
 

Abstract— Yawning detection has a variety of important 

applications in driver fatigue detection, well-being assessment of 

humans, driving behaviour monitoring, operator attentiveness 

detection, and understanding the intentions of a person with a 

tongue disability. In all of the above applications, automatic 

detection of yawning is one important system component. In this 

paper, we design and implement such automatic system, using 

computer vision, which runs on a computationally-limited 

embedded smart camera platform to detect yawning. We use a 

significantly modified implementation of the Viola-Jones 

algorithm for face and mouth detection, and then use back 

projection theory for measuring both the rate and the amount of 

the changes in the mouth, in order to detect yawning. As proof-

of-concept, we have also implemented and tested our system on 

top of an actual smart camera embedded platform, called 

APEXTM from CogniVue Corp. In our design and 

implementations, we took into consideration the practical aspects 

which many existing works ignore, such as real time 

requirements of the system, as well as the limited processing 

power, memory, and computing capabilities of the embedded 

platform. Comparisons with existing methods show significant 

improvements in the correct yawning detection rate obtained by 

our proposed method.  

 
Index Terms— yawning detection, vision based measurement, 

smart camera, embedded vision algorithm, low complexity 

detection. 

I. INTRODUCTION 

ELIABLE and automatic yawning detection is a 

requirement of a number of important applications. The 

most common usage of yawning detection is in driver fatigue 

detection systems, where yawning is one factor among others 

such as percentage eye closure, eye blink rate, blink speed and 

amplitude, head motion, and the driver's direction of attention 

[1, 2]. The reason for so much interest in driver fatigue 

detection is the proven correlation between driver fatigue and 

a significant increase in the probability of car accident [3, 4 

and 5]. Once fatigue has been detected, a variety of actions 

can be taken to help the driver, such as playing an audible 

warning sound, rendering vibrations on the steering wheel 

and/or driver’s seat, displaying messages, or supplying more 

oxygen to the driver, for example by paced breathing using a 

pulse sound synchronized with heartbeats [6]. Driver 

behaviour monitoring systems, which may or may not include 

driver fatigue detection, also rely on yawning detection as one 

factor of determining the driving behavior [7]. 

Yawning detection is also used for in-home health care 

systems, such as intelligent mirrors, which take into account 

yawning as one of the factors to determine a person’s health 

status, to improve the person’s life-style via tailored user 

guidance [8]. Operator attentiveness is another application that 

uses yawning detection as one of a few deciding factors in 

determining whether or not an operator of a critical system 

such as heavy machines, nuclear reactor controls and 

monitors,  air traffic controllers, etc., is paying attention to the 

operation or not [9]. Finally, yawning detection can also be 

used in systems that determine the communication intentions 

of a person with a tongue disability, specifically to detect false 

estimation [10]. 

For all of the above systems, which require automatic 

detection of yawning, the cost of the system is very important 

in order to make it economically viable. Vision Based 

Measurement (VBM) can help [11]. In VBM, a camera or 

optical sensor is used to acquire an image of a physical scene, 

and the image is then processed in an operations unit to detect 

and/or measure a specific subject of interest. The camera and 

the operation unit are together known as a smart camera. Since 

such systems are becoming more and more affordable every 

day, VBM systems are now being considered a practical 

solution for applications such as detection of human physical 

features such as face and iris [12, 13, 14 and 15] or automotive 

assistive systems [16]. 

In this paper, our goal is to develop a real time system using a 

smart camera that detects a yawning mouth with high 

detection rate. Due to our research collaboration with 

CogniVue Corp., who manufacture the APEXTM embedded 

smart camera, an absolute requirement of our system was that 

it must be able to work on the embedded hardware with 

computationally-limited capabilities. As we shall see in 

Section III, this limitation had a significant effect in our 

methodology, and led us to specific design choices which 
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differ from other yawning detection systems. In addition, the 

collaboration with CogniVue led to our proof-of-concept 

being tested in a car setting, although it must be noted that our 

algorithms for yawning detection are not restricted to a car. 

Our system’s design involves several steps, including the real 

time detection of the person’s face, detection of the mouth, 

and detection of yawning. Figure 1 shows the overall 

algorithm of our system. In [17], we presented a snapshot of 

our design and implementation with the camera on the 

dashboard in front of a driver. In this paper, we explain our 

design and implementation with more details, and we also 

extend our design to accommodate situations where the 

camera must be installed under the front mirror. More 

experiments and quantitative comparisons with other existing 

approaches are also reported. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Yawning Detection Algorithm. 

 

The rest of this paper is organized as follows. After discussing 

the related work in Section II, Section III describes our 

proposed approach, while Section IV analyzes the 

computational complexity of our approach. Section 0 presents 

all implementations, including Viola Jones, our proposed 

method, and other system part implementation, and also 

describes the hardware specifications and limitations that we 

were faced with in our design. Experimental results and 

comparisons with other representative methods are in 

Section VI, and finally conclusions are made in Section VII. 

II. LITERATURE REVIEW 

To detect yawning, the mouth itself must be detected first. 

