
Adaptive 3D Texture Streaming in M3G-based Mobile
Games

Mohammad Hosseini
School of Computing Science
Network Systems Lab (NSL)

Simon Fraser University, Canada

mohammad_hosseini@sfu.ca

Dewan T. Ahmed
Software Engineering Department

College of Computer and
Information Sciences (CCIS)
King Saud University, KSA

dtahmed@ksu.edu.sa

Shervin Shirmohammadi
Distributed and Collaborative
Virtual Environment Research

(DISCOVER) Lab
University of Ottawa, Canada

shervin@discover.uottawa.ca

ABSTRACT

With the growing demand of mobile applications and games, one

of the challenges is how to efficiently transmit the bulky 3D

information to bandwidth- and computationally-limited mobile

devices. In this paper, we propose two methods for improving the

transmission delay of M3G-based 3D mobile game content over

unreliable and congested networks. We introduce Object Mesh

Similarity as a server side approach, in which we try to detect an

alternative object with minimum complexities that is similar to the

original object, and then transmit this reconstructed object, as well

as Texture Stretching as a client-side approach, which leads to the

efficient receipt of object textures. Our results show 35% to 70%

improvement in the transmission delay of 3D textures.

Categories and Subject Descriptors

K.8.0 [Personal Computing]: General – games; I.3.7 [Computer

Graphics]: Three-Dimensional Graphics and Realism.

General Terms

Algorithms, Design.

Keywords

M3G; mobile games; 3D Streaming; Object Mesh Similarity;

Texture Stretching.

1. INTRODUCTION
There has been a significant rise in 3D mobile applications such

as games and 3D virtual environments. It was estimated that 78.6

million people in the U.S. alone played mobile games in 2009,

downloads of mobile games increased tenfold compared to 2003,

and mobile games generated more than $1.5 billion annually in

revenue [1]. In addition, due to progress in the hardware of mobile

devices, these devices can now support 3D graphics, many in fact

able to use hardware acceleration and GPU based support of

popular 3D formats such as OpenGL. The use of a standard 3D

format such as OpenGL has opened the door for a large

population of existing developers to make a profit by selling 3D

applications and games on mobile devices. One of the APIs

supporting OpenGL on mobile devices is the Mobile 3D Graphics

API for Java; i.e. M3G, also known as JSR 184. It is an optional

API tailored specifically for the generation and presentation of 3D

content on mobile platforms. In essence, M3G is a high-level

abstraction over OpenGL ES (JSR-239, another optional package)

[2, 3, 4]. Due to the limitations in network speed, memory size,

and computation resources of mobile devices, a good 3D mobile

game must balance view, visual effects, and performance. One of

the challenges to achieve this balance is to efficiently handle 3D

object textures. While 3D wireframe models can be transmitted

relatively quickly due to their small size, 3D textures take a longer

time to transmit and render, due to the amount of information they

carry. These textures are highly important as they are what the

players will see, and so the visual quality of the game depends on

these textures.

In this paper, we propose an adaptive texture transmission

approach, which consists of server side and client side techniques,

to improve the transmission and rendering speed of 3D textures

for mobile devices. The trade-off of our approach is a reduction in

the visual quality of the textures, which is configurable so that the

outcome still produces an acceptable quality. We implement our

approach using an M3G-based mobile 3D game and we show that

transmission delay with our approach decreases significantly. As

we will show in section II, unlike existing approaches which do

not consider the mobile environments and the 3D settings at the

same time, our approach considers both and leads to a higher

efficiency.

The outline of the paper is as follows. In section II, we will

explain the related work and their shortcomings, and then in

section III, we will propose two techniques, Object Mesh

Similarity and Texture Stretching, for faster transmission of 3D

objects and their corresponding texture in networked mobile

games. In section 4, we present the implementation results,

followed by conclusions.

2. RELATED WORK
In this section, we present three categories of state of the art

approaches that try to improve the efficiency of transmission and

representation of 3D scenes and objects. The categories are

progressive meshes, element repository and view dependency.

