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Introduction 

Due to continuing and rapid advances of both hardware and software technologies in camera 

and computing systems, we continue to have access to cheaper, faster, higher quality, and 

smaller cameras and computing units. As a result, vision based methods consisting of image 

processing and computational intelligence can be implemented more easily and affordably 

than ever using a camera and its associated operations units. Among their various 

applications, such systems are also being used more and more by researchers and practitioners 

as generic instruments to measure and/or monitor physical phenomena. In this article, we take 

a look at this rising trend and how cameras and vision are being used for instrumentation and 

measurement, and we also cast a glance at the metrological gauntlet thrown down by vision 

based instruments. 

Instrumentation and Measurement (I&M) as a field is primarily interested in measuring, 

detecting, monitoring, and recording of a phenomenon referred to as the measurand, and 

associated calibration, uncertainty, tools, and applications. While many of these measurands 

are invisible from the human eye, for example the amount of electrical current in a wire, there 

are many others that can be seen visually, such as the number of people in a room. As such, it 

is intuitive to develop tools and methods that would “see” the measurand similar to the human 

eye and measure it. Such tools would be primarily electrical and/or electronic devices, 

possibly (though not necessarily) computer based, and would receive a picture of the scene 

from a camera or similar visual sensor, sometime sensible to a wider band of electromagnetic 

radiation (infrared, UV, X-ray, …) than the human eye, and perform certain operations and/or 

computational processes to measure or detect the subject of interest. In this article, we refer to 

such instrumentation and measurement approach as Vision Based Measurement (VBM). 

Because it uses electronic devices and/or computers, VBM can not only be automated, but is 

also typically faster and more accurate than what the human eye can see and measure. Also, 

since the main instrument is typically a camera plus associated operational or computational 

units, it is quite generic, affordable, and accessible by most researchers and practitioners, 

which has helped making VBM more ubiquitous and applicable.  



The IEEE Transactions on Instrumentation and Measurement (TIM) has been publishing 

VBM papers since as far back as 1989 [1], possibly older depending on what experts agree to 

constitute “vision” in the context of those times. However, due to the recent hardware and 

software advances described at the beginning of this article, we are witnessing a significant 

increase in the number of VBM papers both submitted to and accepted at TIM in recent years. 

In fact, since 2009 TIM has published more VBM papers than it had in its history up to that 

point, indicating a rising trend for the present and the future of instrumentation and 

measurement. This has served as motivation for us to write this article to promote VBM and 

introduce it to I&M practitioners who are not already familiar with it.  

Current Trends and Applications 

In the context of Instrumentation and Measurement, VBM is being proposed and used today 

in a wide variety of automated applications and scenarios: counting of the number of people 

in a building, for safety reasons, using existing surveillance cameras [2], detecting fire from 

video feeds of closed circuit cameras [3], camera-based vehicle instrumentation used to 

analyze the intentions and state of a driver (sleepy, yawning, not looking at the road ahead, 

etc.) and to detect potential driver errors before they happen in order to significantly reduce 

car accidents [4][5], and even counting the number of calories and the amount of nutrition in a 

meal simply by analyzing the image of the food Error! Reference source not found.. An 

interesting observation about these applications is that, although they seem to be in very 

different and unrelated fields, they all use the same I&M principle: analyzing a picture taken 

by a camera or visual sensor to measure or detect a phenomenon. The same principle also 

applies to biometric I&M systems that detect the human face [7][8], iris [9][10], or fingerprint 

[11][12], as well as medical I&M systems that detect, for example, skin problems such as 

dehydration or allergic reactions [13], and finally gesture detecting instruments for human-

computer interfaces [14][15]. Another really interesting possibility with VBM is when the 

camera captures the scene beyond what is visible to the human eye. For example, with an 

infrared camera, VBM can be used to measure the temperature of objects, such as temperature 

measurement of steel production components that are otherwise very difficult to measure with 

other techniques [16].  

