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ABSTRACT 

Video activity analysis is used in various video applications such as human action recognition, video retrieval, 

video archiving. In this paper, we propose to apply 3D wavelet transform statistics to natural video signals and 

employ the resulting statistical attributes for video modeling and analysis. From the 3D wavelet transform, we 

investigate the marginal and joint statistics as well as the Mutual Information (MI) estimates. We show that 

marginal histograms are approximated quite well by Generalized Gaussian Density (GGD) functions; and the 

MI between coefficients decreases when the activity level increases in videos. Joint statistics attributes are 

applied to scene activity grouping, leading to 87.3% accurate grouping of videos. Also, marginal and joint 

statistics features extracted from the video are used for human action classification employing Support Vector 

Machine (SVM) classifiers and 93.4% of the human activities are properly classified.  

   Keywords  Video analysis, 3D wavelet transform statistics, Human action recognition.  

1. Introduction  

Video today has an important role in the transmission of information to a wide range of users in 

various applications. With the ever increasing availability of both processing power and bandwidth, 

whether in desktop or mobile settings, video applications and services, such as those offered by 

YouTube, Google Video, and many others, are becoming more ubiquitous and part of everyday life. 

At the same time, users’ expectations are increasing too and more intelligent and interactive features 

are needed. One of those features is human action recognition which has become a popular field of 

research [1-18] in video modeling and analysis, and can be used in human activity analysis, gesture 

recognition, biometrics [2], video indexing and retrieval, surveillance systems. In human action 
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recognition, features of the signal are extracted from video sequences and are used to determine the 

actions. Accordingly, the extracted features and the classification method significantly affect the 

performance and efficiency of these systems.  

At a high level, video modeling and analysis can contribute to and improve the above techniques. 

Video analysis extracts the video signal parameters that convey critical characteristics of the signal. A 

critical characteristic can be, for example, a scene change, a salient frame, a moving object or a 

specific event. Video modeling and analysis provide appropriate means to process the signal and mine 

necessary information in order to get the desired output. For example, in video compression, video 

modeling helps to detect the main parts of the signal, such as the foreground or the moving objects, to 

assign more bits (higher quality) to those parts of the information. Video modeling and analysis can 

therefore enhance the coding efficiency of the video and lead to a better compressed signal. In 

addition to encoding, video retrieval can also benefit from video modeling; for instance, the retrieval 

rate can be improved by extracting proper parameters from the signal and constructing a suitable 

feature vector along with an appropriate distance measure. Finally, the model of the video signal and 

its important parameters can be used in source separation applications, where the original signal has 

specific characteristics and the known set of characteristics can be utilized to separate it from a mixed 

signal such as the combination of the original signal and the noise.  

In this paper, our main contribution is a new method for modeling and analysis of natural videos 

based on the statistical properties of the 3D-wavelet transformed video signal. To the best of our 

knowledge, this is the first approach that marginal and joint statistics of 3D wavelet transform are 

investigated and used as features that are shown to be better indications of the human interpretation of 

video contents, as compared to the existing methods for video modeling and analysis. We demonstrate 

this efficiency by deploying our method in two applications: scene activity grouping and human 

action recognition.  In the latter, our method leads to a high accuracy of 93.4% in the classification of 

the KTH human action database [18], outperforming existing methods. Furthermore, we suggest a 

new definition for activity level in a given video. The activities are categorized into slow or fast 

motion, depending on the speed of the changes in the time domain, and are identified as local or 
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global, based on the relative fraction of the frame involved in the activity. Thus, four activity levels 

are proposed. We then use the features extracted from the joint distribution functions, to attain 

information about activity level in videos. This information is used to group videos into four different 

activity sets with 87.3% accuracy.  

The rest of this paper is structured as follows. We continue by taking a look at the related work in 

this field in section  2. A brief explanation of the 3D wavelet and relationships between its coefficients 

is given in section  3. In section  4, the marginal and joint statistics of the wavelet transform of natural 

video signals are extracted and studied , while in section 5 the MI is estimated as a quantitative feature 

and is used as a measure of dependency between coefficients and their parents, cousins, or neighbors. 

This section also describes the association between these estimates and the video activity level. 

Section 6 contains the experimental results, where we use 3D wavelet marginal and joint statistical 

features in human action recognition. The relationship between the kurtosis graphs and the type and 

the amount of the video activity is also discussed in this section. Finally, the paper is concluded in 

section 7.  

2. Related Work 

2.1. Video Content  Analysis 

Video modeling and video analysis have been of great interest in the video research community. In 

the existing literature, video analysis parameters are typically used to analyze video contents [19, 20]. 

In [21], a one-dimensional representation of frames has been introduced using Mojette transform 

which is the discrete form of the Radon transform. This idea is used in motion estimation, scene 

change detection, and region of interest extraction. In another work, shots are recognized by one-

dimensional Mosaics based on X-ray projections of each frame corresponding to the total of pixel 

values in both vertical and horizontal directions [22]. Applying this transform to the video sequence, 

the portion of the frame related to the background is segmented based on the motion estimation. The 

main problem with these methods, however, is the difficulty in the selection of a proper local 

similarity measure and the window size to calculate this measure to track both short and long term 
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changes, since in most video processing applications, the ability to track the temporal information 

helps to improve the system efficiency.  

Another approach to the expression of the temporal interrelations of video contents is to utilize the 

temporal features, such as optical flow [19] – as a dense field of motion representation- and motion 

vectors [23, 24]. A local descriptor as well as the optical flow is used to exhibit regions of interest and 

temporal information in [19]. In [23], motion fields are taken as separate signals resembling time 

series. In another work [20], spatio-temporal slices are employed to present motion patterns and 

extract key frames. These methods, however, can hardly reveal and quantify long term temporal 

relations between video contents.  

    For applications such as shot classification, video retrieval, and video indexing, accurate 

information about temporal evolution of the video signal is quite useful. Time series modeling 

algorithms can be used to model temporal associations of the sequences of the spatial features. 