2.1 Progressive Meshes
In order to reduce the response time, since the complete

transmission of the whole objects’ meshes could take several

seconds, it should be possible to visualize the received data on the

client even though the transmission has not finished yet.

Progressive Mesh Streaming is a method in which the data is

transferred to the clients step by step, by simplification of

transmission of large meshes. The approach breaks the

information of a scene and the elements inside into several

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

MMSys’12, February 22-24, 2012, Chapel Hill, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1131-1/12/02...$10.00.

streams, which at first allows a base mesh to be transmitted and

rendered on the client-side with low latency [27, 28]. 3D

streaming as a general term uses the same core concept [14].

Some work has been done to identify how high the network delay

and the data rate can be in a progressive mesh streaming system

before it is considered unacceptable by users. However more

research is certainly needed to know the bounds on network delay

that users can tolerate, although it is still an issue how to partition

a progressive mesh into different chunks for transmission [29].

2.2 Element Repository
An object inside a world consists of multiple information such as

vertices, colors, or textures. In this approach, the visual

appearance of a single object is described by an Element Graph.

In order to remove data redundancy for the elements of a 3D

scene, the information is stored in several pools which act like

repositories and the elements only reference the entries of these

pools. There could be several pools like a geometry pool for

vertices and texture coordinates, or a topology pool for other

topological information.

The systems using this approach usually use an ID for each pool

entry which is generated by a checksum algorithm. Each time, the

system compares the incoming entry’s ID with others and if an

Entry’s ID is identical to another ID, then the data is supposed to

be equal. In in this way, the system checks for data redundancy

very fast [27].

2.3 View Dependency
In View-Dependency, the server selects the objects and the

elements which are going to be transmitted to the client according

to the view-positions and view direction of the clients. In these

cases, the client only holds a subset of the world’s scene

information and this subset changes with the user’s view position

and visible parts based on area of interest. However, there are

some issues like how the visible vertex splits can improve the

rendered objects and also deciding which vertex splits to send

(and in what order).[26,27,28].

Unlike the above approaches which do not consider the mobile

environment and the 3D settings at the same time, our approach

considers both, as we shall see in section III. In addition, our

proposed methods use texture-based progressive streaming, as

opposed to only tree-based or mesh-based progressive streaming

used by most other methods. It should be noted however that our

method is complementary to all of the above methods, and can be

used in conjunction with them for even further efficiency.

3. OUR PROPOSED METHODS
In this section, we propose two methods for reducing the

transmission size and thus, reducing response time. Here we are

concerned with the objects and their corresponding textures.

In the first method, called Object Mesh Similarity, we construct

an alternative object, which is similar to our primary object

having minimum difference, but with more simplicity in the

whole shape and with reduced complexity of its graph. So in case

of detecting a low-speed and congested mobile network, we can

initially transfer the alternative object in order to improve the

response time and thus the game system’s efficiency.

In the second method, we use Texture Stretching as a client-side

approach for efficiency improvement in unreliable mobile

networks. Using Texture Stretching, we propose a method to

improve the response time for dealing with incomplete retrieval of

the objects’ textures and images which are used in the area of

interest.

3.1 Object Mesh Similarity
3D objects are organized by a tree structure and defined by points,

polygons and meshes. Transformations such as move, rotate and

scale are implemented by a matrix multiplex [2, 3, 12, 13]. In

order to speed up objects’ transmission in the mobile network, we

can consider a method for recognizing objects and find an

alternative replacement for each of these objects. In other words,

based on the objects’ meshes, we try to detect similar objects with

fewer complexities and then transmit the alternatively

reconstructed objects instead of the original one. In this case, we

use the object graph and the corresponding mesh to build a similar

object.

In case of having an unreliable and low-speed network for

transmission of objects, reducing the size of encoded objects, and

consequently the number of transferred UDP packets, is very

important. In M3G-based mobile games, vertex and index buffers

are combined into Mesh objects; while textures, materials, and

other rendering parameters form the appearance of objects.

Finally, group nodes hierarchically combine transformations [12].