The last example brings up a whole different domain of VBM usage. While most of the 

applications described above are relatively recent, VBM has been used for many years in 

factories and production facilities for inspection of equipment or products and detection of 

their properties, also known as no-contact, non-invasive, or non-destructive inspection. The 



idea is again the same: a camera or visual sensor captures the subject of interest, and 

inspection is done by analyzing the captured data using hardware and/or software. This 

reduces production and operation costs by not only decreasing the manual labour that would 

otherwise be needed for inspection, but also reducing the number of defects that could be 

missed due to human errors. This domain of VBM continues to strive today with many 

examples in automatic inspection: measurements of fabric texture characteristics such as 

weave repeat, yarn counts, and surface roughness [17], inspection of automotive rubber 

profiles which are difficult to process due to their complex shapes [18], lay length 

measurement of metallic wire ropes, which is an important dimensional quantity to pinpoint 

possible rope deformations and damages [19], three-dimensional coordinate measurement of a 

large-scale workpiece, which is difficult in the mechanical industry and is needed to evaluate 

the assembling quality [20], defect detection in weld bead, which is important for high-quality 

welding [21], measurement of brake shoe thickness, which is a vital inspection of a train’s 

braking system and is traditionally performed manually [22], detection of discrete surface 

defects in rail heads, which impact the riding quality and safety of a railway system [23], and 

detecting imperfections of satin glass sheet as it is moving on a conveyor [24], to name a few. 

Last but not least, the final group of VBM applications are in robot sensing and navigation to 

detect objects, obstacles, and paths [25][26]. Such applications are used in a variety of 

industrial applications such as manufacturing, as well as personal applications such as 

assistive robots for the elderly or the physically challenged. 

From the above we can see that applications of VBM are indeed vast and far reaching in many 

sectors of industry and research: biomedical engineering, safety and security, vehicular 

technologies, transportation system, industrial inspection, human-computer interfaces, 

surveillance, assistive systems, and robotics, to name a few, and are becoming even more 

widely used due to increased affordability and capability of VBM hardware and software. To 

understand how VBM works, let us now take a look at it from a technical perspective. 

VBM Basics 

The high-level architecture of a VBM system is shown in Figure 1. At the hardware level, 

there are two main components: a visual sensor to capture an image, and an operations unit to 

process the image and “see” the subject of interest, together known as vision. It should be 

pointed out that the term vision is often used to refer to both computer vision and machine 

vision, which is correct since both are vision. In addition, the two terms are sometimes used 

interchangeably by practitioners, which is a common mistake. Though similar in many 



aspects, computer vision and machine vision are not the same when it comes to design, 

implementation, engineering, and applications. Traditionally, computer vision is mostly used 

in personal or daily-life applications and relies on computational methods running on 

computers or generic processor based systems, whereas machine vision is mostly used in 

industrial inspection or robotic applications and is typically implemented in dedicated 

hardware, sometimes without any computers or processor based systems [27]. However, both 

of them use many common algorithms from image processing and computational intelligence, 

and both of them are used in VBM. So for the purposes of this article, we will not get into 

their differences, and our discussions are generic enough to apply to both. With this in mind, 

let us now present the details of the components depicted in Figure 1.  

 

 

Figure 1. High level architecture of Vision Based Measurement. Left to right: image is 

acquired by a visual sensor, and is fed to the operations unit to perform image processing 

(green), computational intelligence (violet), and measurement (yellow) operations. 

 

Visual Sensor 

The visual sensor can be a visible-light camera, an infra-red camera, a laser scanner, an x-ray 

scanner, or any other sensor that can obtain an image of the physical scene containing the 

measurand. Since the most commonly used visual sensor is visible-light camera such as a 

Complementary Metal–Oxide–Semiconductor (CMOS) or higher resolution Charge-Coupled 



Device (CCD), the captured image is most of the time very similar to a picture of the scene as 

seen by a human. But for other type of sensors such as laser or x-ray, this image is different 

from what a human sees and is mostly meant for the consumption of the operations unit. 