This can be done by detecting the face, and then detecting the 

mouth. There are many existing approaches to detect face 

and/or mouth. In [18], the authors propose an embedded 

system which detects face location by analyzing the 

movement of eyes. The eyes are detected in sequential input 

images by determining the variation of their region. Another 

embedded approach is introduced in [19], which utilizes a 

Genetic Algorithm with AdaBoost training to optimize the 

detection performance. A different approach for open or 

closed mouth detection using static supervised classification 

based on log-polar signatures is presented in [20]. The 

transformation-based nature of the approach tends to lose the 

spatial information, so grading mouth opening is challenging 

even after the optimization of the SVM classifier, as we will 

show in Section V. In [21], the authors propose a real-time 

face detection algorithm for locating faces in images and 

videos. This algorithm finds not only the face regions, but also 

the precise locations of the facial components such as eyes and 

lips. Different color based methods for mouth and lips 

detection have also been proposed in [22, 23], and most of 

them suggest that color is not a good feature for face and lips 

or mouth detection when substantial changes in illumination 

and head pose are expected. In [24] an embedded system for 

face detection which focuses on the use of FGPAs is proposed. 

The work in [25] takes advantage of grey projection and 

Gabor wavelets to detect the mouth corners and uses Latent 

Dirichlet allocation (LDA) to find a linear combination of 

those features to detect the yawning mouth, while [26] detects 

the face using the Viola-Jones technique and extracts the 

mouth region, in which lips are searched for through spatial 

fuzzy c-means (s-FCM) clustering. The proposed system in 

[27] requires the use of two cameras: a low resolution camera 

for the face and a high resolution one for the mouth. It uses 

Haar-like features to detect the driver's mouth, and yawning is 

detected based on the aspect ratio of the mouth. The work in 

[28] monitors driver drowsiness based on a combination of 

eyes and mouth gestures, and determines the state of the 

mouth and eyes by analyzing their feature points using Back 

Propagation neural networks in order to check for the 

conditions that involve driver drowsiness. The system in [29] 

uses the cascade of classifier as proposed by the Viola-Jones 

face detection technique, and then uses an SVM to train the 

classifier with the mouth features in yawning condition. 

Another approach to facial movement analysis has been 

proposed in [30] by using Adaboost and multinomial ridge 

regression to train the classifier of different facial actions such 

as blinking and yawn motions.  

Despite some good results, most of the above techniques 

have a high computational complexity and cannot satisfy the 

real-time requirements of resource-limited embedded smart 

camera platforms. They are either lab reports without an actual 

field deployment, or use a high-end laptop/desktop to run their 

method, which is far from a practical and economical smart 

camera. So despite the considerable research mentioned 

above, today only a few yawning monitoring systems exist in 

some luxury cars that still suffer from a high rate of false 

positive detection and do not have sufficient accuracy [31]. 
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There are three main reasons why existing techniques are not 

robust enough for a production-grade and commercial 

consumer system: computational complexity, facial 

obstruction, and lighting conditions [32]. In this paper, we 

address the first challenge by proposing a design and 

implementation that does consider practical limitations and 

can work in real smart cameras. 

Our architecture and method started with the work in [32], 

which worked well because it was detecting and tracking 

multiple features including, face, eyes, and mouth, and had 

good robustness. But, similar to existing systems, it turned out 

to be too computationally complex to be implemented in an 

actual embedded smart camera platform. In this paper, we 

only do face and mouth detection, with no tracking, and we do 

not use complex algorithms, in order to have a reasonable 

computational footprint. We also avoid using techniques that 

require a large training database of yawning based on 

classifiers, in order to decrease the computational time. 

Finally, we have tried to maintain a high level of detection 

efficiency when optimizing other aspects of the system such as 

complexity and ease of implementation. All of these have 

caused our design to take an approach significantly different 

from the related work. With this in mind, we now describe our 

proposed approach in detail. 

III. PROPOSED APPROACH 

The overall approach was shown in Figure 1, where the first 

step is to detect the person’s face. Face detection can be 

challenging because faces are non-rigid and have a high 

degree of variability in size, shape, color and texture. In our 

case, we assume that the camera is facing the person at a fixed 

angle, as shown in Figure 10. Therefore, the problem of 

relative camera-face pose is less challenging in our case while 

head position might still vary from case to case. There is also a 

great deal of variability among faces including shape, color 

and size. One of the most functional face detection methods is 

the Viola-Jones algorithm [33] which has been already 

implemented in the OpenCV software library. We use this 

algorithm as a guideline for our own face and mouth detection 

methods. Therefore, before explaining the details of our 

system, we first briefly discuss the Viola-Jones face detection 

algorithm, and explain our design and how it differs from the 

typical Viola-Jones method. 

A. Viola-Jones Face Detector 

The method of object detection using the Viola-Jones 

theory is capable of processing images very rapidly while 

achieving a high detection rate. There are three main 

techniques involved with this detector. The first technique is 

an integral image, which is useful for fast feature evaluations 

and decreasing the complexity of feature detection for each 

frame. The second technique is a process for creating a 

classifier by selecting a small number of features using 

Adaboost. The last technique is a method of combining 

classifiers in a cascade structure.  

The first step of the Viola-Jones algorithm uses diagonal 

features as well as other types of Haar-like features to extract 

face features. Figure 2 shows the types of different Haar-like 

features used by the classifier for face detection. The 

algorithm of integral image speeds up the computation of the 

following Haar-like features. 

The value of the integral image at any point (x, y) contains 

the sum of all the pixels above and to the left of (x, y) 

inclusive: 

𝐢𝐢(𝐱, 𝐲) =  ∑ 𝐢(𝐱′, 𝐲′)𝐱′<𝒙,𝐲′<𝒚  (1) 

Where 𝑖𝑖(𝑥, 𝑦) is the integral image and 𝑖(𝑥′, 𝑦′) is the 

original image. 

 
 

Fig. 2.  Different Haar-like features, reproduced from [33]. 

 

 
 

Fig. 3.  Haar-like features, reproduced from [33]. 