Considering the graph and the vertices of the object, we can

search and construct a similar object with lower numbers of object

vectors and thus, lower size of data for transmission. But we

should note that the alternative object which is reconstructed

using the similarity graph should be in minimum difference with

the primary object. So based on the priorities, we first transfer the

constructed alternative object. Then we must handle the acting

scene, the surrounding objects as well as other necessary parts of

the game. As time progresses and we have left behind the

congested period, and if no more object transmission is left, we

can consider transferring the initial object without omitting

surplus details.

The idea of object mesh similarity could be somewhat similar to

3D streaming; it allows viewing 3D meshes with increasing level

of details by sending a coarse version of a mesh initially, followed

by a sequence of refinements to incrementally improve the quality

[14]. But the main difference between object mesh similarity and

3D streaming is that 3D streaming delivers 3D content over

networks to let the avatars navigate through the virtual

environment without a complete content installation for the

playing world, whereas in our approach, we are not concerned

about the whole world in which the avatar is acting and playing.

Rather, we are concerned about the details of each of the objects

involved in the world. The view generated by our approach is

more detailed, because our approach works at a lower level. In

fact, the two approaches are complementary and object mesh

similarity could be applied in 3D streaming for experiencing even

better efficiency.

Figure 1 shows a sample, a walking avatar represented in our

mobile 3D game demo. Now consider the body of the avatar as an

object having eight vertices. Figure 2 marks the corresponding

vertices, v1 to v8 for the initial avatar’s body graph. Using a

polygon recognition algorithm [15], we determine that a

quadrilateral could be a good match as a similar object, based on

the total shape of the body and the positions of the corresponding

graph vertices. By preserving the actual height, the algorithm uses

a simple mean for calculating the two sides. Equation (1) simply

defines the new X coordinates for the vertices, as follows:

And thus:

W1= - =

W2= - =

Where W1 and W2 are the widths of the two sides of the

reconstructed quadrilateral. Since the actual height, which is

defined by h in Figure 2, is preserved, the rough shape of the

object remains roughly the same. Thus the reconstructed object

resembles the original one and the approach leads to a near similar

shape.

We can generalize equations (1) and (2) for any convex n-sided

object based on the polygon’s set of vertices. Therefore, we can

construct an alternate body, having half the numbers of vertices

compared with our primary body, also with minimum visual

difference. The second object would have lower transmission size

up to 50% for the object mesh. But, transferring the texture could

still be an issue due to its size.

Figure 2 right shows our simulation results for the constructed

alternative shape for the general structure of the body using a Java

OpenGL ES based (JSR-239) programming tool. M3G can be

efficiently implemented on top of OpenGL ES (although this is

not a requirement) [17, 18]. The green points show the graph

vertices.

Figure 1. A walking avatar as a sample for Dynamic Meshes

Figure 2. Our initial graph (left) and the reconstructed graph

(right) for the avatar's body based on the similarity algorithm.

In this section, we showed one possible method for the

implementation of our proposed Object Mesh Similarity technique

as a server-side approach. To detect more complex objects, we

can use other shape detection methods, some using calculations

based on the object’s set of vertices and edges, and some others

using a database for a best-match, in which the collected data is

returned to determine a match with a database of known objects.

3-D Object Recognition using MEGI Model from Range Data

[19], using optimal edge-based shape detection algorithms [20],

Envelope Detection of Multi-Object Shapes [21] and some state-

of-the art methods and means for recognizing two-dimensional

shapes, like CSS matching [22] and Shape context [23] could be

used in such cases. We must however consider the trade-off

between the complexity of the applied algorithm and the response

time.

3.2 Texture Stretching
In this section, we propose our second approach for improving the

response time in unreliable mobile networks. As was stated in the

last section, transferring textures could still be an issue. Due to

bandwidth limits and unreliability in mobile networks, it is quite

possible that some packets get lost and thus, the state of multiple

transmissions would be jeopardized. This action would increase

the response time and thus, the total efficiency of the whole

system would be decreased [6, 10]. Texture Stretching is our

client-side approach for increasing the total responsiveness of the

system, i.e. the M3G based mobile game.