Statistical analysis is one of the basic approaches to temporal modeling [25-30]. In [25], a layered 

Hidden Markov Model (HMM) is introduced to do video semantic analysis. A Markov Chain Monte 

Carlo (MCMC) based algorithm is used in [26] to model video scene segmentation. Scene boundaries 

are selected based on MCMC. The initial locations of boundaries are selected randomly and updated 

automatically in the procedure of MCMC. In [27] a hidden Markov tree is employed to model 

relationships between coefficients in 2D wavelet transform. Markov fields are also used in scene 

modeling [28]. The model combines the visual information and camera motion data and employs the 

resulting vector to investigate the changes over time and studies lossy and lossless information rates 

based on the achieved dynamic model and find conditions for tight bounds.  Markov models 

efficiently characterize complicated evolutional systems and relations, though appropriate 

assumptions about statistical distributions and accurate computations are needed to reach their target 

fitting models [29]. In [30], Auto-Regressive (AR) models, which are simplified linear Markov 

models, are used to model video evolution based on color histograms features. This method models 

the temporal evolution of successive video frames and extracts keyframes and shots; however, 
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employing more appropriate features corresponding to the Human Visual System (HVS) 

characteristics improves the results [56]. 

In another analysis scheme, the video signal is taken as a three-dimensional signal to reach a fitting 

statistical model. A Gaussian Mixture Model (GMM) maps the video pixels from a 3D space-time 

domain to a 7D feature space and segments the video into main objects [31, 32]. The results are used 

in shot extraction, key frame selection, video editing, motion detection, and event detection. To avoid 

time delay and reduce computational problems, a piecewise GMM is presented in [32], while there are 

still considerable temporal and spatial redundancies left unused. 3D wavelet transform has been 

applied to detect scene changes in the video sequence in [33]. First, 2D transform of each frame is 

calculated. Next, 1D transform is applied to the 8-frame length temporal evolution of each coefficient 

in time, and then the correlation between adjacent frames and three other simple features, extracted 

from the 3D wavelet transform, is used to detect scene changes.  

In this work we study the statistical properties of 3D wavelet transform of video signals. Marginal 

and joint statistics and MI estimates between wavelet transform coefficients are investigated and 

utilized to analyze the video signal. We have employed the statistical features to scene activity 

classification and human action recognition. The high efficiency achieved by the proposed method 

can be attributed to utilizing two important factors: 1) employing the wavelet transform which has the 

ability to attain spatio-temporal attributes of the video signal, yielding a sparse representation of the 

signal, and matching with the frequency distribution function of the Human Visual System (HVS) 

[34, 35]; and 2) Choosing appropriate marginal and joint wavelet features which convey motion 

information based on HVS [27] characteristics. 

2.2. Human Action Recognition 

     Human action recognition is an active field of research in video analysis and modeling and its 

results can be utilized in many applications, such as human activity analysis, gesture recognition, 

biometrics [2], video indexing and retrieval, surveillance systems. In [4] a hierarchical concept is 

proposed to human movement classification: an action primitive – each small movement of the limb-, 
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an action – a succession of action primitives that cause the whole body movement- and an activity – a 

combination of actions. In this paper, our definition of “action” is the same as described in [1, 3, 4] 

which is a combination of simple patterns of motion performed by one person in a video sequence; 

e.g., ‘walking’ or ‘boxing’. The main problem in human action recognition systems is suitable feature 

extraction from video sequences, which then reduces the problem to classification. There are two 

main approaches to feature selection [3]: global and local image representations.  

    The global approach considers the whole human body as the region of interest and extracts features 

from this region. It employs rich information, achieves excellent results, and the feature extraction 

procedure is uncomplicated. But this method requires exact background extraction or body tracking 

techniques and is sensitive to noise and occlusion [5, 6]. To resolve this concern a grid-based scheme, 

another version of this method, can be employed [7], in which the desired region is divided into cells 

spatially and each cell is encoded locally. A group of frames can be used together to form three 

dimensional cells and have spatio-temporal descriptors [8]. However there is still a need to have a 

global overview of the body in these schemes.  

    The local approach is to utilize local descriptors as a combination of independent patches calculated 

around interest points [9-11], which are the points in which abrupt changes occur in the spatial or 

temporal domains since they have more information than other points in the sequence. Patches then 

construct the bag-of-features. This approach is more robust against foreground variations, noise, and 

partial occlusion but needs a pre-processing step. As a result, the comparison of two video sequences 

will not be simple and the patches are always clustered and codebooks calculated from the patch 

clustering are employed to represent a video sequence as a bag of features. However there is always 

redundancy in the extracted data. Some works consider spatial and temporal correlations between 

patches to reduce the redundancy [12, 14, 15]. 

    We employ 3D wavelet transform for human action recognition. The proposed method can be 

considered as a global image representation approach to human action recognition, since it extracts 

global descriptors from video signals. We apply the wavelet transform to the difference of adjacent 

frames, as this transform is sensitive to the edges and their variations in time. Therefore, our method 



 

7 

does not need any background elimination step and recognizes the actions regarding the variations of 

edges in time. Our contribution is to investigate the 3D wavelet statistical properties, including 

marginal and joint statistical attributes as quality study, and MI as quantity study, and to build on this 

investigation to propose a method to infer the activity level of the video to improve the efficiency of 

video processing applications such as human action recognition. 

3.   3D Wavelet Transform   

  The Fourier transform decomposes a signal into its frequency components, whereas the cosine 

transform presents superior estimate of the signal with fewer coefficients. The Fourier transform is 

suitable for stationary signals and is not optimal in non-stationary cases; it gives global information 

about a signal which is not sufficient in many signal processing applications [37]. The wavelet 

transform represents a signal as a superposition of a set of basic functions [38]. This transform, unlike 

the cosine transform, can be applied to larger block sizes of the signal and thus overcomes the 

blocking problem. It provides sparse representation of signals, especially one-dimensional signals. 