Irrespective of the type of visual sensor, a key contributing factor to accurate measurements is 

the calibration of the camera and precise knowledge of its position, orientation, focal length, 

aspect ratio, principle point, distortion, etc. A variety of techniques are already available for 

camera calibration [28] and more are being proposed in recent research [29]. 

Operations Unit 

The operations unit receives the image acquired by the visual sensor and performs the 

necessary operations to obtain the desired measurements. This unit can be implemented in 

either software or hardware; i.e., it can either be programmed into a generic microprocessor 

based system, such as the processing unit of a smart camera, or it can be implemented in 

dedicated hardware, such as Field Programmable Gate Array (FPGA) or Application-Specific 

Integrated Circuit (ASIC). The unit itself consists of the following 4 major stages: 

 Pre-Processing: the purpose of this stage is to prepare the raw image for the next stage of 

operations. The image as acquired by the visual sensor could have deficiencies such as 

glare, noise, blurs, etc. In addition, it might not be in the form required by ensuing 

operations. For example, a fingerprint image is typically acquired in grey scale, but to be 

processed it typically needs to be converted to pure black and white without any 

background. Pre-processing takes care of such needs and performs operations such as 

normalization which modifies the pixel intensity and contrast of parts of the image, 

thresholding which converts the image into a binary black and white image, denoising 

which rids the image from additive white Gaussian noise or other types of noise, resizing, 

cropping, etc. These operations are signal processing, specifically image processing, with 

many methods and algorithms available for their implementation. 

 Image Analysis: the purpose of this stage is to analyze the image and extract the 

necessary information for finding the measurand and doing the measurements later. This 

stage also uses image processing operations, such as segmentation which divides the 

image into multiple segments each representing something meaningful in the scene, edge 

detection which finds the edges of objects in the scene and helps us identify objects of 

interest, tracking of objects after they have been detected and as they move through the 

scene, etc. For example, in Figure 2 we can see colour analysis and contour detection 

applied to food images in order to detect individual ingredients. At the end of the image 

analysis stage, the output is either the measurand itself, or is information that can lead to 



the identification of the measurand. In the former case, we can skip the next stage, 

measurand identification, and move straight to the measurement stage. For example, to 

count the number of people in a room by counting the number of faces, once the faces 

have been detected in the image analysis stage, we can move straight to counting them 

without any further operations. However, in some applications, more operations are 

needed to identify the measurand. For example, in Figure 2 bottom row, even though 

individual ingredients have been detected, we still don’t know what they are exactly 

(apple? orange? bread? etc.). Hence, an additional identification stage is needed to answer 

this question. This stage is typically performed using computational intelligence 

operations, as discussed next. 

 

 

Figure 2. Food images as input (top row) to the image analysis stage, and its output (bottom 

row) after performing color analysis and contour detection Error! Reference source not 

found.. 

 

 Measurand Identification: the purpose of this stage is to identify the specific measurand 

in the image, if it hasn’t already been identified in the previous stage of image analysis. 

Techniques that are used here are mostly based on computational intelligence, especially 

machine learning, and specifically pattern recognition and pattern matching, the former 

providing a reasonable “most likely” matching of the given inputs to an output and hence 

introducing some uncertainties, while the latter looks for and reports exact matches of the 

given inputs to an apriori pattern. In this stage, we can find, match, and identify specific 

patterns, shapes, and classes of objects in order to identify our measurand. Optical 

character recognition and neural networks are also done at this stage if needed. For 

example, by feeding the bottom row of Figure 2 into a Support Vector Machine engine 

that has been previously trained with similar food images in terms of colour, texture, 

shape, and size, we can identify what ingredients exist in the food, with a certain degree of 



accuracy. In some applications where the physical phenomenon needs to be only detected, 

as opposed to gauged, such as gesture detection, our task is finished at this stage with the 

detection and identification of the measurand. But in many other applications, the 

measurand has to go through further measurement operations, as discussed next. 

