MIMO: Tx & Rx antenna arrays

- multiple Tx antennas
- multiple Rx antenna
- best Tx/Rx strategies?
MIMO Channel Model

\[y(t) = Hx(t) + \xi(t) \] \hspace{1cm} (1)

\(x(t) \) = Tx signal (vector)
\(y(t) \) = Rx signal (vector)
\(H \) = fixed channel vector; \(h_{ij} \) = channel gain from \(j \)-th Tx antenna to \(i \)-th Rx antenna
\(\xi(t) \) = Rx noise (vector)

* Compare to the SIMO/MISO models.
MIMO Channel Model

\[y(t) = Hx(t) + \xi(t) \]
Tx/Rx Beamforming over the MIMO Channel

Tx beamforming:

\[
x(t) = \mathbf{w}_t \cdot x(t)
\]

\(x(t) = \text{scalar Tx signal (complex amplitude, carries the Tx data)}\)

\(\mathbf{w}_t = \text{fixed Tx beamforming vector.}\)

Rx beamforming:

\[
y_r(t) = \mathbf{w}_r^+ y(t) = \mathbf{w}_r^+ \mathbf{Hw}_t x(t) + \mathbf{w}_r^+ \xi(t) = y_s(t) + y_n(t)
\]

\(y_s(t) = \text{signal part (no noise),}\)

\(y_n(t) = \text{noise part (no signal),}\)

\(\mathbf{w}_r = \text{(fixed) Rx beamforming vector.}\)
Tx/Rx Beamforming

How to choose \(w_t, w_r \)?

The Rx SNR \(\gamma_r \) (after the Rx beamformer) is

\[
\gamma_r = \frac{P_s}{P_n} = \frac{|y_s|^2}{|y_n|^2} = \frac{|w_r^H H w_t|^2}{|w_r|^2} \gamma_1
\]

(4)

where \(\gamma_1 = \sigma_x^2/\sigma_0^2 \) is the Rx SNR with single Tx/Rx antenna and \(h = 1 \).

How to maximize \(\gamma_r \)?
Maximizing γ_r:

$$\gamma_r = \frac{|w_r^+ H w_t|^2}{|w_r|^2} \gamma_1 \leq |H w_t|^2 \gamma_1 \leq \sigma_1^2(H) |w_t|^2 \gamma_1 = \sigma_1^2(H) \gamma_1$$ \hspace{1cm} (5)

where $\sigma_1(H)$ is the largest singular value of H.

(a): how? equality?

(b): via the SVD properties,

$$|H x| \leq \sigma_1(H) |x|$$ \hspace{1cm} (6)

with equality iff $x = \alpha v_1$, where v_1 is the left singular vector of H corresponding to its largest singular value.

(c): $|w_t| = 1$, to satisfy power constraint.
Tx/Rx Beamforming

Hence, γ_r is maximized by

$$w_t = v_1(H), \quad w_r = u_1(H)$$ \hspace{1cm} (7)

where $u_1(H)$ is the left singular vector of H corresponding to its largest singular value $\sigma_1(H)$.

The maximum Rx SNR is

$$\gamma_{r,\text{max}} = \max_{w_t, w_r} \gamma_r = \sigma_1^2(H) \gamma_1$$ \hspace{1cm} (8)
Singular Value Decomposition (SVD)\footnote{R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 2013}^2

Definition of singular value σ_i and its left/right singular vector v_i/u_i of H:

$$Hv_i = \sigma_i u_i, \quad u_i^+ H = \sigma_i v_i^+$$ \quad (9)

Applies to any matrix (not only square),

$$H = U\Sigma V^+ = \sum_i \sigma_i u_i v_i^+$$ \quad (10)

U = unitary matrix of left singular vectors of H,

V = likewise for its right singular vectors,

Σ = diagonal matrix of its singular values,

u_i, v_i = i-th column of U, V,

$\sigma_i \geq 0$ = i-th diagonal entry of Σ = i-th singular value of H,

ordering: $\sigma_1 \geq \sigma_2 \geq \ldots$.

\footnote{https://en.wikipedia.org/wiki/Singular_value_decomposition}
Eigenvalue Decomposition (EVD)34

EVD: applies to any square matrix.
Definition of eigenvalue λ_i and its eigenvector \mathbf{u}_i of \mathbf{W}:

$$\mathbf{W}\mathbf{u}_i = \lambda_i \mathbf{u}_i$$ \hspace{1cm} (11)

For Hermitian \mathbf{W},

$$\mathbf{W} = \mathbf{U}\Lambda\mathbf{U}^+ = \sum_i \lambda_i \mathbf{u}_i \mathbf{u}_i^+$$ \hspace{1cm} (12)