Also, it gives a higher compression ratio, as compared to the cosine transform, and structurally 

conforms to the human perceptual system [34, 35]. The wavelet transform has been used extensively 

in several areas of signal processing applications such as signal prediction, speech processing, 

biomedical engineering, image denoising, image annotation, image/video watermarking and video 

processing. 

  A multi-resolution representation of a signal is achieved by the wavelet transform using a set of 

orthonormal analysis functions produced by some base functions called ‘wavelets’ [34, 39]. One of 

the major attributes of this transform is its ability to characterize the spatio-temporal coherence 

between the signal components that is of concern in our analysis. 3D wavelets present a division of 

video spectrum into multi-scale subbands for temporal and spatial dimensions; and oriented subbands 

for spatial information –the horizontal, vertical and diagonal subbands. This transform is separable 

and the decomposition is done by passing through a 3D-filter channel bank. Each 3D-filter channel 

bank can be identified as a multiplication of three one-dimensional filter banks. 
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Figure 1. Implementation of one-level 3D wavelet transform reproduced from [40]. 

  At each level of decomposition, eight subbands are created. The total number of coefficients of all 

subbands is the same as the size of the original signal, where each time the lowest subband, LLL, 

contains an approximation to the original signal. The next level of decomposition is done merely 

within the lowest subband [41]. The implementation of the one-level 3D wavelet transform is shown 

in figure 1, where L and H stand for Low and High subbands, respectively. 

3.1. 3D Wavelet Coefficients Relationships  

  Each 3D wavelet subband stands for a sub-sampled version of the filtered original signal; hence, 

there are some relationships between coefficients in different subbands corresponding to the same part 

of the original signal [27, 34, 62]. Coefficients in different subbands with the same orientation have 

parent-child relationships. Coefficient at the same level and location with different orientations are 

cousins, whereas adjacent coefficients in the same subband are neighbors.  

   

 

Figure 2. 3D wavelet transform coefficients relationships, deduced from [27].  
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    The 3D wavelet coefficients relationships are shown in figure 2. Each coefficient X in a finer 

scale subband has 6 cousins, named CX, and 26 neighbors, named NX. Each coefficient in a coarser 

scale subband has 8 children in the corresponding finer scale subband; thus each coefficient X in a 

finer scale subband has a parent (PX) in the coarser scale subband. Consider the wavelet coefficient 

    
  at the orientation  , where           for orientations                             

respectively, and at the transform level  , where          , and location  =(x,y,t). So, the 

coefficients in the same scale and position and different orientations, {    
      

        
   , are 

cousins. Also, {                
                                            represents 

the neighbors of coefficient  =(x,y,t) in the orientation   and transform level l. Finally, the wavelet 

coefficient     
  is the parent of coefficients {                     

                    , in the 

finer scale and the same orientation.  

4. 3D Wavelet Statistics  

4.1. Background  

A 2D wavelet based image modeling was introduced in [42] based on probability modeling. 

Experimental results show that the Generalized Gaussian Density (GGD) function could yield a 

suitable estimate of the density of the 2D wavelet coefficients of each subband, using different filters 

[27, 33, 43-45]. Minh N. Do used the GGD features and the Kullback-Leibler Distances (KLD) for 

texture retrieval and gained good results [27]. So, two extracted GGD parameters,  and  , will help 

to estimate the density function of the coefficients. 

The approximation to the probability distribution function (PDF) for the marginal density of a signal 

can be achieved by adaptively changing the two parameters of the GGD [46], defined as: 











)(

)
1

(2
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x

exp




                                                      (1) 

where (.)   is the Gamma function. 
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    In (1),   is the scale parameter that models the width of the GGD and   is the shape parameter 

proportional to the inverse of the decreasing rate of the PDF. The PDF is Laplacian if 1 , and 

Gaussian if 2 . 

4.2.  Dataset for studying the statistics 

    To study the statistical characteristics of the 3D wavelet transform and to investigate the activity 

level in the scene, we have conducted experiments using various natural video signals of different 

types of activity and texture from Hollywood-2 Human Actions and Scenes dataset (CVPR09) [47], 

the ‘Simon Fraser University (SFU) Video Library and Tools dataset’ [48], and ‘The Open Video 

Project database’ [49]. We have randomly selected 750 video samples from the sequences in these 

datasets to evaluate our method that is based on the statistical properties of the 3D wavelet video. 

Selected video clips, consisting of more than 120,000 video frames of different characteristics, are 

employed to evaluate our ideas. The above video repositories are widely used in the community. The 

spatial size of the videos is different including CIF (352x288) or QCIF (176x144), and their temporal 

length is between 75 to 300 frames, where the sampling rates are 15, 24 and 29 frames per second. 

Each video sample contains a single video shot. Video tests are captured from different locations – 

indoor/outdoor, as well as home, road, library, store, office, etc. They display human actions, car 

racing, news broadcasting, dogs running, airplane flying, glass breaking, etc. Also, they contain 

camera zooming, panning, translations and scene fade in/outs. Most of the test videos are highly 

dynamic in both temporal and spatial domains, though containing a few static samples.  

We have also used well-known filters – Haar, Daubechies and Symlets - to decompose the signals. 

Three, four or five decomposition levels have been selected in the tests. To classify activity levels, we 

have considered two domains for activities: 

 Temporal domain: This considers the speed of the changes in the time domain and is taken to 

be slow or fast. 
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 Spatial domain: This considers the spatial fraction of changing pixels involved in an event or 

activity. It can be local or global.    

    We then obtained the 3D wavelet statistical properties of the test videos and analyzed them, as 

discussed next in  4.3 and  4.4. 

