

Abstract— Yawning detection has a variety of important

applications in driver fatigue detection, well-being assessment of

humans, driving behaviour monitoring, operator attentiveness

detection, and understanding the intentions of a person with a

tongue disability. In all of the above applications, automatic

detection of yawning is one important system component. In this

paper, we design and implement such automatic system, using

computer vision, which runs on a computationally-limited

embedded smart camera platform to detect yawning. We use a

significantly modified implementation of the Viola-Jones

algorithm for face and mouth detection, and then use back

projection theory for measuring both the rate and the amount of

the changes in the mouth, in order to detect yawning. As proof-

of-concept, we have also implemented and tested our system on

top of an actual smart camera embedded platform, called

APEXTM from CogniVue Corp. In our design and

implementations, we took into consideration the practical aspects

which many existing works ignore, such as real time

requirements of the system, as well as the limited processing

power, memory, and computing capabilities of the embedded

platform. Comparisons with existing methods show significant

improvements in the correct yawning detection rate obtained by

our proposed method.

Index Terms— yawning detection, vision based measurement,

smart camera, embedded vision algorithm, low complexity

detection.

I. INTRODUCTION

ELIABLE and automatic yawning detection is a

requirement of a number of important applications. The

most common usage of yawning detection is in driver fatigue

detection systems, where yawning is one factor among others

such as percentage eye closure, eye blink rate, blink speed and

amplitude, head motion, and the driver's direction of attention

[1, 2]. The reason for so much interest in driver fatigue

detection is the proven correlation between driver fatigue and

a significant increase in the probability of car accident [3, 4

and 5]. Once fatigue has been detected, a variety of actions

can be taken to help the driver, such as playing an audible

warning sound, rendering vibrations on the steering wheel

and/or driver’s seat, displaying messages, or supplying more

oxygen to the driver, for example by paced breathing using a

pulse sound synchronized with heartbeats [6]. Driver

behaviour monitoring systems, which may or may not include

driver fatigue detection, also rely on yawning detection as one

factor of determining the driving behavior [7].

Yawning detection is also used for in-home health care

systems, such as intelligent mirrors, which take into account

yawning as one of the factors to determine a person’s health

status, to improve the person’s life-style via tailored user

guidance [8]. Operator attentiveness is another application that

uses yawning detection as one of a few deciding factors in

determining whether or not an operator of a critical system

such as heavy machines, nuclear reactor controls and

monitors, air traffic controllers, etc., is paying attention to the

operation or not [9]. Finally, yawning detection can also be

used in systems that determine the communication intentions

of a person with a tongue disability, specifically to detect false

estimation [10].

For all of the above systems, which require automatic

detection of yawning, the cost of the system is very important

in order to make it economically viable. Vision Based

Measurement (VBM) can help [11]. In VBM, a camera or

optical sensor is used to acquire an image of a physical scene,

and the image is then processed in an operations unit to detect

and/or measure a specific subject of interest. The camera and

the operation unit are together known as a smart camera. Since

such systems are becoming more and more affordable every

day, VBM systems are now being considered a practical

solution for applications such as detection of human physical

features such as face and iris [12, 13, 14 and 15] or automotive

assistive systems [16].

In this paper, our goal is to develop a real time system using a

smart camera that detects a yawning mouth with high

detection rate. Due to our research collaboration with

CogniVue Corp., who manufacture the APEXTM embedded

smart camera, an absolute requirement of our system was that

it must be able to work on the embedded hardware with

computationally-limited capabilities. As we shall see in

Section III, this limitation had a significant effect in our

methodology, and led us to specific design choices which

Yawning Detection Using Embedded Smart

Cameras

Mona Omidyeganeh1, Shervin Shirmohammadi1, Shabnam Abtahi1, Aasim Khurshid2, Muhammad Farhan2,

Jacob Scharcanski2, Behnoosh Hariri1, Daniel Laroche3, Luc Martel3
1 Distributed and Collaborative Virtual Environments Research Laboratory, University of Ottawa, Ottawa,

Canada

 {m_omid | shervin | sabtahi | bhariri} @discover.uottawa.ca
2 Instituto de Informática and Graduate Program on Electrical Engineering, UFRGS, Porto Alegre, Brazil

{akhurshid | jacobs}@inf.ufrgs.br
3CogniVue Corp., Gatineau, Quebec, Canada, {dlaroche | lmartel}@cognivue.com

R

differ from other yawning detection systems. In addition, the

collaboration with CogniVue led to our proof-of-concept

being tested in a car setting, although it must be noted that our

algorithms for yawning detection are not restricted to a car.

Our system’s design involves several steps, including the real

time detection of the person’s face, detection of the mouth,

and detection of yawning. Figure 1 shows the overall

algorithm of our system. In [17], we presented a snapshot of

our design and implementation with the camera on the

dashboard in front of a driver. In this paper, we explain our

design and implementation with more details, and we also

extend our design to accommodate situations where the

camera must be installed under the front mirror. More

experiments and quantitative comparisons with other existing

approaches are also reported.

Fig. 1. Yawning Detection Algorithm.

The rest of this paper is organized as follows. After discussing

the related work in Section II, Section III describes our

proposed approach, while Section IV analyzes the

computational complexity of our approach. Section 0 presents

all implementations, including Viola Jones, our proposed

method, and other system part implementation, and also

describes the hardware specifications and limitations that we

were faced with in our design. Experimental results and

comparisons with other representative methods are in

Section VI, and finally conclusions are made in Section VII.

II. LITERATURE REVIEW

To detect yawning, the mouth itself must be detected first.

This can be done by detecting the face, and then detecting the

mouth. There are many existing approaches to detect face

and/or mouth. In [18], the authors propose an embedded

system which detects face location by analyzing the

movement of eyes. The eyes are detected in sequential input

images by determining the variation of their region. Another

embedded approach is introduced in [19], which utilizes a

Genetic Algorithm with AdaBoost training to optimize the

detection performance. A different approach for open or

closed mouth detection using static supervised classification

based on log-polar signatures is presented in [20]. The

transformation-based nature of the approach tends to lose the

spatial information, so grading mouth opening is challenging

even after the optimization of the SVM classifier, as we will

show in Section V. In [21], the authors propose a real-time

face detection algorithm for locating faces in images and

videos. This algorithm finds not only the face regions, but also

the precise locations of the facial components such as eyes and

lips. Different color based methods for mouth and lips

detection have also been proposed in [22, 23], and most of

them suggest that color is not a good feature for face and lips

or mouth detection when substantial changes in illumination

and head pose are expected. In [24] an embedded system for

face detection which focuses on the use of FGPAs is proposed.