 

Furthermore, the summed area can be calculated in a single 

pass over the image by considering the fact that the value in 

the summed area at (x, y) is:  

 

𝐢𝐢(𝐱, 𝐲) = 𝐢(𝐱, 𝐲) + 𝐢𝐢(𝐱 − 𝟏, 𝐲)𝐢𝐢(𝐱, 𝐲 − 𝟏) − 𝐢𝐢(𝐱 − 𝟏, 𝐲 − 𝟏)

 (2) 

After computing the summed area, any one of the Haar-like 

features can be evaluated in constant time at any scale or 

location with just four array references, as shown in Figure 3: 

 

∑ i(x′, y′) = ii(A) + ii(C) − I(B) − I(D)A(x)<x′<𝐶(x)

A(y)<y′<𝑐(𝑦)

 (3) 

 

In the second step, for training the T weak classifiers, a 

boosting algorithm is required. The AdaBoost algorithm is 

utilized in the system to select critical features that play the 

most important role in the classification decision and train the 

classifier. Adaboost learning algorithm is required to combine 

a collection of weak classification functions to form a strong 

classifier. It is composed of decision trees with at most a few 

(three) levels of splits in most cases. In the final decision 

making procedure, a weighted vote is assigned by each of the 

classifiers.  



Each split is determined by whether the value v of the 

particular feature f is below or above the threshold t; i.e.: 

 

f =  {
+1   V ≥ t
−1   V < 𝑡

                                          (4) 

 

The threshold value is set in the first pass through training 

the data set, which classifies the input in the best way. The 

resulting error is used by boosting to determine the weight 

vote. Then, the feature is re-weighted low or high based on the 

correctness of classification. 

The main goal of the last part is to ensure that simpler 

classifiers are constructed to reject the majority of sub-

windows before using more complex classifiers in order to 

achieve low false positive rates. Proposed Face Detection 

Method 

Viola-Jones method, if implemented as above, is not 

efficient enough to run in real time on smart cameras. To 

overcome this limitation, we introduce here a design for a fast 

and memory efficient face detection algorithm based on Viola-

Jones. In the first step of our face detection method, all the 

provided data of the trained features in each node is extracted 

and stored in five separate files in the smart camera in order to 

save computation time. These files, which are the results of 

the training features, are used later in the detection algorithm. 

This way, the monitoring system can utilize the saved values 

instead of training the classifier and applying the integral 

image to find the features from the beginning. Each file 

contains one of the following groups of data: feature 

coordinate, feature threshold, feature value, stage classifier 

and feature weight.  

For face detection, the algorithm must be able to detect 

faces with different sizes, not only because various people 

have different face sizes, but also because a person might be 

closer to or further away from the camera at given times, 

leading to larger or smaller face sizes, respectively. To do so, 

the features must be scaled. The details about this scaling 

procedure will be shown in Section IV heading C. One of the 

important advantages of our method is that, unlike the typical 

OpenCV implementation of Viola Jones, our system stops 

searching for another face after finding the first face in each 

frame as we are interested particularly in the face of the main 

subject and other faces are not considered so the face search 

time is optimized. The assumption made is realistic since the 

position of the subject is always the closest to the camera, so 

that face will be detected first by our proposed system. The 

faces of other people will be ignored, as they are not as big as 

the subject’s face. As such, our system can find the subject’s 

face when there are multiple people in the scene. Figure 4 

shows some examples of this in a car driving case, where the 

driver’s face, and in the next step his mouth are detected 

perfectly. In addition to saving the trained features in the files 

to be used directly by the camera and avoiding the training of 

the face detection, the result of this design also increases the 

speed of the face detection stage and improves the efficiency 

of the monitoring system. Details of the platform used in our 

tests and code optimizations are given under Section IV. 

 

  

  
 

Fig. 4.  Subject face and mouth detected from among multiple people. 

 

B. Proposed Mouth Detection Method 

After detection of the face, the mouth location must be 

extracted. Due to the known relative position of the person’s 

face, the result of our mouth detection algorithm is expected to 

have high accuracy. Therefore, for the mouth detection 

algorithm, the lower half of the face is chosen as the target 

search region.   

A similar procedure as face detection is utilized for this 

part. Trained features from the XML file are extracted and 

saved in the camera to reduce the computational time and 

make the system practically feasible. Searching for the mouth 

location starts from the upper left corner of the face frame and 

continues towards lower right corner. This search procedure is 

followed for different scales of the mouth. Instead of taking 

the average of 20 mouth candidates, as per the procedure of 

OpenCV, we use the biggest candidate to have a higher chance 

of finding the mouth in the frame. After locating the biggest 

mouth in the frame, the data related to the mouth location and 

size is passed to the yawning detection step, described next. 

 

C. Proposed Yawning Detection Method 

The last part of the process is to determine yawning. The 

first step here is to calibrate the system. This function is done 

by finding the location and histogram of the driver’s mouth in 

the first frame. To do so, the color image for each mouth 

detected in the video is converted to gray scale image, as 

shown in Figure 5. 

 

     

     
 

Fig. 5.  Yawning Sequence. 
 

The histogram of the gray scale image is obtained by 

counting the number of times each gray level occurs in the 



image array. The histogram of the normal closed mouth 

position in the first frame will be saved as a reference for 

further calculations. To determine yawning, back projection 

theory is used. The basic idea in back projection theory is to 

create a similar image giving the similarity of each pixel of the 

candidate object to be matched (the candidate) with the object 

of interest (the reference). Generally, the features used for 

back projection are intensity values of the gray scale image. In 

order to calculate the back projection, the histogram of the 

reference image (in this case the normal closed mouth in the 

first frame) is computed and compared with the calculated 

histogram of candidate mouth region in the following frames. 