4.3. Marginal statistics  

     We have applied the 3D wavelet transform with various filters to our video test set, and studied the 

marginal statistics of the resulting 3D wavelet transforms. In particular, we have applied the transform 

to the 750 video sequences mentioned in section 4.2, and extracted the GGD parameters from all of 

the subbands and checked the marginal histograms with the GGD curves. It was found from this 

experiment that 100% of the curves fitted perfectly to the histograms, confirming that the GGD could 

give a close estimate of the signal histograms. Also kurtosis values of these curves - as a measure of 

the ‘peakedness’ of the probability distribution of real-time random variable, are calculated from these 

more than 21000 subbands, which are all larger than 9, stating non-Gaussian quality of these 

distributions. Three normalized histograms of three different signals and the fitted curves are shown in 

figure 3. As shown in the figure, each histogram has a peak at zero and decreases rapidly to zero. This 

means that most of the coefficients are zero or near zero; thus, it confirms that the 3D wavelet 

transform is very sparse. The values of  ,   and kurtosis are also given in the figure. The kurtosis 

values of these three histograms are 15.6221, 11.8763 and 25.7525 which prove the highly non-

Gaussian property of the densities, considering that the kurtosis value of a Gaussian density is 3. So, 

estimating two GGD parameters from each video subband could give sufficient information about the 

marginal quality of the associated subband, and employing two GGD parameters, the marginal 

distribution of wavelet coefficients in a subband can be captured precisely, where hundreds of features 

are required to indicate this information using histograms.  
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Figure 3. Marginal histograms of the finest 3D Wavelet subbands and GGD curves fitted to them. 

 

4.4. Joint statistics  

  The joint statistics of the 2D wavelet and the 2D contourlet transforms have been extracted in [42, 

46], respectively. Here, we have worked on the joint statistics of the 3D wavelets of our video test set. 

Although the 3D wavelet transform finely decorrelates the video signal, there are still dependencies 

among coefficients of different subbands in the same scale and of the same subbands in different 

scales. Video processing algorithms can be developed based on the joint statistics of the coefficients. 

One of the joint statistics plots for the 3D wavelet coefficients, conditioned on their parents, neighbors 

and cousins, is shown in figure 4.  

The conditional plots have the form of “bow–tie” where their variance and magnitude are 

interrelated [50]. Furthermore, the conditional expectations are about zero; therefore, coefficients are 

dependent and almost uncorrelated. The joint density plots are also presented in figure 5 conditioned 

on two distant parents, neighbors, and cousins. Results confirm the independencies between these 

coefficients; i.e., the dependencies between coefficients and their parents, neighbors, and cousins are 

local and decrease sharply when the distance increases. One of the vertical cross sections of the joint 

statistics plots is shown in figure 6. The kurtosis values of these histograms specify that the 

conditioned distributions are still non-Gaussian. 
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(a) (b) (c) 

Figure 4. Conditional plots of coefficients conditioned on their (a) parents, (b) neighbors, (c) cousins. The 

plot is sketched for only one of the neighbors (here the right side neighbor in spatial X direction) and one 

of the cousins (here the cousin in the HLH for the coefficient in HHH subband). 

   

(a) (b) (c) 

Figure 5. Conditional plots of coefficients conditioned on their distant (a) parents, (b) neighbors and (c) 

cousins. The plot is sketched for only one of the neighbors (here the right side neighbor in spatial X 

direction) and one of the cousins (here the cousin in the HLH for the coefficient in HHH subband). 

   

(a) kurtosis=5.8791 (b) kurtosis= 4.0841 (c) kurtosis=7.8338 

Figure 6. Vertical cross section of joint statistics plots (a) parents, (b) neighbors, (c) cousins. 
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5. Mutual Information Estimates and Video Activity Analysis 

5.1. Background 

      In this section, we use the MI (Mutual Information) as a suitable quantitative dependency 

measure. Although correlation is a good meter of dependency in Gaussian distribution, it is not 

applicable to non-Gaussian cases [51], like our case and hence we use the MI. The MI between two 

continuous random variables X and Y is computed as [46, 52]: 

))()(),((}
)()(

),(
{

)()(

),(
log),();(

ypxpyxpD
ypxp

yxp
E

dxdy
ypxp

yxp
yxpYXI

XY

x y



  
                         (3) 

where ),( yxp  is the joint density function between X and Y and )(xp  and )(yp  are the marginal 

PDFs of X and Y, correspondingly. {}E  stands for the expected value and (.)D  represents the 

Kullback-Leibler Distance (KLD). This value shows the amount of information of one variable in 

relation to the other. We use base 2 logarithm; hence, );( YXI  is measured in bits. The MI is the 

amount of information variable X transmits about variable Y, and vice versa, thus the MI is non-

negative and symmetric. Moreover, the MI shows the amount of dependency between two variables 

and will be zero if X and Y are independent. On the other hand, the MI increases by increasing the 

variable dependency.  

     To estimate the MI, the distributions histograms are used in the following formula [46, 53]: 

N

KJ

hh

Nh

N

h
YXI

ji
ji

ijij

2

)1)(1(
log);(ˆ

,


                                               (4) 

where ijh  is the value of the cell (i,j) in the joint histogram,  j iji hh   and  i ijj hh   are the 

marginal histograms, N is the number of all coefficients, and J and K are the number of bits in X and Y 

directions, respectively. The second term in (4) is a modification partial bias and cannot resolve the 

problem entirely. This expression tries to reduce the error, but cannot remove all of it; thus, equation 
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(4) just introduces a lower bound for the MI [46, 53]. In [46] the values of J and K are chosen 

experimentally as shown below to make the estimation firmer, while the error in equation (4) 

increases when the number of variables increases: 

1)
3000

( 
N

roundKJ                                                       (5)     

5.2.  Results and Analysis 

     We used the MI estimates to study dependency between parent, child, neighbors, and cousins in 

the 3D wavelet transform of natural videos, and then the relationship between activity levels in the 

video and the amount of the MI were interpreted. The video test set used here is the same as the set 

employed in the previous section. To do so, the estimates are studied in three steps. In the first step, 

the MI estimates between a coefficient of the finest level and its parent, neighbor and cousin are 

computed and some of the results are illustrated in table 1 and figure 7. In this table the MI estimates 

between the coefficient and its 6 cousins and MI between the coefficient and its 26 neighbors are 

calculated and averaged.  