$\mathbf{U} =$ unitary matrix of eigenvectors of \mathbf{W},
$\Lambda =$ diagonal matrix of its eigenvalues,
$\mathbf{u}_i =$ i-th column of $\mathbf{U} =$ i-th eigenvector of \mathbf{W},
$\lambda_i =$ i-th diagonal entry of $\Lambda =$ i-th eigenvalue of \mathbf{W},

3R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1985
4https://en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix
Relationship of SVD and EVD

Set \(\mathbf{W} = \mathbf{HH}^+ \). Then,

\[
\lambda_i(\mathbf{W}) = \sigma_i^2(\mathbf{H}), \quad u_i(\mathbf{W}) = u_i(\mathbf{H}) \tag{13}
\]

and

\[
\mathbf{W} = \mathbf{U}\Lambda\mathbf{U}^+, \quad \mathbf{H} = \mathbf{U}\Sigma\mathbf{V}^+, \quad \Lambda = \Sigma\Sigma^+ \tag{14}
\]

i.e. the EVD can be obtained from the SVD and vice versa:

- eigenvectors of \(\mathbf{HH}^+ \) are the right singular vectors of \(\mathbf{H} \)
- eigenvectors of \(\mathbf{H}^+\mathbf{H} \) are the left singular vectors of \(\mathbf{H} \)
- eigenvalues of \(\mathbf{HH}^+ \) are the squared singular values of \(\mathbf{H} \)
The Capacity of Tx/Rx beamforming

Extended channel: the channel + Tx/Rx beamforming.

System capacity: the extended channel capacity,

\[C = \log(1 + \gamma_{r,\text{max}}) = \log(1 + \sigma_1^2(H)\gamma_1) \] \hspace{1cm} (15)

This is the largest rate (SE) the Tx/Rx beamforming can deliver.

Can we do better than that???

Special cases:

- SIMO channel: \(H = h, \sigma_1(H) = ? \, v_1 = ? \)
- MISO channel: \(H = h^+, \sigma_1(H) = ? \, u_1 = ? \)
- Free space: \(h_{ij} = 1 \) for all \(i, j \).
The Capacity of MIMO Channel

Can we do better than Tx/Rx beamforming ???

The capacity of MIMO channel is

\[C = \max_{p(x)} I(X; Y) \text{ s.t. } \text{tr} \ R_x \leq P \] (16)

\(X = \) the random Tx vector,
\(Y = \) the random Rx vector.

How to find the max???
How to find the max???

Key:

\[H(Y|X) = H(\Xi) = \log |R_\xi| + n \log(\pi e) \]
\[H(Y) \leq \log |R_y| + n \log(\pi e) \]

so that

\[I(X; Y) = H(Y) - H(\Xi) \leq \log \frac{|R_y|}{|R_\xi|} \]

\(R_y = yy^+, \ R_\xi = \xi\xi^+ \) are covariance matrices of \(y, \xi \).

The UB is achieved by \(X \sim CN(0, R_x) \).
The Capacity of MIMO Channel

Observe that

\[R_y = HR_xH^+ + \sigma_0^2 I \]

(20)

so that

\[I(X; Y) \leq \log |I + \sigma_0^{-2}WR_x| \]

(21)

where \(W = H^+H \), and hence

\[
C = \max_{p(x)} I(X; Y) \text{ s.t. } \text{tr}R_x \leq P
\]

(22)

\[
\leq \max_{\text{tr}R_x \leq P} \log |I + \sigma_0^{-2}WR_x|
\]

(23)

Since the UB is achieved by \(X \sim CN(0, R_x) \), it is the capacity.
The Capacity of MIMO Channel

Thus, the capacity is

\[
C = \max_{\text{tr} R_x \leq P} \log |I + \sigma_0^{-2} W R_x| \tag{24}
\]

and an optimal input is \(X \sim \mathcal{CN}(0, R_x) \).

We will further normalize the noise power, \(\sigma_0^2 = 1 \).
Thus, the capacity is

\[
C = \max_{\text{tr} R_x \leq P} \log |I + \sigma_0^{-2} W R_x| \tag{24}
\]

and an optimal input is \(X \sim CN(0, R_x) \).

We will further normalize the noise power, \(\sigma_0^2 = 1 \).

But: **How to find the max??**
The Capacity of MIMO Channel

How to find the max???
The Capacity of MIMO Channel

How to find the max???

Key: Hadamard inequality.