In this case, the measurement results from an image at each 

location over the specific region of interest are taken to form a 

multi-dimensional normalized histogram array by sampling 

from the image array. In our approach, in each video frame, 

we select the location of the mouth and then convert it into an 

image array over a chosen region of interest. Then, the 

histogram bin is determined for each of the arrays that are 

related to the mouth region. The calculated new mouth 

histogram is compared to the reference mouth histogram. This 

process is repeated for the mouth region of the entire video 

sequence in real-time. An appropriate threshold is selected 

experimentally and used to convert the gray scale image to 

black and white based on the back projection concept. After 

the conversion of the input gray scale frame to a black and 

white (binary) image, the system checks if there is yawning in 

that frame. Yawning is detected by comparing black and white 

pixels, and two basic conditions must be satisfied: (a) the ratio 

of the number of black pixels in the current and in the 

reference frame must be greater than a threshold value (as in 

Eq 5), and, (b) the ratio of the black pixels in the mouth region 

and white pixels in the region around the mouth must be 

greater than a second threshold (as in Eq 6). If both conditions 

are satisfied simultaneously, then the system detects this 

particular frame as showing yawning, and this process is 

repeated for the subsequent frames of the video. The equations 

are: 
𝑁𝐵𝐶

𝑁𝐵𝑅
> 𝑇ℎ1                                               (5) 

𝑁𝐵𝐶

𝑁𝑊𝐶
> 𝑇ℎ2                                               (6) 

where 𝑁𝐵𝐶 is the total number of the black pixels in the 

mouth block of the current frame, 𝑁𝐵𝑅is the total number of 

the black pixels in the mouth block of the reference frame, and 

𝑁𝑊𝐶is the total number of the white pixels in the mouth 

block of the current frame. 1Th and 2Th are thresholds 

defined experimentally. Their assessment using Receiver 

Operating Characteristic (ROC) curves is described in Section 

IV heading E. It should be noted that for yawning detection, 

we are employing the image of the mouth and in this stage the 

face has already been detected and the luminosity changes of 

the image do not affect this part of the process. Also, the 

grayscale histogram has been used since the mouth opening is 

estimated based on the ratio between black and white pixels, 

and one of our goals is to reduce the computational 

complexity and have a fast algorithm that is able to perform in 

real-time. 

IV. COMPUTATIONAL COMPLEXITY ANALYSIS 

To have an idea about the computational complexity of the 

system, in this section we describe and calculate the number of 

steps or operations taken by the algorithms in various parts of 

the system. Here, we give the computational complexity 

analysis of our method, and compare it to the complexity 

analysis of methods [20] and [21], which are also compared 

against our method experimentally in section VI. The main 

reasons for providing these computational complexity 

analyses are: a) the methods have been implemented and 

tested on different platforms with distinct processing 

capabilities, so comparing computing times could be 

misleading; and b) computational complexities are 

independent of the computational platform, and can provide 

unbiased estimates of the complexities of the methods.    

 

For our proposed system, computational complexity is divided 

in two stages: training complexity and testing complexity. 

Training is done offline just once, so its complexity will not 

affect the performance of the system in action. Its stages 

consist of face training and mouth training, as follows: 

 

A. Computational Complexity of the Training Stage 

Computational complexity of the face detection training stage: 

Weak classifiers training computational complexity (face 

detection) = 𝑂(𝑊𝑁𝑙𝑜𝑔2𝑁) 

Parameters update computational complexity (face detection) 

= 𝑂(𝑁) 

Committee testing computational complexity (face detection) 

= 𝑂(𝑉𝑃𝑙𝑜𝑔2𝑉𝑃 + 𝑉𝑛). 

 

 

N=Number of face samples of the proposed method face 

detection training stage,  

𝑉𝑃 =Number of positive validation examples used in the face 

detection training stage, 

𝑉𝑛 =Number of negative validation examples used in the face 

detection training stage, 

𝑊=Number of weak classifiers used in the face detection 

training stage, 

and 𝑂(𝑁) is required to update the weights of the training set. 

 

Computational complexity of mouth detection training stage:  

Weak classifiers training computational complexity (mouth 

detection) = 𝑂(𝑊′𝑁′𝑙𝑜𝑔2𝑁′)  

Parameters update computational complexity (mouth 

detection) = 𝑂(𝑁′) 

Committee testing computational complexity (mouth 

detection) = 𝑂(𝑉′𝑃𝑙𝑜𝑔2𝑉′𝑃 + 𝑉′𝑛). 

 

𝑁′= Number of mouth samples of the proposed method mouth 

detection training stage,  

𝑉𝑃
′  = Number of positive validation examples used in the 

mouth detection training stage, 



𝑉𝑛
′ = Number of negative validation examples used in the 

mouth detection training stage, 

𝑊′= Number of weak classifiers used in the mouth detection 

training stage, 

and 𝑂(𝑁′) is required to update weights of the training set. 