The work in [25] takes advantage of grey projection and

Gabor wavelets to detect the mouth corners and uses Latent

Dirichlet allocation (LDA) to find a linear combination of

those features to detect the yawning mouth, while [26] detects

the face using the Viola-Jones technique and extracts the

mouth region, in which lips are searched for through spatial

fuzzy c-means (s-FCM) clustering. The proposed system in

[27] requires the use of two cameras: a low resolution camera

for the face and a high resolution one for the mouth. It uses

Haar-like features to detect the driver's mouth, and yawning is

detected based on the aspect ratio of the mouth. The work in

[28] monitors driver drowsiness based on a combination of

eyes and mouth gestures, and determines the state of the

mouth and eyes by analyzing their feature points using Back

Propagation neural networks in order to check for the

conditions that involve driver drowsiness. The system in [29]

uses the cascade of classifier as proposed by the Viola-Jones

face detection technique, and then uses an SVM to train the

classifier with the mouth features in yawning condition.

Another approach to facial movement analysis has been

proposed in [30] by using Adaboost and multinomial ridge

regression to train the classifier of different facial actions such

as blinking and yawn motions.

Despite some good results, most of the above techniques

have a high computational complexity and cannot satisfy the

real-time requirements of resource-limited embedded smart

camera platforms. They are either lab reports without an actual

field deployment, or use a high-end laptop/desktop to run their

method, which is far from a practical and economical smart

camera. So despite the considerable research mentioned

above, today only a few yawning monitoring systems exist in

some luxury cars that still suffer from a high rate of false

positive detection and do not have sufficient accuracy [31].

Camera

Face Detection

Face

detecte

d?

Mouth detection

Mouth

detecte

d?

Watch for yawning

Yawning

detected

?

Alert!

Yes

Yes

Yes

No

No

No

There are three main reasons why existing techniques are not

robust enough for a production-grade and commercial

consumer system: computational complexity, facial

obstruction, and lighting conditions [32]. In this paper, we

address the first challenge by proposing a design and

implementation that does consider practical limitations and

can work in real smart cameras.

Our architecture and method started with the work in [32],

which worked well because it was detecting and tracking

multiple features including, face, eyes, and mouth, and had

good robustness. But, similar to existing systems, it turned out

to be too computationally complex to be implemented in an

actual embedded smart camera platform. In this paper, we

only do face and mouth detection, with no tracking, and we do

not use complex algorithms, in order to have a reasonable

computational footprint. We also avoid using techniques that

require a large training database of yawning based on

classifiers, in order to decrease the computational time.

Finally, we have tried to maintain a high level of detection

efficiency when optimizing other aspects of the system such as

complexity and ease of implementation. All of these have

caused our design to take an approach significantly different

from the related work. With this in mind, we now describe our

proposed approach in detail.

III. PROPOSED APPROACH

The overall approach was shown in Figure 1, where the first

step is to detect the person’s face. Face detection can be

challenging because faces are non-rigid and have a high

degree of variability in size, shape, color and texture. In our

case, we assume that the camera is facing the person at a fixed

angle, as shown in Figure 10. Therefore, the problem of

relative camera-face pose is less challenging in our case while

head position might still vary from case to case. There is also a

great deal of variability among faces including shape, color

and size. One of the most functional face detection methods is

the Viola-Jones algorithm [33] which has been already

implemented in the OpenCV software library. We use this

algorithm as a guideline for our own face and mouth detection

methods. Therefore, before explaining the details of our

system, we first briefly discuss the Viola-Jones face detection

algorithm, and explain our design and how it differs from the

typical Viola-Jones method.

A. Viola-Jones Face Detector

The method of object detection using the Viola-Jones

theory is capable of processing images very rapidly while

achieving a high detection rate. There are three main

techniques involved with this detector. The first technique is

an integral image, which is useful for fast feature evaluations

and decreasing the complexity of feature detection for each

frame. The second technique is a process for creating a

classifier by selecting a small number of features using

Adaboost. The last technique is a method of combining

classifiers in a cascade structure.

The first step of the Viola-Jones algorithm uses diagonal

features as well as other types of Haar-like features to extract

face features. Figure 2 shows the types of different Haar-like

features used by the classifier for face detection. The

algorithm of integral image speeds up the computation of the

following Haar-like features.

The value of the integral image at any point (x, y) contains

the sum of all the pixels above and to the left of (x, y)

inclusive:

𝐢𝐢(𝐱, 𝐲) = ∑ 𝐢(𝐱′, 𝐲′)𝐱′<𝒙,𝐲′<𝒚 (1)

Where 𝑖𝑖(𝑥, 𝑦) is the integral image and 𝑖(𝑥′, 𝑦′) is the

original image.

Fig. 2. Different Haar-like features, reproduced from [33].

Fig. 3. Haar-like features, reproduced from [33].

Furthermore, the summed area can be calculated in a single

pass over the image by considering the fact that the value in

the summed area at (x, y) is:

𝐢𝐢(𝐱, 𝐲) = 𝐢(𝐱, 𝐲) + 𝐢𝐢(𝐱 − 𝟏, 𝐲)𝐢𝐢(𝐱, 𝐲 − 𝟏) − 𝐢𝐢(𝐱 − 𝟏, 𝐲 − 𝟏)

 (2)

After computing the summed area, any one of the Haar-like

features can be evaluated in constant time at any scale or

location with just four array references, as shown in Figure 3:

∑ i(x′, y′) = ii(A) + ii(C) − I(B) − I(D)A(x)<x′<𝐶(x)

A(y)<y′<𝑐(𝑦)

 (3)

In the second step, for training the T weak classifiers, a

boosting algorithm is required. The AdaBoost algorithm is

utilized in the system to select critical features that play the

most important role in the classification decision and train the

classifier. Adaboost learning algorithm is required to combine

a collection of weak classification functions to form a strong

classifier. It is composed of decision trees with at most a few

(three) levels of splits in most cases. In the final decision

making procedure, a weighted vote is assigned by each of the

classifiers.

Each split is determined by whether the value v of the

particular feature f is below or above the threshold t; i.e.:

f = {
+1 V ≥ t
−1 V < 𝑡

 (4)

The threshold value is set in the first pass through training

the data set, which classifies the input in the best way. The

resulting error is used by boosting to determine the weight

vote. Then, the feature is re-weighted low or high based on the

correctness of classification.

The main goal of the last part is to ensure that simpler

classifiers are constructed to reject the majority of sub-

windows before using more complex classifiers in order to

achieve low false positive rates. Proposed Face Detection

Method

Viola-Jones method, if implemented as above, is not

efficient enough to run in real time on smart cameras. To

overcome this limitation, we introduce here a design for a fast

and memory efficient face detection algorithm based on Viola-

Jones. In the first step of our face detection method, all the

provided data of the trained features in each node is extracted

and stored in five separate files in the smart camera in order to

save computation time. These files, which are the results of

the training features, are used later in the detection algorithm.