 

Figure 7. MI estimates between X and its parent (PX), neighbor (NX), cousin (CX), 3-level 

Wavelet (‘db4’). 
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Table 1. MI estimates between X and its parent (PX), neighbor (NX), cousin (CX), 3-level Wavelet 

(‘Daubechies filter’). 

 

The results can be used to infer the following: 

 As it is deduced from the table 1 and the figure 7, the MI is significantly high, which confirms the 

results given in subsections 4.4., where the results, obtained from the joint statistics histograms, 

showed the dependency between the coefficients and their parents, cousins or neighbors. 

 The MI between the coefficient and its cousin as well as the MI between the coefficient and its 

neighbor has the least value for the high activity level video. It confirms that the dependency 

between different subbands in the same level is small.  

 The MI between the coefficient and its parent always has the highest value. It means that the main 

dependency is between the parent and its child, where increasing the decomposition level, more 

delicate information is extracted. 

 The MI increases when the activity in the video decreases. Thus the dependency between the 

coefficients and their parents, cousins and neighbors decreases by increasing the activity level in 

the video. 

 The changes in the MI between the coefficient and its neighbor based on activity changes are 

smaller than the changes in the MI between coefficient and its parent or cousin. 

      In the second step, the mutual estimates are calculated for different types of wavelet filters (table 

2). It is inferred from the results that the MI is dependent on the filter type. For example, replacing 

the “Haar” by the “Daubechies” reduces the mutual estimates and dependencies between the 

coefficients. 

 Very slow-Local Slow-Local  Fast-Local Slow-Global Fast-Global 

);( PXXI  0.7863 0.4887 0.41 0.2516 0.2217 

);( CXXI  0.2254 0.259 0.2277 0.1003 0.0152 

);( NXXI  0.2363 0.2467 0.1927 0.1825 0.1096 
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Table 2. MI estimates between X and its parent (PX), neighbor (NX), cousin (CX), Different filters (high 

activity video, 3-level). 

 Haar Daubechies Symlet 

);( PXXI  0.2454 0.2217 0.1233 

);( CXXI  0.0238 0.0152 0.0168 

);( NXXI  0.2023 0.1096 0.1645 

 

       In the third and final step, the MI is estimated for different numbers of transform levels (table 

3). As shown, the estimates between the coefficient and its cousin/neighbor are not much dependent 

on the number of transform levels. 

Table 3. MI estimates between X and its parent (PX), neighbor (NX), cousin (CX), Different levels (high 

activity video, ‘Daubicies filter). 

Transform Levels  2 3 4 

);( PXXI  0.1960 0.2217 0.2797 

);( CXXI  0.0152 0.0152 0.0152 

);( NXXI  0.1096 0.1096 0.1096 

 

6. Activity Analysis based on 3D Wavelet statistics  

6.1. Joint Statistics and the Kurtosis Curves  

       Here, we have used the video samples described in section 4.2 and have applied the 3D wavelet to 

all of the test clips. Temporal and spatial fields are separately observed for the activity level analysis. 

The changes are categorized into slow or fast, depending on the scene change rate, and also identified 

as local or global, due to their relative surface within a given frame.  

     The joint statistics of the 3D wavelet transform was shown in subsection 4.4. The distributions 

conditioned on the parents of the finest level are used here to classify videos according to their 

activity levels. To produce these curves, the distributions conditioned on the parents of the finest level 

are calculated and the kurtosis values of vertical cross section histograms of these distributions are 

computed. These kurtosis values are computed from the kurtosis curve of each conditioned 

distribution. These curves are calculated for all seven finest subbands of wavelet transforms of each 
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video sample and the corresponding elements of these seven curves are accumulated and averaged to 

form the final kurtosis curve. The kurtosis curves of the vertical cross section histograms of 

coefficients, conditioned on parents, have been extracted from videos of different types. Some of 

these curves are depicted in figure 8. To produce these curves, the distributions conditioned on the 

parents of the finest level are calculated and the kurtosis values of vertical cross section histograms of 

these distributions are computed. These kurtosis values are used to from the kurtosis curve of each 

conditioned distribution. These curves are calculated for all fines subbands of each video sample and 

the corresponding elements of these seven curves are accumulated and averaged to form the final 

kurtosis curve. As shown, there are four major types of curves, each matching with a level of activity 

in the video clip. Accordingly, we can cluster videos based on their kurtosis curves into four groups: 

 Group 1: Very high activity level videos - videos with an object emergence, fast global 

movement, very fast changes or noisy videos. The kurtosis curve in this group is smooth and 

beneath 5 at zero. Thus, the shape of the curve is nearly flat. There is no apparent peak at zero and 

the kurtosis decreases slowly by increasing the absolute value of the parent coefficient until 

arriving at 3.   

 Group 2: High activity level videos - videos with slow-global movements. The kurtosis curve in 

this group is beneath 10 and above 5 at zero. There is a peak at zero and the kurtosis decreases 

gradually by growing the absolute value of the parent coefficient until reaching 3.  

 Group 3: Low activity level videos - videos with slow-local movements. Here, the kurtosis curve 

is between 30 and 40 at zero. There is a peak at zero and the kurtosis decreases rapidly by 

increasing the absolute value of the parent coefficient until it reaches 3 (Gaussian), thus the curve 

is sharp around zero and almost flat thereafter. 

 Group 4: Very low activity videos - videos with very slow and local changes. Shape of the curves 

in this group resembles shape of the curves in the third group, where it is too sharp at zero. The 

kurtosis curve has a peak around 40 at zero and decreases rapidly by increasing the absolute value 

of the parent coefficient, thus the curve are very sharp. 
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    The curves, shown in figure 8 demonstrate that by increasing the activity in the videos, the kurtosis 

value decreases and the coefficients distributions, conditioned on parents, get closer to Gaussian. As 

discussed in subsection 5.2, the dependency between the child and parent decreases by increasing the 

activity in the video. Thus, the kurtosis value decreases by decreasing the dependency and increasing 

the activity. 