 

Overall computational complexity of the training stage:  

𝑂(𝑊𝑁𝑙𝑜𝑔2𝑁 + 𝑁 + 𝑉𝑃𝑙𝑜𝑔2𝑉𝑃 + 𝑉𝑛

+ 𝑊′𝑁′𝑙𝑜𝑔2𝑁′ + 𝑉′
𝑃

𝑙𝑜𝑔2𝑉′
𝑃 + 𝑁′ + 𝑉𝑛

′)

= 𝑶(𝑾𝑵𝒍𝒐𝒈𝟐𝑵 + 𝑽𝑷𝒍𝒐𝒈𝟐𝑽𝑷

+ 𝑾′𝑵′𝒍𝒐𝒈𝟐𝑵′ + 𝑽′𝑷𝒍𝒐𝒈𝟐𝑽′𝑷) 

B. Computational Complexity of the Testing Stage 

In the testing stage, each time a test image is received, the face 

and the mouth are detected and then yawning/non-yawning are 

verified. So the computational complexity is given by 

summation of the computational complexities of all these 

three stages. Next, we analyze the computational complexities 

of these stages, one by one. 

 

Computational complexity of the face detection testing stage: 

Computational complexity = 𝑂(𝐼𝑀𝑆) 

where: 

I=size of the input image 

M= number of selected face features 

S=size of the input face block 

For a test image, the first face block is selected to find if it has 

a face or not. All features/weak classifiers are tested with their 

corresponding weights. Each weak classifier requires two 

iterations over the input image. The computational complexity 

of testing N weak classifiers is given by 𝑂(2𝑁𝑆). Then, the 

face block is shifted to the right by one pixel, and the process 

is repeated, and this process is applied to the entire input 

image with size I, which gives a computational complexity of 

𝑂(𝐼𝑀𝑆). 

 

Computational complexity of the mouth detection testing 

stage: 

Computational complexity = 𝑂(𝑆𝑀′𝑆′) 

where: 

𝑆=size of face block (i.e., the search for the mouth is done 

within the face block, not in over the whole image), 

𝑀′= number of selected mouth features, 

𝑆′=number of pixels in the mouth block. 

 

Computational complexity of the yawning detection testing 

stage:  

Computational complexity = 𝑂(𝑆′),  

where S’ is the size of the detected mouth block. The count of 

black and white pixels in one frame requires S’ operations (i.e. 

proportional to the number of pixels in the mouth block), and 

this operation is performed for two frames (i.e., the current 

and the reference frames).  

 

Overall complexity of the testing stage: 

𝑶(𝑰𝑴𝑺 + 𝑺𝑴′𝑺′ + 𝑺′) = 𝑶(𝑰𝑴𝑺 + 𝑺𝑴′𝑺′) 

 

Table I compares the complexity of our method with [20] and 

[21], the notation and analysis of which is shown in the 

Appendix. 
TABLE I 

COMPUTATIONAL COMPLEXITY ANALYSIS 

METHOD TRAINING TESTING 

OUR 

METHOD 
𝑂(𝑊𝑁𝑙𝑜𝑔2𝑁 + 𝑉𝑃𝑙𝑜𝑔2𝑉𝑃

+ 𝑊′𝑁′𝑙𝑜𝑔2𝑁′ + 𝑉′𝑃𝑙𝑜𝑔2𝑉′𝑃) 

𝑂(𝐼𝑀𝑆 + 𝑆𝑀′𝑆′) 

[20] 𝑂(𝑆′𝐾𝑆𝑁𝑆 + 𝑁𝑆(𝑃2𝑁 + 𝑃3)
+ max(𝑁𝑆, 𝑑) min(𝑁𝑆, 𝑑)2) 

𝑂(𝑆′𝐾𝑆 + 𝑃2𝑆′

+ 𝑃3 + 𝑆𝑉) 

[21] N/A 𝑂(𝐼𝐿 + 𝐺𝐶 + 𝑆′) 

V. IMPLEMENTATION 

This section describes the implementation of both the 

OpenCV method and our proposed method, as well as the 

specification of the platform used for our implementation. 

A. Platform Specifications 

The automotive APEX platform used in our work contains 

the CogniVue CV2203 highly-programmable Image Cognition 

Processors (ICP). It consists of an ARM 926EJTM 350MHz 

master processor, 34B Ops/sec low-power DSP subsystem 

using patented massively parallel Array Processor Unit 

(APU), a second 350MHz ARM 926 processor, H/W 

acceleration blocks, wide-bandwidth stream DMAs, internal 

dual 64-bit AXI data buses to/from all blocks, 16Mbyte DDR 

SDRAM, and 1Gbit NAND Flash. While it supports 96 

parallel Computational Units (CUs) which allow heavy 

massive processing, and can encode/decode D1 MPEG4 video 

at 30fps, the platform does not support floating point 

operations, divisions, or numbers larger than 16 digits. These 

limitations led to specific design choices as described in 

Section IV and implementation choices as described next. 

To overcome the lack of floating point operation, we used 

the fixed point operation by scaling all the floating point 

numbers by 2N to discard the digits after the floating point. In 

this case N depends on the number of the required floating 

point digits to maintain enough accuracy. The number 2 is 

selected (instead of the more intuitive 10) for computational 

efficiency. Scaling by powers of two has the advantage of 

easily shifting the bit pattern of the number to the right by 1 

bit for dividing the number by 2 and shifting a number to the 

left by 1 bit for multiplying the number by 2. We were also 

careful to scale both sides of all operations, so that scaling 

won't affect the final results. To prevent overflow in 

intermediate results, due to the limited number of digits per 

number, we did another layer of scaling. For example, to 

multiply a few big numbers and then divide them by a big 

number, even though the final result is less than 16 bits, there 

is overflow in the intermediate multiplication result. Our 

approach was to scale those numbers down before multiplying 

them, and then scale up the result. 