This way, the monitoring system can utilize the saved values

instead of training the classifier and applying the integral

image to find the features from the beginning. Each file

contains one of the following groups of data: feature

coordinate, feature threshold, feature value, stage classifier

and feature weight.

For face detection, the algorithm must be able to detect

faces with different sizes, not only because various people

have different face sizes, but also because a person might be

closer to or further away from the camera at given times,

leading to larger or smaller face sizes, respectively. To do so,

the features must be scaled. The details about this scaling

procedure will be shown in Section IV heading C. One of the

important advantages of our method is that, unlike the typical

OpenCV implementation of Viola Jones, our system stops

searching for another face after finding the first face in each

frame as we are interested particularly in the face of the main

subject and other faces are not considered so the face search

time is optimized. The assumption made is realistic since the

position of the subject is always the closest to the camera, so

that face will be detected first by our proposed system. The

faces of other people will be ignored, as they are not as big as

the subject’s face. As such, our system can find the subject’s

face when there are multiple people in the scene. Figure 4

shows some examples of this in a car driving case, where the

driver’s face, and in the next step his mouth are detected

perfectly. In addition to saving the trained features in the files

to be used directly by the camera and avoiding the training of

the face detection, the result of this design also increases the

speed of the face detection stage and improves the efficiency

of the monitoring system. Details of the platform used in our

tests and code optimizations are given under Section IV.

Fig. 4. Subject face and mouth detected from among multiple people.

B. Proposed Mouth Detection Method

After detection of the face, the mouth location must be

extracted. Due to the known relative position of the person’s

face, the result of our mouth detection algorithm is expected to

have high accuracy. Therefore, for the mouth detection

algorithm, the lower half of the face is chosen as the target

search region.

A similar procedure as face detection is utilized for this

part. Trained features from the XML file are extracted and

saved in the camera to reduce the computational time and

make the system practically feasible. Searching for the mouth

location starts from the upper left corner of the face frame and

continues towards lower right corner. This search procedure is

followed for different scales of the mouth. Instead of taking

the average of 20 mouth candidates, as per the procedure of

OpenCV, we use the biggest candidate to have a higher chance

of finding the mouth in the frame. After locating the biggest

mouth in the frame, the data related to the mouth location and

size is passed to the yawning detection step, described next.

C. Proposed Yawning Detection Method

The last part of the process is to determine yawning. The

first step here is to calibrate the system. This function is done

by finding the location and histogram of the driver’s mouth in

the first frame. To do so, the color image for each mouth

detected in the video is converted to gray scale image, as

shown in Figure 5.

Fig. 5. Yawning Sequence.

The histogram of the gray scale image is obtained by

counting the number of times each gray level occurs in the

image array. The histogram of the normal closed mouth

position in the first frame will be saved as a reference for

further calculations. To determine yawning, back projection

theory is used. The basic idea in back projection theory is to

create a similar image giving the similarity of each pixel of the

candidate object to be matched (the candidate) with the object

of interest (the reference). Generally, the features used for

back projection are intensity values of the gray scale image. In

order to calculate the back projection, the histogram of the

reference image (in this case the normal closed mouth in the

first frame) is computed and compared with the calculated

histogram of candidate mouth region in the following frames.

In this case, the measurement results from an image at each

location over the specific region of interest are taken to form a

multi-dimensional normalized histogram array by sampling

from the image array. In our approach, in each video frame,

we select the location of the mouth and then convert it into an

image array over a chosen region of interest. Then, the

histogram bin is determined for each of the arrays that are

related to the mouth region. The calculated new mouth

histogram is compared to the reference mouth histogram. This

process is repeated for the mouth region of the entire video

sequence in real-time. An appropriate threshold is selected

experimentally and used to convert the gray scale image to

black and white based on the back projection concept. After

the conversion of the input gray scale frame to a black and

white (binary) image, the system checks if there is yawning in

that frame. Yawning is detected by comparing black and white

pixels, and two basic conditions must be satisfied: (a) the ratio

of the number of black pixels in the current and in the

reference frame must be greater than a threshold value (as in

Eq 5), and, (b) the ratio of the black pixels in the mouth region

and white pixels in the region around the mouth must be

greater than a second threshold (as in Eq 6). If both conditions

are satisfied simultaneously, then the system detects this

particular frame as showing yawning, and this process is

repeated for the subsequent frames of the video. The equations

are:
𝑁𝐵𝐶

𝑁𝐵𝑅
> 𝑇ℎ1 (5)

𝑁𝐵𝐶

𝑁𝑊𝐶
> 𝑇ℎ2 (6)

where 𝑁𝐵𝐶 is the total number of the black pixels in the

mouth block of the current frame, 𝑁𝐵𝑅is the total number of

the black pixels in the mouth block of the reference frame, and

𝑁𝑊𝐶is the total number of the white pixels in the mouth

block of the current frame. 1Th and 2Th are thresholds

defined experimentally. Their assessment using Receiver

Operating Characteristic (ROC) curves is described in Section

IV heading E. It should be noted that for yawning detection,

we are employing the image of the mouth and in this stage the

face has already been detected and the luminosity changes of

the image do not affect this part of the process. Also, the

grayscale histogram has been used since the mouth opening is

estimated based on the ratio between black and white pixels,

and one of our goals is to reduce the computational

complexity and have a fast algorithm that is able to perform in

real-time.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

To have an idea about the computational complexity of the

system, in this section we describe and calculate the number of

steps or operations taken by the algorithms in various parts of

the system. Here, we give the computational complexity

analysis of our method, and compare it to the complexity

analysis of methods [20] and [21], which are also compared

against our method experimentally in section VI. The main

reasons for providing these computational complexity

analyses are: a) the methods have been implemented and

tested on different platforms with distinct processing

capabilities, so comparing computing times could be

misleading; and b) computational complexities are

independent of the computational platform, and can provide

unbiased estimates of the complexities of the methods.

For our proposed system, computational complexity is divided

in two stages: training complexity and testing complexity.

Training is done offline just once, so its complexity will not

affect the performance of the system in action. Its stages

consist of face training and mouth training, as follows:

A. Computational Complexity of the Training Stage

Computational complexity of the face detection training stage:

Weak classifiers training computational complexity (face

detection) = 𝑂(𝑊𝑁𝑙𝑜𝑔2𝑁)

Parameters update computational complexity (face detection)

= 𝑂(𝑁)

Committee testing computational complexity (face detection)

= 𝑂(𝑉𝑃𝑙𝑜𝑔2𝑉𝑃 + 𝑉𝑛).

N=Number of face samples of the proposed method face

detection training stage,

𝑉𝑃 =Number of positive validation examples used in the face

detection training stage,

𝑉𝑛 =Number of negative validation examples used in the face

detection training stage,

𝑊=Number of weak classifiers used in the face detection

training stage,

and 𝑂(𝑁) is required to update the weights of the training set.

