A Brief Review of Communications

- Communication system: transmit information from point A to point B
 - analog/digital
 - wireline/wireless
 - single user/multiuser
- Communication network: multiple As and Bs (or multi-user)
- Extensive applications
 - Internet
 - WiFi
 - cell phones
 - TV/radio broadcast
 - GPS
- Active R&D: 5G
Block Diagram of a Communication System

Source \rightarrow Transmitter (Tx) \rightarrow Channel

Destination \rightarrow Receiver (Rx)

Figure: A high-level view of a communication system
A Digital Communication System

Figure: A high-level view of a digital communication system
A Wireless Communication System12

Figure: Block diagram of a wireless communication system

2D. Tse, P. Viswanath, Fundamentals of Wireless Communications, Cambridge University Press, 2005
A Wireless Communication System

Major challenges, due to the wireless propagation channel

- out of designer’s control
- low SNR (large path loss, 100s dB)
- multipath propagation → fading
 - frequency selectivity (delay spread)
 - time selectivity/variability (Doppler spread)
 - inaccurate/unavailable channel state information
- interference
- limited/expensive bandwidth

How to combat?
A Wireless Communication System

How to combat major challenges?

• frequency/time domain processing: at their limits
 • modulation
 • coding
 • filtering

• space-domain processing: ”last frontier”

• via multiple (”smart”) antennas

• current active R&D: 5G
Modern Wireless Communication Systems

- Key objectives of 5G
 - 1000× rate
 - wide availability
 - low latency
 - multiple services
- How? Key technologies:
 - massive MIMO
 - mmWaves
 - NOMA
 - HetNet

Digital Communications567

- modulation
 - BPSK
 - QPSK
 - QAM
- signalling
 - sinc
 - raised-cosine
 - etc.
- optimum receiver: ML
 - matched filter
 - sampler
 - decision device

Digital Communications: Key Performance Metrics

- transmission rate, [bit/s]
- error rate/probability, BER/SER
- fading: outage probability
Digital Communications: fundamental limits

- from information theory\(^8\)
- single user: channel capacity: [bit/s] or [bit/ch. use]
- fading: outage capacity
- benchmark for actual system performance
- optimal system design (Tx, Rx)
- much less is known about networks

Digital Communications: channel model

- AWGN channel (discrete-time)

\[y_k = x_k + \xi_k \] (1)

- \(x_k \) = Tx signal
- \(y_k \) = Rx signal
- \(\xi_k \) = noise (i.i.d. Gaussian)
Fundamental Limit: Channel Capacity

• largest transmission rate s.t. power & reliability constraints

\[R < C = \Delta f \log(1 + \gamma) \text{ [bit/s]} \] (2)

• \(\Delta f \) = channel bandwidth
• \(\gamma = \frac{P_x}{P_\xi} = \text{SNR} \)
• power constraint: \(\sigma_x^2 \leq P_x \)
• reliability constraint: arbitrary-low error probability

• equivalently, spectral efficiency:

\[C = \log(1 + \gamma) \text{ [bit/s/Hz]} \] (3)
Fundamental Limit: Channel Capacity

Claude Shannon, Farther of Information Theory:

Figure: The constellation capacity of M-PAM

Fundamental Limit: Channel Capacity

- $R = C$ is not possible, but R can be close to C
- In practice,

$$R = \log(1 + \frac{\gamma}{\Gamma}) \text{ [bit/s/Hz]} \quad (4)$$

where $\Gamma > 1$ is the SNR gap to capacity
- $\Gamma \rightarrow 1$ for good (capacity-approaching) system
- Depends on modulation and coding10,11

SNR-Gap-to-Capacity in Practice

BER vs. SNR/bit

- **BPSK**
- **R=1 b/s**
- **R=4 b/s**
- **16 QAM**
- **gap**
Progress Towards the Capacity

Progress toward the Shannon limit

The original turbo codes: about 0.7 dB from capacity

Irregular LDPC codes: about 0.1 dB from capacity

How about 0.01 dB from capacity? And 0.001 dB?