The Capacity of MIMO Channel

The capacity is

$$C = \max_{\text{tr} R_x \leq P} \log |I + WR_x|$$

$$= \max_{\text{tr} R_x \leq P} \log |I + \Lambda W U_W^+ R_x U_W|$$

$$= \max_{\text{tr} \tilde{R}_x \leq P} \log |I + \Lambda W \tilde{R}_x|$$

$$\leq \max_{\text{tr} \tilde{D}_x \leq P} \log |I + \Lambda W \tilde{D}_x|$$

$$= \max \sum d_i \log(1 + \lambda_{wi} d_i) \text{ s.t. } d_i \geq 0, \sum d_i \leq P$$

$$\tilde{R}_x = U_W^+ R_x U_W, \ d_i = i-th \ diagonal \ entry \ of \ \tilde{D}_x$$

The UB is achieved by $U_w = U_{R_x}$, so that $d_i = \lambda_i(\tilde{R}_x) = \lambda_i(R_x)$
The Capacity of MIMO Channel

Thus, the capacity is

$$C = \max_{\lambda_i} \sum_i \log(1 + \lambda_{wi} \lambda_i) \text{ s.t. } \lambda_i \geq 0, \sum_i \lambda_i \leq P$$

and the signaling on the eigenvectors of $W = H^+ H$ (or right singular vectors of H) is optimal,

$$R^* = U_W \Lambda^* U_W^+ = \sum_i \lambda_i^* u_{wi} u_{wi}^+$$

(29)

where $\Lambda^* = \text{diag}\{\lambda_i^*\}$, i.e. an optimal power allocation to the channel eigenmodes.

But: How to find the max??? How to implement (29)???
The Water-Filling (WF) Algorithm

The \max_{λ_i} is given by

$$\lambda_i^* = (\mu^{-1} - \lambda_{wi}^{-1})_+$$ \hspace{1cm} (30)

where $(x)_+ = \max(x, 0)$ is positive part; μ is the Lagrange multiplier responsible for the total power constraint $\sum_i \lambda_i \leq P$.

μ is the (unique) solution to

$$\sum_i (\mu^{-1} - \lambda_{wi}^{-1})_+ = P$$ \hspace{1cm} (31)

Numerically: via e.g. bisection method. Analytically: possible in some special cases.

This is the optimal power allocation among the eigenmodes and is known as "water-filling" (WF).
The MIMO Capacity via the WF

The MIMO capacity is

\[C = \sum_i \log(1 + \lambda_{wi} \lambda_i^*) = \sum_{i: \lambda_{wi} > \mu} \log(\mu^{-1} \lambda_{wi}) \]

(32)

so that active eigenmodes satisfy \(\lambda_{wi} > \mu \).

Proof of WF: via the KKT conditions for constrained optimization (Lagrange multipliers).

Q.: prove that (31) (i) always has a solution, and (ii) the solution is unique. Hint: show that the l.h.s of (31) is monotonically decreasing in \(\mu \). When \(\mu = 0? \mu = \infty? \)
WF Examples

1. Identical eigenvalues of \mathbf{W}: $\lambda_{wi} = \lambda_{w} \forall i$,

$$\lambda_{i}^{*} = \frac{P}{m}, \quad \mathbf{R}^{*} = \frac{P}{m} \mathbf{I}, \quad C = m \log \left(1 + \frac{P}{m} \lambda_{w}\right)$$ (33)

where $P = \gamma = \text{SNR}$ (with $m = 1$).

2. Rank-1 \mathbf{W}: $\lambda_{w1} = \lambda_{w}, \lambda_{w2} = \ldots = \lambda_{wm} = 0$,

$$\lambda_{1}^{*} = P, \quad \lambda_{2}^{*} = \ldots = \lambda_{m}^{*} = 0, \quad \mathbf{R}^{*} = P \mathbf{u}_1 \mathbf{u}_1^{+}$$

$$C = \log (1 + \lambda_{w} P)$$ (34)

3. Optimal Tx structure?
WF Examples

1. Identical eigenvalues of W: $\lambda_{wi} = \lambda_w \forall i$,
WF Properties

Q1: prove that only the strongest eigenmode is active at low SNR, while all eigenmodes are active at high SNR. Derive conditions for low/high SNR.
Q2: prove that the number of active eigenmodes increases with the SNR.
Q3: prove that stronger eigenmodes get more power, i.e. "rich get richer" or, equivalently, "capitalism is better than communism".
The Capacity of MIMO Channel

Q4: compare the MIMO channel capacity in (32) to that of the Tx-Rx beamforming in (15). Which is better (consider the most general case)? When are they equal?

Q5: consider now the MIMO channel with correlated noise,

\[y(t) = Hx(t) + \xi(t) \]

where \(\xi \sim \mathcal{CN}(0, R_\xi) \), \(R_\xi \) = noise covariance matrix. Find its capacity. Correlated (”colored”) noise can model interference.

Q6: In Q5, what happens if \(R_\xi \) is singular?
Summary

- MIMO channel: Tx & Rx antenna arrays
- Tx/Rx beamforming, its capacity
- The MIMO channel capacity
- Water-filling algorithm
- Examples and special cases
Reading

- D. Tse, P. Viswanath, Fundamentals of Wireless Communications - Ch. 7.1-2, 8.1-8.3, Appendix A, B.