Computational complexity of mouth detection training stage:

Weak classifiers training computational complexity (mouth

detection) = 𝑂(𝑊′𝑁′𝑙𝑜𝑔2𝑁′)

Parameters update computational complexity (mouth

detection) = 𝑂(𝑁′)

Committee testing computational complexity (mouth

detection) = 𝑂(𝑉′𝑃𝑙𝑜𝑔2𝑉′𝑃 + 𝑉′𝑛).

𝑁′= Number of mouth samples of the proposed method mouth

detection training stage,

𝑉𝑃
′ = Number of positive validation examples used in the

mouth detection training stage,

𝑉𝑛
′ = Number of negative validation examples used in the

mouth detection training stage,

𝑊′= Number of weak classifiers used in the mouth detection

training stage,

and 𝑂(𝑁′) is required to update weights of the training set.

Overall computational complexity of the training stage:

𝑂(𝑊𝑁𝑙𝑜𝑔2𝑁 + 𝑁 + 𝑉𝑃𝑙𝑜𝑔2𝑉𝑃 + 𝑉𝑛

+ 𝑊′𝑁′𝑙𝑜𝑔2𝑁′ + 𝑉′
𝑃

𝑙𝑜𝑔2𝑉′
𝑃 + 𝑁′ + 𝑉𝑛

′)

= 𝑶(𝑾𝑵𝒍𝒐𝒈𝟐𝑵 + 𝑽𝑷𝒍𝒐𝒈𝟐𝑽𝑷

+ 𝑾′𝑵′𝒍𝒐𝒈𝟐𝑵′ + 𝑽′𝑷𝒍𝒐𝒈𝟐𝑽′𝑷)

B. Computational Complexity of the Testing Stage

In the testing stage, each time a test image is received, the face

and the mouth are detected and then yawning/non-yawning are

verified. So the computational complexity is given by

summation of the computational complexities of all these

three stages. Next, we analyze the computational complexities

of these stages, one by one.

Computational complexity of the face detection testing stage:

Computational complexity = 𝑂(𝐼𝑀𝑆)

where:

I=size of the input image

M= number of selected face features

S=size of the input face block

For a test image, the first face block is selected to find if it has

a face or not. All features/weak classifiers are tested with their

corresponding weights. Each weak classifier requires two

iterations over the input image. The computational complexity

of testing N weak classifiers is given by 𝑂(2𝑁𝑆). Then, the

face block is shifted to the right by one pixel, and the process

is repeated, and this process is applied to the entire input

image with size I, which gives a computational complexity of

𝑂(𝐼𝑀𝑆).

Computational complexity of the mouth detection testing

stage:

Computational complexity = 𝑂(𝑆𝑀′𝑆′)

where:

𝑆=size of face block (i.e., the search for the mouth is done

within the face block, not in over the whole image),

𝑀′= number of selected mouth features,

𝑆′=number of pixels in the mouth block.

Computational complexity of the yawning detection testing

stage:

Computational complexity = 𝑂(𝑆′),

where S’ is the size of the detected mouth block. The count of

black and white pixels in one frame requires S’ operations (i.e.

proportional to the number of pixels in the mouth block), and

this operation is performed for two frames (i.e., the current

and the reference frames).

Overall complexity of the testing stage:

𝑶(𝑰𝑴𝑺 + 𝑺𝑴′𝑺′ + 𝑺′) = 𝑶(𝑰𝑴𝑺 + 𝑺𝑴′𝑺′)

Table I compares the complexity of our method with [20] and

[21], the notation and analysis of which is shown in the

Appendix.
TABLE I

COMPUTATIONAL COMPLEXITY ANALYSIS

METHOD TRAINING TESTING

OUR

METHOD
𝑂(𝑊𝑁𝑙𝑜𝑔2𝑁 + 𝑉𝑃𝑙𝑜𝑔2𝑉𝑃

+ 𝑊′𝑁′𝑙𝑜𝑔2𝑁′ + 𝑉′𝑃𝑙𝑜𝑔2𝑉′𝑃)

𝑂(𝐼𝑀𝑆 + 𝑆𝑀′𝑆′)

[20] 𝑂(𝑆′𝐾𝑆𝑁𝑆 + 𝑁𝑆(𝑃2𝑁 + 𝑃3)
+ max(𝑁𝑆, 𝑑) min(𝑁𝑆, 𝑑)2)

𝑂(𝑆′𝐾𝑆 + 𝑃2𝑆′

+ 𝑃3 + 𝑆𝑉)

[21] N/A 𝑂(𝐼𝐿 + 𝐺𝐶 + 𝑆′)

V. IMPLEMENTATION

This section describes the implementation of both the

OpenCV method and our proposed method, as well as the

specification of the platform used for our implementation.

A. Platform Specifications

The automotive APEX platform used in our work contains

the CogniVue CV2203 highly-programmable Image Cognition

Processors (ICP). It consists of an ARM 926EJTM 350MHz

master processor, 34B Ops/sec low-power DSP subsystem

using patented massively parallel Array Processor Unit

(APU), a second 350MHz ARM 926 processor, H/W

acceleration blocks, wide-bandwidth stream DMAs, internal

dual 64-bit AXI data buses to/from all blocks, 16Mbyte DDR

SDRAM, and 1Gbit NAND Flash. While it supports 96

parallel Computational Units (CUs) which allow heavy

massive processing, and can encode/decode D1 MPEG4 video

at 30fps, the platform does not support floating point

operations, divisions, or numbers larger than 16 digits. These

limitations led to specific design choices as described in

Section IV and implementation choices as described next.

To overcome the lack of floating point operation, we used

the fixed point operation by scaling all the floating point

numbers by 2N to discard the digits after the floating point. In

this case N depends on the number of the required floating

point digits to maintain enough accuracy. The number 2 is

selected (instead of the more intuitive 10) for computational

efficiency. Scaling by powers of two has the advantage of

easily shifting the bit pattern of the number to the right by 1

bit for dividing the number by 2 and shifting a number to the

left by 1 bit for multiplying the number by 2. We were also

careful to scale both sides of all operations, so that scaling

won't affect the final results. To prevent overflow in

intermediate results, due to the limited number of digits per

number, we did another layer of scaling. For example, to

multiply a few big numbers and then divide them by a big

number, even though the final result is less than 16 bits, there

is overflow in the intermediate multiplication result. Our

approach was to scale those numbers down before multiplying

them, and then scale up the result.

B. Implementation of Viola Jones in OpenCV

The OpenCV Viola Jones face detection function has been

trained with a huge number of face and non-face images with

a fixed size of 20×20 pixels. The Haar-like features were

applied on these images and all the information about those

features that have been selected using Adaboost from the set

of all features are saved in an XML file in OpenCV. In order

to detect a face, the training algorithm in OpenCV uses 22

stages of classifiers with different numbers of trees and nodes.