Conclusion: For all practical purposes, Shannon’s puzzle has been now solved and Shannon’s promise has been achieved!

A.Vardy, What’s New and Exciting in Algebraic and Combinatorial Coding Theory? Plenary Talk at ISIT-06.
Channel Capacity: two fundamental resources

From the capacity expression,

\[C = \Delta f \log(1 + \gamma) \text{ [bit/s]} \] \hspace{1cm} (5)

\(C \) can be increased by increasing

1. bandwidth \(\Delta f \) (expensive in wireless)
2. power \(P_x \), via the SNR \(\gamma = P_x / P_\xi \)
3. anything else?
Spectral/Power Efficiency: Fundamental Tradeoff

- power efficiency: \(\gamma_b = \frac{\text{SNR(energy)}}{\text{bit}} \)
- spectral efficiency: \(\frac{R}{\Delta f} \) [bit/s/Hz]
- the tradeoff:

\[
\gamma_b \geq \frac{2^{R/\Delta f} - 1}{R/\Delta f} \geq \ln 2 = -1.6 \text{ dB } \tag{6}
\]
Spectral/Power Efficiency: Fundamental Tradeoff

![Graph showing spectral efficiency vs. SNR](image)

- Achievable condition:
 \[\gamma_b = \frac{2^{R/\Delta f} - 1}{R / \Delta f} \geq -1.6 \text{dB} \]
Fundamental Tradeoff in Practice

Figure 9.6 Bandwidth-efficiency plane.

Legend
- Coherent MPSK, $P_B = 10^{-5}$
- Noncoherent orthogonal MFSK, $P_B = 10^{-5}$
- Coherent QAM, $P_B = 10^{-5}$
Practical Example: Spectral Efficiency of LTE/4G

<table>
<thead>
<tr>
<th>CQI index</th>
<th>Modulation</th>
<th>Coding rate</th>
<th>Spectral efficiency (bps/Hz)</th>
<th>SINR estimate (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>QPSK</td>
<td>0.0762</td>
<td>0.1523</td>
<td>-6.7</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>0.1172</td>
<td>0.2344</td>
<td>-4.7</td>
</tr>
<tr>
<td>3</td>
<td>QPSK</td>
<td>0.1885</td>
<td>0.3770</td>
<td>-2.3</td>
</tr>
<tr>
<td>4</td>
<td>QPSK</td>
<td>0.3008</td>
<td>0.6016</td>
<td>0.2</td>
</tr>
<tr>
<td>5</td>
<td>QPSK</td>
<td>0.4385</td>
<td>0.8770</td>
<td>2.4</td>
</tr>
<tr>
<td>6</td>
<td>QPSK</td>
<td>0.5879</td>
<td>1.1758</td>
<td>4.3</td>
</tr>
<tr>
<td>7</td>
<td>16QAM</td>
<td>0.3691</td>
<td>1.4766</td>
<td>5.9</td>
</tr>
<tr>
<td>8</td>
<td>16QAM</td>
<td>0.4785</td>
<td>1.9141</td>
<td>8.1</td>
</tr>
<tr>
<td>9</td>
<td>16QAM</td>
<td>0.6016</td>
<td>2.4063</td>
<td>10.3</td>
</tr>
<tr>
<td>10</td>
<td>64QAM</td>
<td>0.4551</td>
<td>2.7305</td>
<td>11.7</td>
</tr>
<tr>
<td>11</td>
<td>64QAM</td>
<td>0.5537</td>
<td>3.3223</td>
<td>14.1</td>
</tr>
<tr>
<td>12</td>
<td>64QAM</td>
<td>0.6504</td>
<td>3.9023</td>
<td>16.3</td>
</tr>
<tr>
<td>13</td>
<td>64QAM</td>
<td>0.7539</td>
<td>4.5234</td>
<td>18.7</td>
</tr>
<tr>
<td>14</td>
<td>64QAM</td>
<td>0.8525</td>
<td>5.1152</td>
<td>21.0</td>
</tr>
<tr>
<td>15</td>
<td>64QAM</td>
<td>0.9258</td>
<td>5.5547</td>
<td>22.7</td>
</tr>
</tbody>
</table>

