If the impulse response or its Fourier trans-
form (transfer function) can be measured, the input waveform is
reconstructed by the deconvolution technique.

As a characteristic of the antenna system, the complex antenna
factor (CAF) was proposed [1]. The complex antenna factor, which
adds phase values to the conventional scalar antenna factor, is
equivalent to the reciprocal of the transfer function. The three antenna
method [2] can be used to measure the CAF of any antenna system.
However, it requires complicated procedures.

In this paper, a V-dipole antenna with a balun consisting of two
coaxial feeders is investigated. The CAF is calculated and compared
with the results measured by the reference antenna method.

II. DEFINITION OF CAF

When an antenna receives a plane wave as shown in Fig. 1, CAF
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