Each stage includes a number of decision trees which gets

larger resulting in stronger classifiers as we go to higher

stages. For example, the first stage has 3 trees but the last

stage (stage 22), has 212 trees. All decision trees have only a

single node and each node provides information of one

feature.

C. Implementation of our Proposed Algorithm

As was already mentioned, the Haar-like features are

trained with a large number of 20×20 images and these

features are saved in the XML file. The face detection

algorithm utilizes these features to find the location of the face

but does not necessarily detect only faces with the same size.

In order to overcome this, the features must be scaled. In the

case of having faces larger than 20×20, the feature coordinates

and the feature weight of each node are rescaled. Therefore,

the first task is to search for faces with different sizes

depending on the difference between the subject’s face and

also their distance to the camera in the video frame. Hence,

different scale ratios of the features are used to search for the

face location in the implemented code. Since the scale ratio

varies based on the size of the face, we designed a scale ratio

table, as described next.

To design the table of scale ratio for different face sizes,

various possible face sizes for different people based on the

frame size were considered. For example, in the typical case

of 640×480 frame size, and considering the distance of the

subject to the camera in various vehicles, we assumed that the

largest possible face size can be 460×460 and the smallest face

size can be 100×100. Therefore, by taking this information

into consideration, 18 scale ratios were assigned to detect the

subject’s face. In order to increase the detection speed and

shorten the computation time required to scale the Haar-like

features for different face sizes, all of the data related to each

node in the 22 cascades of classifiers are saved in the above-

mentioned files in 18 scales. In total, 2153 features are defined

in the OpenCV face detection algorithm. Moreover, it should

be noted that our algorithm starts scanning for the face from

the corner of the image with the specific feature size in the

beginning. If the classifiers reject the first location, the

algorithm will shift the search location to the right with a

specific step size. The same procedure will be applied for the

whole image starting with the larger possible scale ratio and

scanning toward smaller scales. If the system does not detect

the face with that particular feature size, the next scale for the

feature will be used and the starting point from the corner of

the image will be assigned until the face is detected. Figures 6

and 7 show the search steps for the face in two specifically

larger and smaller scales, respectively.

The step size in our system is based on the face size: it uses

bigger steps for bigger face sizes in order to expedite the

search process. After finding the face location in the video

frame, the x and y coordinates of the left corner of the face

and the height and width of the face will be saved to limit the

search area for detecting the mouth location.

In summary, we have focused on implementing an

optimized version of the Viola-Jones algorithm in our

platform and we took advantage of two different types of

Fig. 6. Search for the face in a larger scale.

Fig. 7. Search for the face in a smaller scale.

optimizations. First, we took the C++ implementation of

Viola-Jones from OpenCV open source library and analyzed

the computational complexity of its building blocks. We then

either re-implemented or modified some of the most

computationally intensive blocks to make it more efficient. In

the second optimization step, we took advantage of the

hardware characteristics of our embedded system to get a

better performance. As mentioned earlier, the APEX platform

has an Array Processor Unit in addition to its ARM processor.

The ARM processor can offload certain types of the operation

to the APU in order to be able to finish things faster. We have

taken advantage of the APU to be able to process frames with

a faster speed.

D. OpenCV Mouth Detector implementation

This mouth detector is computed with 7000 positive samples.

A large number of normal mouth images in the size of 25×15

are used to train the OpenCV classifier, and its detector

contains 16 cascade classifiers each with a different number of

trees. The first cascade in this case has 12 trees and the last

cascade has 217 trees. The total number of features for

determining the mouth location is 1515.

E. Thresholds Assessment for Yawning Determination

The thresholds Th1and Th2 were assessed using Receiver

Operating Characteristics Curves (ROC) of yawning detection

in the tested videos. To determine the thresholds, the ROC

plots are sketched for different thresholds showing the recall

rates versus the precision values, as shown in Figure 11. Thus

Th1 and Th2 values are chosen equal to 4 and 1.5,

respectively, where they result the best recall and precision

rates.

VI. EXPERIMENTAL RESULTS AND EVALUATIONS

In this section, we evaluate the performance of the proposed

approach for face, mouth and yawning detection. We first

describe our dataset, and then we explain our experiment

details.

Fig. 8. Different lighting conditions and performance of our approach.

Fig. 9. Different levels of mouth openings (silence/talking), and of the

performance of our approach.

A. Dataset

Our yawning dataset, called YawDD, is publically available

and described in detail in [34]. This dataset was obtained from

a near-realistic driving scenario, although it has also been used

in other yawning detection applications, such as smart mirrors

for health monitoring [8]. It consists of two sets: in one set a

camera was installed under the front mirror (Case I) as shown

in Figure 10a and in the other it was installed on the dash

(Case II) as shown in Figure 10b, both representing typical

installations in real driver monitoring systems such as APEX.

Videos of people driving were collected at a resolution of

640x480 pixels, 24-bit true color (RGB), at 30 frames per

second. All the videos were taken from different ages,

ethnicities, and facial characteristics. Each participant

performed three tasks in the video: sit and drive normally, talk

or sing while driving, and yawn while driving. The second

task was performed to distinguish between talking/singing and

yawning, where both scenarios might lead to an open mouth

and therefore a false positive might be detected. Each video

was 15-40 seconds. Figure 8 illustrates some examples where

the detection occurs under varying illumination conditions,

showing our system’s good performance. Also, different open

mouth scenarios occurring in talking, singing or yawning

situations are illustrated in Figure 9, and our system

performance is shown in the form of a red rectangle around

non yawning mouth and a green rectangle around a yawning

mouth.

B. Experiment Parameters and Details

For the specific testing context in our experiments, we chose a

driving scenario, although our design and implementation is

generic and can be applied to any yawning detection system.

Our measurements are defined as follows: a True Positive

(TP) occurs when a real yawning situation is correctly

detected as yawning by the system; a True Negative (TN)

occurs when a non-yawning situation is correctly detected as

non-yawning by the system; a False Positive (FP) occurs when

a non-yawning situation is incorrectly detected as real

yawning; a False Negative (FN) occurs when a real yawning

situation is incorrectly detected as non-yawning. Thus, the rate

of correct yawning detection (RCD) in the video sequence is

used to evaluate the system performance and is defined as

follows [35]:

𝑅𝐶𝐷 =
𝑅 (𝑓𝑟𝑎𝑚𝑒𝑠)

𝑇 (𝑓𝑟𝑎𝑚𝑒𝑠)
 (7)

where RCD often is multiplied by 100% and expressed as a

percentage (%), R(frames) denotes the number of frames

detected correctly as yawning or non-yawning frames, and

T(frames) is the total number of frames in the test set. The

above definition is agreeable with the following expression:

𝑅𝐶𝐷 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (8)

(a) Camera installed under the front mirror

(b) Camera installed on the dash

Fig. 10. Yawning Detection Algorithm.