      

     To do the classification, the distributions conditioned on the parents, neighbors and cousins of all 

the seven subbands of the finest level are calculated and the kurtosis values of the vertical cross 

section histograms of these distributions are employed to form the feature vector. We have used nine 

bins for each curve and the kurtosis curves, conditioned on parents, cousins and neighbors are 

calculated for each video sample as described. Thus each video will have three 9-bin kurtosis curves 

and 27 joint features as a result. We use the SVMs [54] to classify the kurtosis curve features into four 

classes. For this purpose, 500 video samples are employed in the training sets that are labelled 

 

Figure 8. Four different kurtosis curves. 
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manually. We have extracted kurtosis curves values as the feature vectors of 58 different video signals 

and categorized them into four groups utilizing the trained classifier. A sample video sequence of 

each group is shown in figure 9.  

  

(a) Object emergence – group 1 (b) High textured – group 2 

 
 

(c) Slow local scene – group 3 (d) Very low activity – group 4 

Figure 9. Some Sample videos and their identified groups; the frames are downsampled at 

rate 3. 

      We have evaluated the performance of the proposed grouping algorithm by conducting subjective 

tests. Fifteen non-expert observers are employed to group the video samples into four activity levels, 

according to ITU-R recommendation BT.500-11 [61]. Testers are asked to rate the videos based on 

their activity level. The subjective test is a single stimulus test [55], where questionnaires are designed 

and each individual has been asked to fill the table once each video sample is played. The subjects had 

normal visual perception, having no special knowledge about video processing methods. The 

instructions along with some illustrations were given to the individuals, prior to the test. First, the 

video sequence was played in the top part of the screen, then each subject was asked to rate the 

activity level in the video sequence by an integer number between 1 and 4 –for activities from highest 

to lowest, respectively. The average results of the subjective tests are shown in figure 10.  

    We have also compared our method to a baseline method, in which the sum and energy of the 

coefficients of wavelet transform of each video subband are used as in [36] to form the feature vectors 



 

21 

of the video samples. The 3D wavelet transform based features of salient regions as well as geometric 

based features are employed in [36] for human action recognition, where a simple leave-one-out 

approach is used to evaluate the results. Here again SVM classifier is applied and the training and test 

stages are the same as the above mentioned procedure for the proposed method.       

    Based on subjective test results, our method is capable of grouping the video sequences with 87.3% 

accuracy, as compared to the classification performed by humans. Also comparing this result with the 

baseline method, it outperforms this method too. This shows that the joint statistics convey important 

and key information about the speed and amount of changes in the video sequence. The grouping rates 

corresponding to each group are also sketched in figure 10. 

6.2. Marginal and Joint Statistics applied to Human Action Recognition  

     We employed the 3Dwavelet transform features for human action recognition. The KTH human 

action database is used to evaluate our method [18]. This database consists of 2391 video sequences 

performed by 25 persons in 4 different scenarios of 6 different actions including boxing, hand 

clapping, hand waving, running, jogging and walking. The spatial size of the frames is 160x120 pixels 

 

Figure 10. Grouping accuracy rates for each class. 
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and the durations of the sequences are different and the temporal sampling rate is 25 frames per 

second. The videos are taken in four scenarios: outdoors, outdoors with scale variations, outdoors with 

different clothes, and indoors. The camera view point varies in different video samples, but the 

camera is mostly static. This dataset is divided into training (8 subjects), validation (8 subjects) and 

testing (9 subjects) sets based on the performers. Figure 11 shows some sample frames of 6 different 

actions (columns) taken in 4 scenarios (rows). The KTH database is employed by several human 

action recognition algorithms to evaluate their performances [10-12, 16-18, 36], where [10, 16, 36] 

have employed simpler tests and are therefore left out in our comparisons.  

 Walking Jogging Running Boxing Hand waving Hand clapping 

S1 

      

S2 

      

S3 

      

S4 

       

 

Figure 11. Sample frames from KTH database [18]. 

6.2.1. The Proposed Algorithm  

    Our method can be considered as a global image representation approach to human action 

recognition. The general concept in this approach is to remove the background and extract features 

from the remaining human silhouette, which has the information of the motion and the shape of the 

body. The background in the KTH database is not static and background extraction is not a simple 
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step. Due to the characteristics of the 3D wavelet transform; i.e., its sensitivity to the edges and their 

variations over time, we have used the differences of adjacent frames instead of the extracted human 

body as in [5, 64]. The resulting subtracted video sequence contains the desired motion information. 

Next, we have applied 3D wavelet transform to the subtracted video sequence, extracted marginal and 

joint statistics parameters from each video sample as described in section 4, and constructed the 

feature vectors. Finally, Support Vector Machines (SVM) are employed to classify the feature vectors. 

We have used the LIBSVM [54] library to train, validate and test the accuracy of the classifiers. 

 
 

  

(a) Boxing (b) Hand Clapping 

   

 

(c) Hand Waving (d) Walking 

 
 

 
 

(e) Running (f) Jogging 

Figure 12. Downsampled video sequences (left) and the subtracted video sequences (right). 
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Figure 13. the proposed algorithm 

        As deduced from our experiments, the 3D wavelet transform coefficients plausibly convey the 

information about the activity in the video sequences. This information consists of the rate and the 

direction of movements. Figure 12 shows sample video sequences and their corresponding subtracted 

video sequences per each action class. It is observable in the figures that the type of edges and 

movements in the hand actions – boxing, hand waving and hand clapping - is completely different 

from the leg actions – walking, running and jogging. For hand actions recognition, the types of 

movements are the leading elements, whereas the rates of motions are the important factors to classify 

leg actions. Based on the above analysis, a hierarchical classification was applied to human action 

recognition. First, we classify the actions into two classes: legs and hands, based on the marginal 

statistics features of the video samples employing the SVM classifier. In the next step, two different 

classifiers are used to classify the hand and leg actions separately. For leg actions the joint statistics 

features, as well as marginal statistics features, are utilized for classification, while only marginal 

statistics are used for hand actions. 
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    The proposed algorithm is illustrated in figure 13. First, the 3D wavelet transform is applied to the 

subtracted video sequence. Second, marginal statistical parameters, the GGD features, are extracted 

from each video subband based on the coefficient distributions of the wavelet subbands employing 

equation (1). The extracted GGD features are used to construct the marginal feature vector of each 

video sequence. The number of extracted marginal features are 14×   , where there are two features –