Figure: Spectral efficiency of LTE/4G cell phones
Practical Example: IEEE 802.11n (WiFi)

<table>
<thead>
<tr>
<th>MCS Index</th>
<th>Type</th>
<th>Coding Rate</th>
<th>Spatial Streams</th>
<th>Data Rate (Mbps) with 20 MHz CH</th>
<th>Data Rate (Mbps) with 40 MHz CH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>800 ns</td>
<td>400 ns (SGI)</td>
</tr>
<tr>
<td>0</td>
<td>BPSK</td>
<td>1 / 2</td>
<td>1</td>
<td>6.50</td>
<td>7.20</td>
</tr>
<tr>
<td>1</td>
<td>QPSK</td>
<td>1 / 2</td>
<td>1</td>
<td>13.00</td>
<td>14.40</td>
</tr>
<tr>
<td>2</td>
<td>QPSK</td>
<td>3 / 4</td>
<td>1</td>
<td>19.50</td>
<td>21.70</td>
</tr>
<tr>
<td>3</td>
<td>16-QAM</td>
<td>1 / 2</td>
<td>1</td>
<td>26.00</td>
<td>28.90</td>
</tr>
<tr>
<td>4</td>
<td>16-QAM</td>
<td>3 / 4</td>
<td>1</td>
<td>39.00</td>
<td>43.30</td>
</tr>
<tr>
<td>5</td>
<td>64-QAM</td>
<td>2 / 3</td>
<td>1</td>
<td>52.00</td>
<td>57.80</td>
</tr>
<tr>
<td>6</td>
<td>64-QAM</td>
<td>3 / 4</td>
<td>1</td>
<td>58.50</td>
<td>65.00</td>
</tr>
<tr>
<td>7</td>
<td>64-QAM</td>
<td>5 / 6</td>
<td>1</td>
<td>65.00</td>
<td>72.20</td>
</tr>
<tr>
<td>8</td>
<td>BPSK</td>
<td>1 / 2</td>
<td>2</td>
<td>13.00</td>
<td>14.40</td>
</tr>
<tr>
<td>9</td>
<td>QPSK</td>
<td>1 / 2</td>
<td>2</td>
<td>26.00</td>
<td>28.90</td>
</tr>
<tr>
<td>10</td>
<td>QPSK</td>
<td>3 / 4</td>
<td>2</td>
<td>39.00</td>
<td>43.30</td>
</tr>
<tr>
<td>11</td>
<td>16-QAM</td>
<td>1 / 2</td>
<td>2</td>
<td>52.00</td>
<td>57.80</td>
</tr>
<tr>
<td>12</td>
<td>16-QAM</td>
<td>3 / 4</td>
<td>2</td>
<td>78.00</td>
<td>86.70</td>
</tr>
<tr>
<td>13</td>
<td>64-QAM</td>
<td>2 / 3</td>
<td>2</td>
<td>104.00</td>
<td>115.60</td>
</tr>
<tr>
<td>14</td>
<td>64-QAM</td>
<td>3 / 4</td>
<td>2</td>
<td>117.00</td>
<td>130.00</td>
</tr>
<tr>
<td>15</td>
<td>64-QAM</td>
<td>5 / 6</td>
<td>2</td>
<td>130.00</td>
<td>144.40</td>
</tr>
<tr>
<td>16</td>
<td>BPSK</td>
<td>1 / 2</td>
<td>3</td>
<td>19.50</td>
<td>21.70</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>31</td>
<td>64-QAM</td>
<td>5 / 6</td>
<td>4</td>
<td>260.00</td>
<td>288.90</td>
</tr>
</tbody>
</table>

Figure: Data rates of WiFi routers
The SNR

The SNR is

\[\text{SNR} = \gamma = \frac{P_x}{P_\xi} \] (7)