 Measurement: at this stage we have the measurand and we can perform the required 

measurement operation such as gauging which gives us the dimensions of the measurand 

and its circumference, area, volume, etc, as well as temporal measurements when tracking 

the measurand and its state over time. An example of gauging is shown in Figure 3, where 

the area of a single food ingredient that has been identified in the previous stage is 

determined. By assuming a more or less constant thickness of the ingredient, we can 

measure its volume from the area, use readily available food density tables to find the 

mass of the ingredient, and use nutritional tables to measure its calories and nutrition. 

Calibration is another requirement at this stage. In the above example, we need a reference 

to know the dimensions of the food ingredient, which in this case is the user’s thumb 

(Figure 3 right) that has been measured before and can be used for calibration here. As 

another example for temporal measurements, consider a driver monitoring application 

where, to detect yawning, we must first detect and track a closed mouth, then detect if the 

same mouth opens according to a certain pattern over a certain time, and then is closed 

again. The temporal relationship between the various states of the mouth is of outmost 

importance, otherwise there will be false positives because singing or talking will be 

mistaken for yawning. 

 

 

Figure 3. Food portion area measurement [6]. 

 

Uncertainties and Their Sources 

VBM systems, like every system employed for measurement purposes, can be considered 

actual measurement systems if they provide measurement results. The International 

Vocabulary of Metrology (VIM) [30] together with the Guide to the Expression of 



Uncertainty in Measurement (GUM) [31] represent the most important reference documents 

in metrology, and defines a measurement result, in clause 2.9, as: 

“set of quantity values being attributed to a measurand together with any other available 

relevant information”. 

VIM also states, in note 1 to this definition, that: “A measurement result generally contains 

“relevant information” about the set of quantity values, such that some may be more 

representative of the measurand than others. This may be expressed in the form of a 

probability density function (PDF)”, and, in note 2 to the same definition, that: “A 

measurement result is generally expressed as a single measured quantity value and a 

measurement uncertainty”. 

Measurement uncertainty is hence an essential and necessary part of a measurement result 

and, according to the GUM [31], it is a “parameter, associated with the result of a 

measurement, that characterizes the dispersion of the values that could reasonably be 

attributed to the measurand”. 

In order to define this parameter, the GUM makes an important assumption in clause 3.2.4 

[31]: “It is assumed that the result of a measurement has been corrected for all recognized 

significant systematic effects and that every effort has been made to identify such effects”. 

Under this assumption, the only significant remaining effects are random and, consequently, 

the dispersion of values that could reasonably be attributed to the measurand, can be 

represented by the standard deviation of a given, or assumed, PDF [32]. This standard 

deviation is called standard uncertainty and represents the fundamental stone on which 

measurement uncertainty is evaluated, also when the measurement result is not directly 

provided by a single instrument, but is obtained as a combination of measurement results [32]. 

According to these concepts, to characterize a VBM system as a measuring instrument, it is 

imperative that the following steps are accomplished: 

1. All significant systematic effects shall be identified and recognized, and proper 

corrections shall be applied. 

2. The dispersion of values that could reasonably be attributed to the measurand shall be 

characterized in terms of standard uncertainty. 

3. If different parts of the instrument, both hardware components and algorithms, are 

expected to contribute to the dispersion of values that could reasonably be attributed 

to the measurand, steps 1 and 2 shall be repeated for all of them, and the individual 

obtained standard uncertainty values shall be suitably combined [31][32] in order to 



obtain the final combined standard uncertainty associated to the measured value 

provided by the VBM system. 

It is also imperative that the above steps are followed according to the GUM 

recommendations [31], since this is the only way to characterize the obtained measured values 

and compare them with measurement results obtained by instruments based on different 

measurement principles. 

Specifically, as far as the VBM visual sensors are concerned, we can list the following main 

sources of uncertainties: 

 Lighting: the lighting of the scene directly affects the values of the pixels of the resulting 

image, which affect the Image Processing parts in Figure 1, and since the output of the 

image processing parts are input to the remaining parts, we can see that lighting conditions 

in fact affect the entire measurement system. Hence, applications in which the lighting 

condition may vary are affected by this parameter. Lighting conditions can be seen either 

as systematic effects (for instance the presence of shadows is a systematic effect if they do 

not change during the whole measurement process) and random effects (for instance due 

to short term fluctuations of the lighting conditions). Both effects shall be taken into 

account when evaluating uncertainty. 