In order to speed up the system’s texture rendering at the client

side, we consider that our mobile network is unreliable. Most

texture files have a specific pattern that is repeated throughout the

whole picture [24, 25]. We use this repetition characteristic for

implementing our proposed method.

In this method, we are concerned with the texture matrix. We set

the acquisition rate of the texture to be 20%, i.e. we wait to

receive up to 20% of the total texture file before using it for

rendering. While transferring the texture from the server to the

client and starting to receive the file, it is possible to be faced with

packet loss [6, 19]. If we detect packet loss before reaching the

20% limit, we can use a variety of existing retransmission

schemes to complete the receipt of 20% of the total texture file.

But in case of continuous failures, we can try to reconstruct an

alternative texture based on the received parts, by copying the

received rows in the texture matrix to replace the next rows of the

texture. It should be noted that the 20% limit is chosen as a result

of trade-off between the response time and the quality of the

received texture; i.e., on one hand we can reduce the response

time and consequently save the transmission bandwidth and on

the other hand we would gain a better texture quality at the client

side based on user acceptability. [29]

(1)

(2)

(I)

(I) (II) (III)

 (I) (II)

Figure 3 shows our approach for the reconstruction of an

alternative texture. Figure 3 (I) shows an original n×m sized

texture, a unit8 bitmap tile texture as the floor pattern used for our

game demo, and the corresponding matrix. Please note that in

order to omit the third dimension, we converted the image’s color

map to a gray scale form. As shown in the figure, considering the

dimensions of the texture and the desired part, we would have an

(n/5) ×m matrix, since the matrix is responsible for 20% of the

total height. (a, …, b), (a’, …, b’), etc. define the arrays as the

matrix’s rows. Figure 3 (II) is the result of running our proposed

algorithm to generate an alternative texture, and the reconstructed

n×m matrix. So, we see the second texture is in a stretched form

compared to the original texture. Figure 4 (I) shows a 3D box in

our game which uses the original texture (I) and the reconstructed

texture (II). As seen in the results, the reduction of the visual

effects is not to a degree that would make the game unusable, and

so the tradeoff of visual quality versus response time is justified.

 [

]

[

]

Figure 3. (I) The original tile texture. (II) The reconstructed

texture using Texture Stretching algorithm for 20% of the

original height.

We have also chosen some other common objects and simulated

their visual quality. We have chosen different balls for different

uses (tennis, basketball, and soccer), a flower field, and a house

and simulated the results of applying texture stretching on the

corresponding textures. Figures 5–7 show the simulation results.

As can be seen from the results, the visual quality of the objects is

such that the player can still easily see what those objects are and

the game can be played. The question that arises is how much

gain to we obtain in the response rate of the system as a result of

this quality reduction. This question is answered in section IV,

where we show a delay performance improvement of 35% to

70%.

Figure 4. (I) The original 3D box used in the game demo. (II)

The reconstructed 3D box using Texture Stretching.

Figure 5. Applying a two-level texture stretching for a wall

and the outer scenery. (I) The original view. (II) First level

texture stretching for the outer animated clouds. (Ш)

Applying the second level texture stretching for the wall

texture.

n × m

n/5 × m

Figure 6. Applying texture stretching on different types of

balls. Left side simulations are the original views, and the

right side simulations are the results.

Figure 7. The effect of using texture stretching for the flower

garden. As the simulation indicates, the visual effect of the

stretched grass texture used in the reconstructed field (right

image) is rather similar with the original grass field (left

image).

Together with our proposed client-side approach, we can also use

some existing and common methods like compression, scaling or

media interpolation that can reduce the visual effects and quality.

Compression further reduces the size of transmitting textures,

while scaling reduces the image resolution by a specific ratio, and

then an enlargement would be applied at the client-side to

reconstruct the image to its original size. In order to improve the

visual effect for achieving a better appearance during game

rendering, we can also apply super sampling as an anti-aliasing

technique, which is the process of eliminating jagged and

pixelated edges, and can be utilized for the smoothing of images

rendered in games. However, the computing complexities and

response time of these algorithms must be considered in the

overall system to ensure they will not introduce unacceptable

delays in the game.