B. Implementation of Viola Jones in OpenCV 

The OpenCV Viola Jones face detection function has been 

trained with a huge number of face and non-face images with 

a fixed size of 20×20 pixels. The Haar-like features were 

applied on these images and all the information about those 

features that have been selected using Adaboost from the set 

of all features are saved in an XML file in OpenCV. In order 

to detect a face, the training algorithm in OpenCV uses 22 

stages of classifiers with different numbers of trees and nodes. 

Each stage includes a number of decision trees which gets 

larger resulting in stronger classifiers as we go to higher 

stages. For example, the first stage has 3 trees but the last 

stage (stage 22), has 212 trees. All decision trees have only a 

single node and each node provides information of one 

feature. 

C. Implementation of our Proposed Algorithm 

As was already mentioned, the Haar-like features are 

trained with a large number of 20×20 images and these 

features are saved in the XML file. The face detection 

algorithm utilizes these features to find the location of the face 

but does not necessarily detect only faces with the same size. 

In order to overcome this, the features must be scaled. In the 

case of having faces larger than 20×20, the feature coordinates 

and the feature weight of each node are rescaled. Therefore, 

the first task is to search for faces with different sizes 

depending on the difference between the subject’s face and 

also their distance to the camera in the video frame. Hence, 

different scale ratios of the features are used to search for the 

face location in the implemented code. Since the scale ratio 

varies based on the size of the face, we designed a scale ratio 

table, as described next.  

 

To design the table of scale ratio for different face sizes, 

various possible face sizes for different people based on the 

frame size were considered. For example, in the typical case 

of 640×480 frame size, and considering the distance of the 

subject to the camera in various vehicles, we assumed that the 

largest possible face size can be 460×460 and the smallest face 

size can be 100×100. Therefore, by taking this information 

into consideration, 18 scale ratios were assigned to detect the 

subject’s face. In order to increase the detection speed and 

shorten the computation time required to scale the Haar-like 

features for different face sizes, all of the data related to each 

node in the 22 cascades of classifiers are saved in the above-

mentioned files in 18 scales. In total, 2153 features are defined 

in the OpenCV face detection algorithm. Moreover, it should 

be noted that our algorithm starts scanning for the face from 

the corner of the image with the specific feature size in the 

beginning. If the classifiers reject the first location, the 

algorithm will shift the search location to the right with a 

specific step size. The same procedure will be applied for the 

whole image starting with the larger possible scale ratio and 

scanning toward smaller scales. If the system does not detect 

the face with that particular feature size, the next scale for the 

feature will be used and the starting point from the corner of 

the image will be assigned until the face is detected. Figures 6 

and 7 show the search steps for the face in two specifically 

larger and smaller scales, respectively. 

The step size in our system is based on the face size: it uses 

bigger steps for bigger face sizes in order to expedite the 

search process. After finding the face location in the video 

frame, the x and y coordinates of the left corner of the face 

and the height and width of the face will be saved to limit the 

search area for detecting the mouth location. 

In summary, we have focused on implementing an 

optimized version of the Viola-Jones algorithm in our 

platform and we took advantage of two different types of  

 
Fig. 6.  Search for the face in a larger scale. 

 

 
Fig. 7.  Search for the face in a smaller scale. 

 

optimizations. First, we took the C++ implementation of 

Viola-Jones from OpenCV open source library and analyzed 

the computational complexity of its building blocks. We then 

either re-implemented or modified some of the most 

computationally intensive blocks to make it more efficient. In 

the second optimization step, we took advantage of the 

hardware characteristics of our embedded system to get a 

better performance. As mentioned earlier, the APEX platform 

has an Array Processor Unit in addition to its ARM processor. 

The ARM processor can offload certain types of the operation 

to the APU in order to be able to finish things faster. We have 

taken advantage of the APU to be able to process frames with 

a faster speed. 

D. OpenCV Mouth  Detector implementation 

This mouth detector is computed with 7000 positive samples. 

A large number of normal mouth images in the size of 25×15 

are used to train the OpenCV classifier, and its detector 

contains 16 cascade classifiers each with a different number of 

trees. The first cascade in this case has 12 trees and the last 

cascade has 217 trees. The total number of features for 



determining the mouth location is 1515. 

E. Thresholds Assessment for Yawning Determination 

The thresholds Th1and Th2 were assessed using Receiver 

Operating Characteristics Curves (ROC) of yawning detection 

in the tested videos. To determine the thresholds, the ROC 

plots are sketched for different thresholds showing the recall 

rates versus the precision values, as shown in Figure 11. Thus 

Th1 and Th2 values are chosen equal to 4 and 1.5, 

respectively, where they result the best recall and precision 

rates. 

VI. EXPERIMENTAL RESULTS AND EVALUATIONS 

In this section, we evaluate the performance of the proposed 

approach for face, mouth and yawning detection. We first 

describe our dataset, and then we explain our experiment 

details. 

  

 
 

 

 

Fig. 8.  Different lighting conditions and performance of our approach. 
 

  
 

 

 
Fig. 9.  Different levels of mouth openings (silence/talking), and of the 

performance of our approach. 

A. Dataset 

Our yawning dataset, called YawDD, is publically available 

and described in detail in [34]. This dataset was obtained from 

a near-realistic driving scenario, although it has also been used 

in other yawning detection applications, such as smart mirrors 

for health monitoring [8]. It consists of two sets: in one set a 

camera was installed under the front mirror (Case I) as shown 

in Figure 10a and in the other it was installed on the dash 

(Case II) as shown in Figure 10b, both representing typical 

installations in real driver monitoring systems such as APEX. 