Three methods were selected against which the

effectiveness of our approach was evaluated. These are (a) the

original Viola-Jones approach for mouth opening/closing

detection, (b) one method representative of the transform-

based approach for mouth opening detection [20], and (c) one

method representative of color-based approach for face and

lips detection [21].
TABLE II

DETECTION RESULTS
 Face

detection

CASE I

Mouth

detection

CASE I

Yawning

detection

CASE I

Face

detection

CASE II

Mouth

detection

CASE II

Yawning

detection

(RCD)

CASE II

OpenCV 61% 48% 18% 85% 57% 20%

[20] 89% 68% 54% 94% 79% 67%

[21] 69% 52% 13% 78% 59% 19%

Proposed

method
89% 68% 65% 94% 79% 75%

We tested the videos in YawDD using our proposed method

running on APEX and the above approaches. The color-based

lip detection approach in [21] was used to detect faces and

mouths, and a yawning occurrence was then detected using the

proposed method. Results are shown in Table II. The results in

Table II indicate that our method can outperform existing

approaches, including [20] and [21]. It shall be observed that

[21] provides comparable performances for face and mouth

detections in CASE II because better lip detections are

obtained for female drivers since they usually wore makeups,

but poorer performances were observed when the mouths were

opened. The proposed method stands high in relation to the

comparative approaches in all tested videos in CASES I and

II. Our method works on video, detects faces, mouths and

yawning as a system while the method in [20] can only be

used to detect yawning when the mouth area is given as input.

The results in Table II also indicate that the face, mouth and

yawning detection accuracies in CASE I are potentially lower

than in CASE II, which suggests that it is more useful to

install the camera on the dash instead of the front mirror. The

75% detection rate for yawning is quite satisfactory

considering existing and practical systems that can actually

run on smart cameras; however, 25% of the missed yawning

can potentially be dangerous, and indicate that still there is

need of more research. It can also be seen that the yawning

detection is affected by the face and the mouth detection,

which is a research area that needs more work considering the

current state of the art.
TABLE III

YAWNING DETECTION STATISTICS USING OUR METHOD

Frames

#Real

Yawning

Frames

%True
Positives

%True
Negatives

%False
Negatives

%False
Positives

Average 560 100 70% 81% 33% 7%
Maximum 2443 376 80% 94% 78% 22%
Minimum 76 41 45% 72% 19% 3%

We also ran our method on an IBM compatible PC with an

Intel processor i5 3.2 GHZ (4 CPUs) and 8GB RAM using

OpenCV code, where its speed was measured at 30 fps, in

comparison with 3 fps on APEX. Table III reports the average,

maximum and minimum number of frames of the real

yawning situations in the tested videos, as well as the

percentages of true positives, true negatives, false negatives

and false positives, using our method. It shall be observed that

the values in Table III are the average, minimum and

maximum of each column, and the columns are independent.

For example, if the video with the minimum number of frames

is 76, the number of frames showing real yawning is not

necessarily 41 in that video, because the minimum number of

yawning frames may refer to a different video.

The results of recall and precision of 30000 tested frames

were also calculated for different thresholds. The graph of the

results for the proposed method and OpenCV method is shown

in Figure 11. The face and mouth detection algorithms of

OpenCV are employed along with the template matching

algorithm of OpenCV to detect yawning, and the results are

compared with our method.

Fig. 11. Recall versus Precision for Yawning Detection.

It is interesting to note that our method outperforms

OpenCV in terms of detection accuracy. One reason is that,

OpenCV searches for the face/mouth location in the whole

frame from the biggest possible face/mouth size to the

smallest in order to find all the candidates in the image. This is

not necessary in a driving scenario, as can be seen in Figure

12, where the OpenCV method has in some cases incorrectly

detected objects that it thinks are faces, in addition to the

driver’s face. On the other hand, our system stops searching

for another face/mouth after finding the first one. This

functionality increases both the speed and the accuracy of the

system significantly. The other reason is that, for mouth

detection, OpenCV’s algorithm finds around 20 candidates for

the mouth and takes their average for the final result. While

the OpenCV implementation of Viola-Jones for face and

mouth detection in fact helps detecting the mouth within a

face, sometimes this method fails to detect yawning since the

it does not discriminate a wide open mouth, as in yawning,

from a mouth just barely open. In fact, the Viola Jones

algorithm is trained to detect the mouth only, not to

discriminate between different degrees of mouth openings.

Instead of taking their average, we take the biggest candidate

as the final detected mouth. This may explain why yawning

mouths have a higher chance of being detected as they are

normally bigger than a normal mouth.

Fig. 12. OpenCV’s incorrect multiple mouths and faces detection.

It should also be mentioned that because of using back

projection theory in our design for detecting yawning, the

false positives are low in our experiments. Since yawning is

detected based on a sequence of images and according to a

specific temporal relationship as explained in Section III.C,

false positives are reduced. However, this is limited to our

experiments. In the real world, if a sequence of images looks

like yawning, for example, singing a song where the mouth

gradually opens and then gradually closes according to the

same temporal profile explained in Section III.C, in theory it is

possible for this sequence to be incorrectly identified as

yawning.

VII. CONCLUSIONS

A computationally lightweight method based on the Viola-

Jones theory for face and mouth detection, and a back

projection technique designed for yawning detection was

proposed in this paper. The proposed system was implemented

and tested on the CogniVue APEX embedded smart camera,

and the results indicate promising accuracy and reliability. The

results of the proposed method are compared with other

methods representative of the state of the art, and the

experimental results suggest that the proposed method

potentially can detect yawning with a higher accuracy (on

average).The embedded platform uses a small camera installed

under the front mirror or on the dash of a car. The output of

the camera is processed in the embedded platform using our

system and the results of face and mouth tracking as well as

yawning alert signal can be seen on the monitor. To make the

system work on a computationally limited platform, much

effort was made in designing and optimizing algorithms and

codes to work in real time and without requiring high level

hardware platforms. The yawning detection results can be

employed for drowsiness monitoring in future work.

REFERENCES

[1] P. Smith et al, “Determining driver visual attention with one camera”,
IEEE Trans. on Intelligent Transportation Systems, Vol. 4, Issue 4, , pp.
2015-2018, January 2004.

[2] M. Rezaei, and R. Klette, “Look at the Driver, Look at the Road: No
Distraction! No Accident!”, Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Colombus, OH, USA, pp. 129 – 136,
23-28 June 2014.

[3] J.R., Treat, “Tri-level study of the causes of traffic accidents,” Report
No. DOT-HS-034-3-535-77 (TAC), 1977.

[4] S.G. Klauer, T. A. Dingus, V. L. Neale, J.D. Sudweeks, and D.J.
Ramsey, “The Impact of Driver Inattention on Near-Crash/Crash Risk:
An Analysis Using the 100-Car Naturalistic Driving Study Data,”
Virginia Tech Transportation Institute, Technical Report # DOT HS 810
594.