Another complementary method is media interpolation, which

could be very effective especially for animation transmission

during gameplay in congested and unreliable networks.

Animations sometimes are based on changing the covering image,

in which the total animation sequences are combined to form a

single image. Sequences are any group of burst mode images

combined into a single animated image file, like GIF files. Using

media interpolation, instead of transferring the whole image, we

try to transfer the resequenced image, with fewer numbers of

sequences. This approach can be used as either a server-side

approach or client-side approach.

4. PERFORMANCE EVALUATION
We have run a game implementation of our system over a

simulated network to evaluated its performance. The game

consisted of several parts, including objects and their

corresponding PNG formatted textures, of an old school robot,

flower garden, some balls and a house wall with windows which

were shown in figures 1 and 4 to 7. We used the latest version of

the Sun JAVA Wireless Toolkit for CLDC, which defines a Java

runtime environment for low end devices with constrained

hardware resources such as mobile phones, and we used Windows

XP platform for running the simulations. In the simulations, the

network had different levels of reliability at 80%, 85%, 90% and

95% packet transmission success rate.

Figure 8. The response time percentage for different network

reliabilities, i.e. 80%, 85%, 90% and 95%.

In all the simulations, utilization of our proposed methods showed

considerable improvements in the response time. Figure 8 shows

our simulation results, where each graph is for a different

reliability rate. The simulations were done for four different

scenarios: without applying any of our proposed approaches,

using each of our two approaches separately, and finally, using

both approaches at the same time. As the results show, more than

35% to 70% improvement in the response time could be achieved

compared with the scenario in which no approaches were applied.

For instance considering the mobile network with 80% reliability,

using Texture Stretching would result in almost 60.19% less

response time, and applying the Object Mesh Similarity method

would also lessen the responsiveness up to 38.1%, and in the long

run by applying both methods we could improve the response

time almost 73.2%. As we can see from the results, combining

both methods together always yields the best performance gain.

Furthermore, as the reliability of the network becomes less, our

methods have a higher impact on performance gain.

5. CONCLUSION
In this paper, a server-side and a client-side approach were

introduced to improve the responsiveness of a 3D mobile game.

Object Mesh Similarity as a server-side approach and texture

stretching as a client-side approach. Performance results indicate

that our methods improve the response time in unreliable and

congested mobile networks during gameplay. As mentioned in the

paper, it is possible to use our method in conjunction with existing

complementary methods. one example is 3D object conversion

using object mesh splitting. In such cases, if we have some 3D

objects that cover an area that is currently going to be transmitted

as single mesh objects, the performance would be better if we

only transfer the sub-meshes which are currently in the player’s

view. So only the sub-mesh in the view port needs to be rendered

and thus, we could have less resource consumption and faster

response time.

6. REFERENCES
[1] Soh, J.O.B. and Tan, B.C.Y. "Mobile Gaming,"

Communications of the ACM, March 2008, Volume 51,
Number 3, pp. 35-39.

[2] Mobile 3D Graphics API for J2METM,
http://jcp.org/en/jsr/detail?id=184

[3] Mobile 3D Graphics API 2.0,
http://jcp.org/en/jsr/detail?id=297

[4] A Java binding API for OpenGL ES,
http://jcp.org/en/jsr/detail?id=239

[5] Kurose, J.F. and Ross, K.W. 2003, Computer Networking:
“A Top-Down Approach Featuring the Internet”, 2nd Ed.,
Pearson Education.

[6] P. Lonapalawong, A. Davison, “Improving Response Time
in Client/Server 3D Mobile Game”, CyberGames, UK, 2007.

[7] Singhal, S.K. 1996, “Effective Remote Modeling in Large
Scale Distributed Simulation and Visualization
Environments”, PhD thesis, Dept. of Computer Science,
Stanford University.