Videos of people driving were collected at a resolution of 

640x480 pixels, 24-bit true color (RGB), at 30 frames per 

second. All the videos were taken from different ages, 

ethnicities, and facial characteristics. Each participant 

performed three tasks in the video: sit and drive normally, talk 

or sing while driving, and yawn while driving. The second 

task was performed to distinguish between talking/singing and 

yawning, where both scenarios might lead to an open mouth 

and therefore a false positive might be detected. Each video 

was 15-40 seconds. Figure 8 illustrates some examples where 

the detection occurs under varying illumination conditions, 

showing our system’s good performance. Also, different open 

mouth scenarios occurring in talking, singing or yawning 

situations are illustrated in Figure 9, and our system 

performance is shown in the form of a red rectangle around 

non yawning mouth and a green rectangle around a yawning 

mouth. 

B. Experiment Parameters and Details 

For the specific testing context in our experiments, we chose a 

driving scenario, although our design and implementation is 

generic and can be applied to any yawning detection system. 

 

Our measurements are defined as follows: a True Positive 

(TP) occurs when a real yawning situation is correctly 

detected as yawning by the system; a True Negative (TN) 

occurs when a non-yawning situation is correctly detected as 

non-yawning by the system; a False Positive (FP) occurs when 

a non-yawning situation is incorrectly detected as real 

yawning; a False Negative (FN) occurs when a real yawning 

situation is incorrectly detected as non-yawning. Thus, the rate 

of correct yawning detection (RCD) in the video sequence is 

used to evaluate the system performance and is defined as 

follows [35]: 

 

𝑅𝐶𝐷 =
𝑅 (𝑓𝑟𝑎𝑚𝑒𝑠)

𝑇 (𝑓𝑟𝑎𝑚𝑒𝑠)
                                     (7) 

 

where RCD often is multiplied by 100% and expressed as a 

percentage (%), R(frames) denotes the number of frames 

detected correctly as yawning or non-yawning frames, and 

T(frames) is the total number of frames in the test set. The 

above definition is agreeable with the following expression:  

 

𝑅𝐶𝐷 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                (8) 

 



 
(a) Camera installed under the front mirror 

 

 
(b) Camera installed on the dash 

 

Fig. 10.  Yawning Detection Algorithm. 

 

Three methods were selected against which the 

effectiveness of our approach was evaluated. These are (a) the 

original Viola-Jones approach for mouth opening/closing 

detection, (b) one method representative of the transform-

based approach for mouth opening detection [20], and (c) one 

method representative of color-based approach for face and 

lips detection [21].  
TABLE II 

DETECTION RESULTS 
 Face 

detection  

CASE I 

Mouth 

detection 

CASE I 

Yawning 

detection 

CASE I 

Face 

detection  

CASE II 

Mouth 

detection 

CASE II 

Yawning 

detection 

(RCD) 

CASE II 

OpenCV 61% 48% 18% 85% 57% 20% 

[20] 89% 68% 54% 94% 79% 67% 

[21] 69% 52% 13% 78% 59% 19% 

Proposed 

method 
89% 68% 65% 94% 79% 75% 

 

We tested the videos in YawDD using our proposed method 

running on APEX and the above approaches. The color-based 

lip detection approach in [21] was used to detect faces and 

mouths, and a yawning occurrence was then detected using the 

proposed method. Results are shown in Table II. The results in 

Table II indicate that our method can outperform existing 

approaches, including [20] and [21]. It shall be observed that 

[21] provides comparable performances for face and mouth 

detections in CASE II because better lip detections are 

obtained for female drivers since they usually wore makeups, 

but poorer performances were observed when the mouths were 

opened. The proposed method stands high in relation to the 

comparative approaches in all tested videos in CASES I and 

II. Our method works on video, detects faces, mouths and 

yawning as a system while the method in [20] can only be 

used to detect yawning when the mouth area is given as input.  

The results in Table II also indicate that the face, mouth and 

yawning detection accuracies in CASE I are potentially lower 

than in CASE II, which suggests that it is more useful to 

install the camera on the dash instead of the front mirror. The 

75% detection rate for yawning is quite satisfactory 

considering existing and practical systems that can actually 

run on smart cameras; however, 25% of the missed yawning 

can potentially be dangerous, and indicate that still there is 

need of more research. It can also be seen that the yawning 



detection is affected by the face and the mouth detection, 

which is a research area that needs more work considering the 

current state of the art. 
TABLE III 

YAWNING DETECTION STATISTICS USING OUR METHOD 

 
# 
Frames 

#Real 

Yawning 

Frames 

%True 
Positives 

%True 
Negatives 

%False  
Negatives 

%False 
Positives 

Average 560 100 70% 81% 33% 7% 
Maximum 2443 376 80% 94% 78% 22% 
Minimum 76 41 45% 72% 19% 3% 

 

We also ran our method on an IBM compatible PC with an 

Intel processor i5 3.2 GHZ (4 CPUs) and 8GB RAM using 

OpenCV code, where its speed was measured at 30 fps, in 

comparison with 3 fps on APEX. Table III reports the average, 

maximum and minimum number of frames of the real 

yawning situations in the tested videos, as well as the 

percentages of true positives, true negatives, false negatives 

and false positives, using our method. It shall be observed that 

the values in Table III are the average, minimum and 

maximum of each column, and the columns are independent. 

For example, if the video with the minimum number of frames 

is 76, the number of frames showing real yawning is not 

necessarily 41 in that video, because the minimum number of 

yawning frames may refer to a different video. 

The results of recall and precision of 30000 tested frames 

were also calculated for different thresholds. The graph of the 

results for the proposed method and OpenCV method is shown 

in Figure 11. The face and mouth detection algorithms of 

OpenCV are employed along with the template matching 

algorithm of OpenCV to detect yawning, and the results are 

compared with our method. 