α and β- extracted from each video subband and seven video subbands at each level, and     is the 

number of transform levels. Then, these marginal features are applied to the first SVM classifier to 

classify the ‘leg’ and ‘hand’ actions. If the action is classified as a ‘hand’ action, the marginal feature 

vector goes through the ‘Hand action SVM classifier’ to recognize the hand action.  

    In the case of ‘leg’ action classification, joint features should be extracted from the video sequence. 

The distributions conditioned on the parents, neighbors and cousins of all the 7 subbands of the finest 

level are calculated and the kurtosis values of the vertical cross section histograms of these 

distributions are calculated and the final joint feature vector consisting 27 features is constructed- as 

explained in section 6.1- for the video sample. Also, the MI between the coefficients and their parents 

of the seven subbands of the finest level are estimated and used to complete the joint feature vector of 

length 34. Finally, these features along with the marginal features are employed to detect the ‘leg 

actions’ using the ‘Leg action SVM classifier’. 

6.2.2. Human Action Recognition Results  

      We have computed the recognition rates for different numbers of the wavelet transform levels and 

different wavelet filters in tables 4(a) and 4(b), respectively. Results show that the best result is gained 

by the wavelet filter “Symlet” where increasing the transform level increases the recognition rate, 

except for the 5-level transform. The reason is that increasing the wavelet transform levels will lead to 

more edge and motion details being considered by the features and in the KTH database with non-

static background, this causes interference with the necessary and effective data, leading to undesired 

information from background noise. So, this causes the classification rate to decrease. Also, by 

increasing the levels, more noisy features might be employed by the SVM classifier that may reduce 
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the classification accuracy. Recognition accuracies of our best classification result and other reported 

methods are compared in table 5 for KTH Dataset.  

   As mentioned earlier, the methods given in [10, 16, 36] have employed leave-one-out tests, which 

are simpler than our classification method, where the training set is fully used to train the classifier 

and all the test videos are used together to evaluate the classifier. The highest recognition rates 

reported in [10], [16] and [36] are 91.7%, 91.6% and 58.9%, respectively, while we have achieved an 

accuracy rate of 94.6%, in the leave-one-out test procedure. In this test, the ‘Symlet’ wavelet filter and 

four transform levels are used to decompose the video sequence and extract spatio-temporal features. 

Table 4.  Average Action Recognition Rates for KTH Dataset. 

 (a) 3D Wavelet transform, “Symlet” wavelet filter, different transform levels. 

Number of Transform Levels Precision 

2 levels 82.1% 

3 levels 89.7% 

4 levels 93.4% 

5 levels 91.8% 

(b) 3D Wavelet transform with 4 levels, different wavelet filters. 

Number of Transform Levels Precision 

Haar 88.3% 

Daubechies 90.8% 

Symlet 93.4% 

 

Table 5.  Comparison of different Human Action Recognition methods for KTH Dataset. 

Technique 
Method in 

[18] 
Method in 

[12] 
Method in 

[17] 
Method in 

[11] 
Our proposed 

method 
Precision 71.7% 83.3% 86.7% 91.8% 93.4% 

 

6.2.3.    Discussion 

    In this subsection, the human action recognition results are discussed in detail to state the reasons of 

its efficiency. Also, the computational complexity of the proposed method is investigated.  

    The confusion matrices of our method (93.4%) and the same approach when no joint statistics 

features are used in the classification (92.5%) are shown in tables 6.a and 6.b, respectively. Also the 

confusion matrix of the method [11], the best of the existing methods on KTH database for the action 

classification, is depicted in table 6.c. Comparing these three matrices, it can be inferred that the hand 
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and leg actions are well differentiated and the main confusion always occurs in the leg action 

classification, especially between ‘jogging’ and ‘running’, where our method does a better job for that 

specific classification. The reason is the ability of the wavelet transform to locate edges and their 

movements, textures in the video, as well as the details that are contextually more important to the 

human visual system [27, 34]. The important factor to differentiate between three ‘leg’ actions is the 

speed of changes in the video sequence, which is well addressed by the wavelet transform features, as 

was expected based on the analysis given in sections 4.4 and 5.2 about joint statistics and mutual 

information between each coefficient and its parent, cousin and neighbor. Moreover, our method uses 

global features instead of local ones which make it simpler in implementation and classification.    

Table 6. Comparison of the confusion matrices of the proposed method (tables 6.a and 6.b) and the 

method in [11] (table 6.c) for KTH Dataset. 