 Camera angle: the angle with which the image is taken is also important in applications 

where the camera has a free angle and is not fixed, since the angle directly affects the 

shape and position of the measurand in the image. Also in this case a systematic effect 

shall be considered and compensated for (due to the camera position) and the random 

effects shall be also considered, related to fluctuations of the camera position due to 

imperfections of the camera bearing system, vibrations, etc. 

 Camera equipment: different cameras have different lenses, hardware, and software 

components, all affecting the resulting image taken with that camera. Hence, an 

application that is not using a specific and predefined camera can be affected by this 

parameter. Again, this may originate systematic effects as well as random effects and both 

shall be carefully considered. 

There are also other uncertainties introduced in the particular image processing or 

computational intelligence algorithms used in the VBM system, which must also be taken into 

account. As an example, denoising algorithms are not 100% efficient and some noise is still 

present in the output image. This noise represents a contribution to uncertainty, and, as such, 

it has to be evaluated and combined with other contributions to define the uncertainty 

associated with the final measurement result. 



Identifying and evaluating all individual contributions to uncertainty is also essential to 

compare different possible architectures (hardware and software) and understand which one 

provides the best performance, from the metrological perspective, under the different possible 

measurement conditions. This can be efficiently done only if well-established standards and 

techniques [31] are used.  

 

VBM Papers in TIM 

The previous sections should have clarified what is needed to consider and characterize a 

VBM system as a measurement system. It is also very important for the VBM community to 

understand when a work in this field belongs mainly to pure image processing or pattern 

recognition fields, and when it can be considered in the I&M field.  

Let us consider TIM as a significant I&M venue to which, as already stated above, VBM 

papers are submitted and published regularly. TIM’s scope has been defined to encompass 

research papers “that address innovative solutions to the development and use of electrical 

and electronic instruments and equipment to measure, monitor and/or record physical 

phenomena for the purpose of advancing measurement science, methods, functionality and 

applications”. A paper submitted to TIM must therefore clearly show how it satisfies the 

above requirements, and must cover the related recent literature in the field of I&M and 

position its own contribution with respect to those literature, and compare itself either 

analytically or experimentally with existing methods, techniques, and applications in the field 

of I&M. As such, while at TIM we certainly encourage submission of VBM papers, we do not 

consider papers whose core contribution is strictly in vision, image processing, pattern 

recognition, or machine learning, without any clear I&M and VBM context. For example, a 

paper that proposes a more efficient image denoising technique or a faster edge detection 

algorithm, without any direct I&M context and without characterizing the proposed algorithm 

in terms of measurement uncertainty in a GUM compliant way, will not be considered at TIM. 

While both image denoising and edge detection could be of great use in VBM, they are too 

generic and can be applied to any other image processing and pattern recognition application 

as well, not just VBM. Hence, at TIM we redirect such papers to more appropriate journals 

such as IEEE Transactions on Image Processing or IEEE Transactions on Pattern Analysis 

and Machine Intelligence, and we only consider VBM papers that have I&M as their core 

contribution. For instance, a paper that proposes an image denoising or edge detection 

algorithm and then shows experimentally that the proposed algorithm can be used to count the 



number of people in a room or detect fingerprints more accurately than existing algorithms, 

will be considered at TIM. Furthermore, while there is a lot of work in the field of vision, 

from I&M perspective the evaluation of uncertainty, and not just the definition of new 

algorithms, is important. Any new algorithm becomes useful if and only if it brings increased 

accuracy, or increased computational efficiency with the same accuracy. 

Conclusions 

In this article we gave an overview of Vision Based Measurement, its various components, 

and uncertainty in the correct I&M metrological perspective. VBM is a fast rising technology 

due to the increasing affordability and capability of camera and computing 

hardware/software. While originally a specialized application, VBM is expected to become 

more ubiquitous in our everyday lives as apparent from the example applications described in 

this article.   
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