[5] O. Tunçer, L. Güvenç, F. Coşkun and E. Karslıgil, “Vision based lane
keeping assistance control triggered by a driver inattention monitor,” in
IEEE Int’l Conference on Systems Man and Cybernetics (SMC),
Istanbul, 10-13 Oct. 2010.

[6] I. Takahashi et al., “Overcoming Drowsiness by Inducing
Cardiorespiratory Phase Synchronization”, IEEE Trans. on Intelligent
Transportation Systems, Vol. 15, Issue 3, pp. 2015-2018, June 2014.

[7] H.B. Kang, “Various Approaches for Driver and Driving Behavior
Monitoring: A Review”, Proc. IEEE International Conference on
Computer Vision Workshops (ICCVW), Sydney, Australia, pp. 616-623,
2-8 Dec. 2013.

[8] Y. Andreu-Cabedo et al., “Mirror mirror on the wall… An intelligent
multisensory mirror for well-being self-assessment”, IEEE Conference
on Multimedia and Expo (ICME), Turin, Italy, June 29 -July 3 2015.

[9] S.I. Ali et al., “An efficient system to identify user attentiveness based
on fatigue detection”, Proc. Conference on Information Systems and
Computer Networks (ISCON), Mathura, India, pp. 15-19, 1-2 March
2014.

[10] M. Sasaki et al., “Estimation of tongue movement based on suprahyoid
muscle activity”, Proc. International Symposium on Micro-
NanoMechatronics and Human Science (MHS), Nagoya, Japan, pp. 433
– 438, 6-9 Nov. 2011.

[11] S. Shirmohammadi and A. Ferrero, “Camera as the Instrument: The
Rising Trend of Vision Based Measurement”, IEEE Instrumentation and
Measurement Magazine, Vol. 17, No. 3, pp. 41-47, June 2014.

[12] G. Bradski, A. Kaehler, “Learning OpenCV Computer Vision with the
OpenCV library,” O’Reilly, Ch. 13. p.p. 509, 2008

[13] C.A.R, Behaine, J. Scharcanski, “Enhancing the Performance of Active
Shape Models in Face Recognition Applications,” IEEE Transactions on
Instrumentation and Measurement, vol. 61, Issue 8, pp. 2330 – 2333,
2012.

[14] G. Betta, D. Capriglione, M. Corvino, C. Liguori, A. Paolillo, “Face
Based Recognition Algorithms: A First Step Toward a Metrological
Characterization,” IEEE Transactions on Instrumentation and
Measurement, vol. 62, Issue 5, pp. 1008 – 1016, 2013.

[15] M.S. Hosseini, B.N. Araabi, H. Soltanian-Zadeh, “Pigment Melanin:
Pattern for Iris Recognition,” IEEE Transactions on Instrumentation and
Measurement, vol. 59, Issue: 4, pp. 792 – 804, 2010.

[16] S.S. Beauchemin, M.A. Bauer, T. Kowsari, C. Ji, “Portable and Scalable
Vision-Based Vehicular Instrumentation for the Analysis of Driver
Intentionality,” IEEE Transactions on Instrumentation and
Measurement, vol. 61, Issue: 2, pp. 391 – 401, 2012.

[17] S. Abtahi, S. Shirmohammadi, B. Hariri, D. Laroche, and L. Martel, “A
Yawning Measurement Method Using Embedded Smart Cameras,”
Proc. IEEE Int’l Instrumentation and Measurement Technology
Conference, Minneapolis, USA, May 6-9, 2013.

[18] H.K. Jee, S.U. Jung, J.H. Yoo, “Liveness detection for embedded face
recognition system,” Int. J. of Biomedical Sciences, vol. 1(4), pp. 235-
238, 2006

[19] M. Yang, J.E. Crenshaw, B. Augustine, R. Mareachen, Y. Wu,

“AdaBoost-based face detection for embedded systems,” Computer
Vision and Image Understanding, vol. 114, issue 11, pp. 1116-1125,
2010.

[20] C. Bouvier, A. Benoit, A. Caplier, P.Y.Coulon, “Open or Closed Mouth
State Detection: Static Supervised Classification Based on Log-polar
Signature,” Advanced Concepts for Intelligent Vision Systems Juan-les-
Pins, France. Springer Berlin / Heidelberg, vol. 5259, pp.1093-1102,
2008.

[21] C.C. Chiang, W.K. Tai, M.T. Yang, Y.T. Huang, C.J. Huang, “A Novel
Method for Detecting Lips, Eyes and Faces in Real Time,” Real-Time
Imaging 9, pp. 277–287, 2003

[22] V. P. Minotto, C.B.O. Lopes, J. Scharcanski, C.R. Jung, B. Lee,

“Audiovisual Voice Activity Detection Based on Microphone Arrays
and Color,” IEEE Journal of Selected Topics in Signal Processing, vol.

7, issue 1, pp. 147-156, June 2014.

[23] R. Medeiros, J. Scharcanski, A. Wong, “Multi-scale Stochastic Color
Texture Models for Skin Region Segmentation and Gesture Detection,”

IEEE Int’l Conference on Multimedia and Expo (ICME), San José, USA,

15-19 July 2013.
[24] A. Bigdeli, Abbas, C. Sim, M. Biglari-Abhari and B. C. Lovell, “Face

Detection on Embedded Systems,” Proceedings of the 3rd Int’l Conf. on
Embedded Software and Systems: Lecture Notes in Computer Science.
Korea, pp. 295-308, 14-16 May 2007.

[25] X. Fan, B. Yin, Y. Fun. “Yawning Detection For Monitoring Drive

Fatigue.” In: Proc. Sixth International Conf. on Machine Learning and

Cybernetics, Hong Kong, pp. 664-668, 2007.
[26] T. Azim, M.A. Jaffar, A.M. Mirza. “Automatic Fatigue Detection of

Drivers through Pupil Detection and Yawning Analysis,” In: Proc.
Fourth Int’l Conf. on Innovative Computing, Information and Control,
pp. 441-445, 2009.

[27] L. Li, Y. Chen, Z. Li, “Yawning Detection for Monitoring Driver
Fatigue Based on Two Cameras,” Proc. 12th Int. IEEE Conf. on
Intelligent Transportation Systems, St. Louis, MO, USA, pp. 12-17,
2009.

[28] Y. Ying, S. Jing, Z. Wei, “The Monitoring Method of Driver’s Fatigue
Based on Neural Network,” Proc. International Conf. on Mechatronics
and Automation, pp. 3555-3559, 2007.

[29] M. Saradadevi, P. Bajaj, “Driver Fatigue Detection Using Mouth and
Yawning Analysis,” IJCSNS Int’l Journal of Computer Science and
Network Security, vol. 8, no. 6, pp. 183-188, 2008.