\(P_x \) = signal power at the receiver (Rx),
\(P_\xi = kTF \Delta f \) = Rx noise power,
\(k = 1.38 \cdot 10^{-23} \) [J/K] = Boltzman constant,
\(\Delta f \) = bandwidth [Hz],
\(F \) = Rx noise figure (typically a few dB)
\(T \) = Rx temperature [deg. K]
P_x: from the link budget

The Rx signal power P_x is

$$P_x = P_t \frac{G_t G_r}{L_p}$$ \hspace{1cm} (8)

$P_t = \text{Tx signal power}$,
$G_t, G_r = \text{Tx and Rx antenna gains}$,
$L_p = \text{propagation channel path loss (large, 50...150 dB or even more)}$.

Fade margin and other losses can be added too (to make it worse (:}
SNR: impact of antennas

- via antenna gain G
- isotropic antenna: $G = 1$
- nearly isotropic: G is close to 1
- highly-directional antenna: large $G \gg 1$
- antenna array of N elements (antennas): $G = N$ in many cases

G_t can be accounted for via effective isotropic radiated power (EIRP):

$$P_E = P_t \cdot G_t$$ \hspace{1cm} (9)
Impact of Antennas on the Capacity

• With the old-fashioned use of directional antennas,

\[C = \Delta f \log(1 + G_t G_r \gamma_{iso}) \] \hspace{1cm} (10)

\[\gamma_{iso} = \text{Rx SNR with isotropic antennas (when } G_t = G_r = 1). \]
• but it increases with \(G_t, G_r \) only logarithmically (very slow)
• Can we do better???
Impact of Antennas: Historical Perspective

- What is the best way to use antenna arrays?
- SISO
- MISO/SIMO
- MIMO
SISO: single antennas at both ends

- single-antenna systems: $N = 1 = G_t = G_r$

\[C = \log(1 + \gamma) \text{ [bit/s/Hz]} \] \hspace{1cm} (11)

where $\gamma = \gamma_{iso}$

- SE is not large (unless the SNR is very large)
- fading degrades performance
- simple design
Antenna array at one end (beamforming)

\[C = \log(1 + N\gamma) \] \hspace{1cm} (12)

- SE is larger, but not much (only logarithmic in \(N \))
- fading can be reduced
- more complex design (\(N \) antennas + circuitry)
Multiple Antennas at Both Ends: Old Fashion

- Try old-fashioned use of antenna arrays at both ends
- \(T_x + R_x \) beamforming: \(G_t = G_r = N > 1, \)
 \[
 C = \Delta f \log(1 + N^2 \gamma)
 \]
 (13)
- larger SE, but still only logarithmic in \(N \rightarrow \) very slow increase
- fading can be reduced
- more complex design (2 \(\cdot \) \(N \) antennas + 2 \(\cdot \) \(N \) circuitry)
Multiple Antennas at Both Ends: Old Fashion

Can we do better?
True MIMO: launch multiple bit streams!

- Multi-stream transmission (not beamforming):

\[C = \log |I + \gamma \mathbf{HH}^+| \]

(14)

where \(\mathbf{H} \) is the channel matrix.
True MIMO: launch multiple bit streams!

- Under favorable propagation,
 \[C = N \log(1 + \gamma/N) \] \hspace{1cm} (15)
 i.e. almost linear in \(N \to \) much faster increase!
- Much larger SE with large \(N! \)
- large \(N \to \) massive MIMO = key technology for 5G.
True MIMO: launch multiple bit streams!

\[
- n \cdot \log_2 \left(1 + \frac{SNR}{n}\right)
\]

MIMO

\[
\log_2 \left(1 + SNR \cdot n^2\right)
\]

conventional array

\[
\log_2 (1 + SNR)
\]

SISO

MIMO

convent.

SISO

Capacity, bit/s/Hz

Number of antennas

1 \cdot 10^3

100

10

1

1 \cdot 10^3

100

10

1

S. Loyka

Lecture 2, ELG7177: MIMO Communications
Summary

• brief review of communications
• wireless & digital communications
• key performance metrics
• fundamental limits
• impact of antennas