[8] L. Pantel and L. C.Wolf, “On the suitability of dead
reckoning schemes for games”, NETGAMES, pages 79–84.
ACM, 2002.

[9] S. Legtchenko, S.Monnet , G. Thomas, “Blue Banana:
resilience to avatar mobility in distributed Massively
Multiplayer Online Games”, Dec. 2009.

[10] J. Pang, F. Uyeda, and J. R. Lorch, “Scaling peer-to-peer
games in low-bandwidth environments”. In IPTPS ’07: Proc.
of the 6th International Workshop on Peer-to-Peer Systems,
Feb. 2007.

[11] A. R. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda,
J. Pang, S. Seshan, and X. Zhuang. Donnybrook: “enabling
large-scale, high-speed, peer-to-peer games”. In V. Bahl, D.
Wetherall, S. Savage, and I. Stoica, editors, SIGCOMM,
pages 389–400. ACM, 2008.

[12] K.Pulli, T.Aarnio, V.Miettinen, K.Roimela, and J.Vaarala,
Mobile 3D Graphics with OpenGL ES and M3G, Morgan
Kaufmann, 2007.

[13] “3D graphics for Java mobile devices”, IBM White paper,
2005.

[14] S. Hu, J. Jiang, B. Chen, “Peer-to-Peer 3D Streaming”, IEEE
internet computing, 2010.

[15] A. Ferreira, M. Fonseca, and J. Jorge. “Polygon Detection
from a Set of Lines”. In EncontroPortugues de
ComputacaoGrafica, 2003.

[16] A. Bharambe, J. Pang, S. Seshan. Colyseus: “a distributed
architecture for online multiplayer games”. Proceedings of
the 3rd conference on Networked Systems Design &
Implementation, Berkeley, USA, 2006.

[17] Munshi, A., D.Ginsburg, D.Shreiner. 2008. OpenGL ES 2.0
Programming Guide, Addison-Wesley.

[18] C. Hofele, “Mobile 3D Graphics: Learning 3D Graphics with
the Java Micro Edition”, Course Technology Press, Boston,
USA, 2007

[19] H. Matsuo, A. Iwata, “3-D Object Recognition using MEGI
Model from Range Data”, IEEE 12th IAPR International
Conference, 1994.

[20] Moon, H., Chellappa, R., Rosenfeld, A.: “Optimal edge-
based shape detection.”IEEE Transactions on Image
Processing, 2002.

[21] N. Alajlan, 0. El Badawy, M.S. Kamel, G, Freeman:
“Envelope Detection of Multi-object Shapes”. ICIAR 2005

[22] S. Abbasi, F. Mokhtarian, and J. Kittler. “Curvature scale
space image in shape similarity retrieval”. Multimedia Syst.,
7(6):467– 476, 1999.

[23] S. Belongie, J. Malik, and J. Puzicha. “Shape matching and
object recognitionusing shape contexts”, 2001.

[24] Sony Ericsson Developer World white paper, “Mobile 3D
Graphics and Java Applications Development for Sony
Ericsson Phones”, Nov. 2004.

[25] T. Aarnio, “M3G –Java Mobile 3D”, Nokia Research
Center, 2009.

[26] J. Kim, S. Lee, and L. Kobbelt. “View-dependent mesh
streaming with minimal latency”, International Journal of
Shape Modeling, 11(1):63–90, June 2005.

[27] J. Sahm, I. Soetebier, H. Birthelmer, “efficient representation
and streaming of 3D scenes”, International Journal of
Computers & Graphics, 2004.

[28] W. Cheng, “streaming of high-resolution progressive meshes
over the internet”, PhD thesis, Department of Computer
Science, National University of Singapore

[29] R. N. De Silva, W. Cheng, W.T. Ooi, S. Zhao, “Towards
Understanding User Tolerance to Network Latency and Data
Rate in Remote Viewing of Progressive Meshes”, Proc.
International workshop on Network and Operating Systems
Support For Digital Audio And Video (NOSSDAV),
Amsterdam, The Netherlands, June 2 – 4 2010.