[30] E. Vural, M. Cetin, A. Ercil, G. Littlewort, M. Bartlett and J. Movella
“Drowsy Driver Detection Through Facial Movement Analysis”, ICCV
Workshop on Human Computer Interaction, 2007.

[31] K. Barry, “Yawn if you Dare. Your Car is Watching You,” Wired
Magazine, Autopia Section, July 30, 2009.

[32] S. Abtahi, B. Hariri, and S. Shirmohammadi, “Driver Drowsiness
Monitoring Based on Yawning Detection”, Proc. IEEE International
Instrumentation and Measurement Technology Conference, Binjiang,
Hangzhou, China, May 10-12 2011.

[33] P. Viola and M. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2001

[34] S. Abtahi, M. Omidyeganeh, S. Shirmohammadi, and B. Hariri,
“YawDD: A Yawning Detection Dataset,” Proc. ACM Multimedia
Systems, Singapore, pp. 24-28, 2014.

[35] H. Zhou, Q. Tang, L. Yang, Y. Yan, G. Lu, K. Cen, “Support vector
machine based online coal identification through advanced flame
monitoring,” Fuel 117, pp. 944-951, 2014.

APPENDIX: COMPUTATIONAL COMPLEXITY

A. Computational complexity estimate for [20]

This method requires the mouth image as an input, and we

used the Viola-Jones algorithm to detect the mouth image as

the input for this method. Our proposed method, in contrast,

finds face, mouth and its state (yawning/Not-yawning)

automatically.

Computational complexity of the training stage:

As this method needs the mouth image for training the SVM,

the mouth should be provided as an input. The procedure after

finding the mouth has the following complexity.

Computational complexity of the retina filtering stage:

Computational complexity = 𝑂(𝑆′𝐾𝑠𝑁𝑠)

𝑆′=size of the mouth block (number of pixels in the mouth

bounding box)

𝐾𝑠= kernel size

𝑁𝑠=number of the mouth samples for training the SVM

Computational complexity of the Log-polar signature:

Computational complexity = 𝑂(𝑆′𝑁𝑠)

Computational complexity of the PCA dimensionality

reduction:

Computational complexity = = 𝑂(𝑁𝑠(𝑃2𝑁𝑠 + 𝑃3))

P= Number of feature points which are generated by the log-

polar signature

Computational complexity of the SVM training stage:

Computational complexity = 𝑂(max(𝑁𝑠 , 𝑑) min(𝑁𝑠, 𝑑)2)
𝑑 = number of features (dimensions of each mouth sample)

Overall computational complexity of the training stage:

𝑂(𝑆′𝐾𝑆𝑁𝑆 + 𝑆′𝑁𝑆 + 𝑁𝑆(𝑃2𝑁 + 𝑃3)
+ max(𝑁𝑆, 𝑑) min(𝑁𝑆 , 𝑑)2)

= 𝑶(𝑺′𝑲𝑺𝑵𝑺 + 𝑵𝑺(𝑷𝟐𝑵 + 𝑷𝟑) + 𝐦𝐚𝐱(𝑵𝑺, 𝒅) 𝐦𝐢𝐧(𝑵𝑺, 𝒅)𝟐)

Note 1: 𝑆′𝑁𝑆 is ignored because the term 𝑆′𝐾𝑆𝑁𝑆 is greater

than 𝑆′𝑁𝑆.

Note 2: This estimate assumes that the mouth is given as

input, otherwise the "computational complexity of mouth

detection training stage" given for our method must be added

to this estimate.

Computational complexity of the testing stage:

As this method needs the mouth image for training the SVM,

the mouth should be provided as an input. The procedure after

finding the mouth has the following complexity.

Computational complexity of the retina filtering stage:

Computational complexity = 𝑂(𝑆′𝐾𝑠)

𝑆′ =Number of pixels in the bounding box of the mouth

𝐾𝑆= kernel size

Computational complexity of the Log-polar signature:

Computational complexity = 𝑂(𝑠′)

Computational complexity of the PCA dimensionality

reduction:

Computational complexity = 𝑂(𝑃2𝑆′ + 𝑃3)

Computational complexity of the SVM testing stage:

Computational complexity = 𝑂(𝑆𝑉)

𝑆𝑉 = Number of Support vectors

Note: The classifier is expressed in terms of the number of

support vectors, and the classification is linear in the number

of such vectors.

Overall computational complexity of the testing stage:

𝑂(𝑆′𝐾𝑆 + 𝑆′ + 𝑃2𝑆′ + 𝑃3 + 𝑆𝑉)=𝑶(𝑺′𝑲𝑺 + 𝑷𝟐𝑺′ + 𝑷𝟑 + 𝑺𝑽)

Note 1: 𝑆′ is ignored because term 𝑆′𝐾𝑆 is greater than 𝑆′.

Note 2: This estimate assumes that the mouth is given as

input, otherwise the "computational complexity of mouth

detection training stage" given for our method must be added

to this estimate.

B. Computational complexity estimate for [21]

The method described in [21] extracts skin pixels based on

rules derived from a quadratic polynomial model, and this

polynomial model is also applicable to the extraction of lips

pixels. The extraction of lips and mouth pixels is followed by

the extraction of the eyes components using histogram

equalization of grayscale image and thresholding, after which

the falsely extracted eyes components are removed by

verifying spatial and geometrical relationships between eye

components and the lips/mouth.

This method does not involve any training, so the

computational complexities given below are the testing

complexities.

Computational complexity of the testing stage:

Computational complexity of the skin/face pixels and lips

pixels extraction stage:

Computational complexity = 𝑂(𝐼𝐾)

I = number of pixels in the input image

K = number of operations performed upon each pixel in the

input image, which in our case correspond to quadratic

polynomial model verification for upper and lower boundaries

of skin and lips locations, for extraction of face and lips pixels.

Computational complexity of the eyes components extraction:

Computational complexity = 𝑂(𝐼)

𝐼 = size of the input image

Note: A thresholding operation is performed on the histogram-

equalized grayscale image to extract the eye components, with

the computational complexity given above.

Computational complexity of the geometric relationship

verification stage:

Computational complexity = 𝑂(𝐺𝐶)

𝐺 = number of operations performed for the verification of the

geometrical and spatial relationships between the facial

components (eyes and lips/mouth)

𝐶 = number of lips/mouth components found in the input

image

Computational complexity of the yawning detection stage:

Computational complexity = 𝑂(𝑆′)

𝑆′ =Number of pixels in the bounding box of mouth

Overall computational complexity of the testing stage:

𝑂(𝐼𝐾 + 𝐼 + 𝐺𝐶 + 𝑆′) = 𝑶(𝑰𝑲 + 𝑮𝑪 + 𝑺′)

Note: 𝐼 is ignored, because 𝐼𝐾 is larger than 𝐼.