6.a. With joint statistics features 

  walk Jog Run Box Hclp Hwav 

Walk 100 0 0 0 0 0 

Jog 2.1 91.7 6.2 0 0 0 

Run 0 15.3 84.7 0 0 0 

Box 0 0 0 99.3 0 .7 

Hwav 0 0 0 2.8 93.75 3.5 

Hclp 0 .7 0 8.3 0 91 
 

6.b. Without joint statistics features 

  walk Jog Run Box Hclp Hwav 

Walk 100 0 0 0 0 0 

Jog 2.1 91 6.9 0 0 0 

Run 0 20.1 79.9 0 0 0 

Box 0 0 0 99.3 0 .7 

Hwav 0 0 0 2.8 93.75 3.5 

Hclp 0 .7 0 8.3 0 91 
 

7.c. The method in [11] 

  walk Jog Run Box Hclp Hwav 

Walk 99 1 0 0 0 0 

Jog 4 89 7 0 0 0 

Run 0 19 80 0 0 0 

Box 0 0 0 97 0 3 

Hwav 0 0 0 0 91 9 

Hclp 0 .7 0 5 0 95 
 

  

    To discuss the complexity of the proposed method, we first consider that the computational 

complexity of the 1D discrete wavelets transform for an  -length vector matrix is      [57]. Thus, 
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we can assume that a positive non-decreasing linear function       can be found to represent the 

complexity of the wavelet transform. Since the 3D wavelet transform is applied to each dimension of 

the signal separately, for the video block of the spatial size of      and the temporal size of   

frames, it can be assumed to have   ,    and    1D wavelet transformations on the vectors with  , 

  and   lengths, respectively. The complexity of the 3D wavelet transform will therefore become 

                       . To be more precise, for each level of 1D wavelet transform of a 

vector of length  , there will be     multiplications, where   is the number of coefficients and   is 

the length of the wavelet filter. So the total number of multiplications will be     
   

 
   

   

             
 

 
   

 

         
 

  
      , where    . Consequently, the overall 

computational complexity of the 3D wavelet transform for a matrix of size     will be upper-

bounded by          , or by        , when    .  

   The GGD parameter estimation algorithm has computational complexity of     , where   is the 

number of samples [27]. Thus, the order of calculations can be represented by a positive non-

decreasing linear function       -     is big-O of   . The number of samples in the subbands of the 

first decomposition level is  
   

 
 and this amount is divided by      for other levels. Since we have 

seven subbands at each level, we will have   
   

 
   

 

 
   

 

        which is a geometric 

progression equal to   

   

 
   

 

    
 

  
 

 

    
   

 

  
 

 

 , where the right side of the inequality equals to    . 

Thus, the complexity will be the same as that of the 3D wavelet transformation stage; it is the same as 

what is claimed in [58] about the time complexity of the GGD parameter estimation. Also, the 

computational complexity of the calculation of the joint parameters and the corresponding kurtosis 

value is       . Again, there will be a positive non-decreasing linear function       -     is big-O of  

 -  to stand for the computational complexity of this stage. So the overall complexity of feature 

extraction step will be less than                , where    .  Accordingly, a positive non-

decreasing linear function       can be assumed, such that the inequality of                 

     
   is kept true. This computational complexity is of the same order as that of the   -norm 

feature extraction used in [36], while the results are much better. Considering the same assumption 
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about positive non-decreasing linear function      -              
         - the overall 

complexity of the feature extraction algorithm can be represented by       .  

For the signal classification, as described earlier, a SVM classifier is employed, with the 

computational complexity in the order of          
   for the training phase and            for the 

test phase, where   is the number of classes,     is the number of features and     is the number of 

the training samples [59,60]. In our algorithm, there are       features extracted from marginal 

statistics, where     is the number of transform levels which is always 4, and 34 features from joint 

statistics investigations. For the recognition phase, we will consider two classification scenarios:  

   
First, the SVM classifier is used to classify all six actions into six classes. Here,    =90,     

     and    , so the complexity can be represented by positive non-decreasing linear functions 

            
    for the training phase and               for the test set. In the second scenario, the 

proposed hierarchical SVM classification scheme is employed, where first all actions are taken to 

classify the leg and hand actions, using the marginal features. Then, hand actions are classified again 

using the GGD features, where the number of training samples is halved and number of classes is 3. 

For the leg actions, the number of features is increased by the number of joint features. So, the 

complexity of the training step can be represented as:   

   
 

 
 
  

  
       

      
 

 
 
  

  
     

   

 
 
 
     

 

 
      

   

 
 
 
                     

          (6) 

which is less than half of the complexity when a single SVM is used. Also, the complexity of the test 

phase is given as: 

   
 

 
 
  

  
            

 

 
 
  

  
    

   

 
     

 

 
     

   

 
                               (7) 

which is less than the complexity of using a single SVM classifier. 

These calculations show that applying the hierarchical SVM to the human action recognition task 

has decreased the complexity of the method. 

To compare the complexity of the proposed method with that of the method introduced in [11], we 

first observe the classification stage, where both methods have employed SVM classifiers. The 

number of features used for the classification linearly affects the computational complexity of the 

system. In [11] 4000 words have been selected empirically to produce the feature vectors, where in 
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our method, in the case of using one SVM classifier that is the worst case, we have employed about 

100 features; thus, the complexity of the proposed method will be alomost  0.1 less than the method in 

[11].  

     We ignore comparing the feature extraction complexities, since the method in [11] employs 

interest points for features extraction. To select these points, a spatio-temporal scale-space 

representation should be calculated applying the convolution of the video block with Gaussian kernels 

to different spatial and temporal scale parameters, while each convolution needs     multiplications 

of the size of the kernel used. This leads to the complexity of at least        which is the same as 

the complexity of our feature extraction method.   

7. Conclusion  

     In this paper, we have studied the statistical properties of the 3D wavelet transform of videos and 

introduced a new approach to human action recognition and video activity level analysis based on 

these properties. Using the kurtosis values of marginal histograms, we have shown the non-Gaussian 

properties of these distributions. Also, the marginal histograms have been estimated by the GGD 

distributions. The study of joint statistics shows that the coefficients, conditioned on their parent, 

neighbors and cousins, are uncorrelated while dependent. The vertical cross sections of joint statistics 

indicate that the conditioned distributions are non-Gaussian as well. We have computed the MI, as a 

quantitative estimate of dependency, and have shown that the dependency increases when the activity 

in the video decreases. Moreover, the kurtosis curves have been proposed and grouped into four sets 

based on the degrees of activity in the video. Results show that kurtosis curves can reliably be used as 

indications of the activity level in the video. Finally, the joint and marginal statistical features of the 

3D wavelet transform have been utilized for hierarchical SVM classification to determine human 

actions with 93.4% accuracy, outperforming the existing methods. 
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