 
Fig. 11.  Recall versus Precision for Yawning Detection. 

 

It is interesting to note that our method outperforms 

OpenCV in terms of detection accuracy. One reason is that, 

OpenCV searches for the face/mouth location in the whole 

frame from the biggest possible face/mouth size to the 

smallest in order to find all the candidates in the image. This is 

not necessary in a driving scenario, as can be seen in Figure 

12, where the OpenCV method has in some cases incorrectly 

detected objects that it thinks are faces, in addition to the 

driver’s face. On the other hand, our system stops searching 

for another face/mouth after finding the first one. This 

functionality increases both the speed and the accuracy of the 

system significantly. The other reason is that, for mouth 

detection, OpenCV’s algorithm finds around 20 candidates for 

the mouth and takes their average for the final result. While 

the OpenCV implementation of Viola-Jones for face and 

mouth detection in fact helps detecting the mouth within a 

face, sometimes this method fails to detect yawning since the 

it does not discriminate a wide open mouth, as in yawning, 

from a mouth just barely open. In fact, the Viola Jones 

algorithm is trained to detect the mouth only, not to 

discriminate between different degrees of mouth openings. 

Instead of taking their average, we take the biggest candidate 

as the final detected mouth. This may explain why yawning 

mouths have a higher chance of being detected as they are 

normally bigger than a normal mouth. 

 

 
Fig. 12.  OpenCV’s incorrect multiple mouths and faces detection. 

 

It should also be mentioned that because of using back 

projection theory in our design for detecting yawning, the 

false positives are low in our experiments. Since yawning is 

detected based on a sequence of images and according to a 

specific temporal relationship as explained in Section III.C, 

false positives are reduced. However, this is limited to our 

experiments. In the real world, if a sequence of images looks 

like yawning, for example, singing a song where the mouth 

gradually opens and then gradually closes according to the 

same temporal profile explained in Section III.C, in theory it is 

possible for this sequence to be incorrectly identified as 

yawning. 

VII. CONCLUSIONS 

A computationally lightweight method based on the Viola-

Jones theory for face and mouth detection, and a back 

projection technique designed for yawning detection was 

proposed in this paper. The proposed system was implemented 

and tested on the CogniVue APEX embedded smart camera, 

and the results indicate promising accuracy and reliability. The 

results of the proposed method are compared with other 

methods representative of the state of the art, and the 

experimental results suggest that the proposed method 

potentially can detect yawning with a higher accuracy (on 

average).The embedded platform uses a small camera installed 

under the front mirror or on the dash of a car. The output of 

the camera is processed in the embedded platform using our 



system and the results of face and mouth tracking as well as 

yawning alert signal can be seen on the monitor. To make the 

system work on a computationally limited platform, much 

effort was made in designing and optimizing algorithms and 

codes to work in real time and without requiring high level 

hardware platforms. The yawning detection results can be 

employed for drowsiness monitoring in future work. 

REFERENCES 

[1] P. Smith et al, “Determining driver visual attention with one camera”, 
IEEE Trans. on Intelligent Transportation Systems, Vol. 4, Issue 4, , pp. 
2015-2018, January 2004. 

[2] M. Rezaei, and R. Klette, “Look at the Driver, Look at the Road: No 
Distraction! No Accident!”, Proc. IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), Colombus, OH, USA, pp. 129 – 136, 
23-28 June 2014. 

[3] J.R., Treat, “Tri-level study of the causes of traffic accidents,” Report 
No. DOT-HS-034-3-535-77 (TAC), 1977. 

[4] S.G. Klauer, T. A. Dingus, V. L. Neale, J.D. Sudweeks, and D.J. 
Ramsey, “The Impact of Driver Inattention on Near-Crash/Crash Risk: 
An Analysis Using the 100-Car Naturalistic Driving Study Data,” 
Virginia Tech Transportation Institute, Technical Report # DOT HS 810 
594. 
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APPENDIX: COMPUTATIONAL COMPLEXITY 

A. Computational complexity estimate for [20] 

 

This method requires the mouth image as an input, and we 

used the Viola-Jones algorithm to detect the mouth image as 

the input for this method. Our proposed method, in contrast, 

finds face, mouth and its state (yawning/Not-yawning) 

automatically. 

 

Computational complexity of the training stage: 

As this method needs the mouth image for training the SVM, 

the mouth should be provided as an input. The procedure after 

finding the mouth has the following complexity. 



 

Computational complexity of the retina filtering stage:  

Computational complexity = 𝑂(𝑆′𝐾𝑠𝑁𝑠) 

𝑆′=size of the mouth block (number of pixels in the mouth 

bounding box) 

𝐾𝑠= kernel size 

𝑁𝑠=number of the mouth samples for training the SVM 

Computational complexity of the Log-polar signature: 

Computational complexity = 𝑂(𝑆′𝑁𝑠) 

 

Computational complexity of the PCA dimensionality 

reduction: 

Computational complexity = = 𝑂(𝑁𝑠(𝑃2𝑁𝑠 + 𝑃3)) 

P= Number of feature points which are generated by the log-

polar signature 

 

Computational complexity of the SVM training stage:  

Computational complexity = 𝑂(max(𝑁𝑠 , 𝑑) min(𝑁𝑠, 𝑑)2)   
𝑑 = number of features (dimensions of each mouth sample) 

 

Overall computational complexity of the training stage:  

𝑂(𝑆′𝐾𝑆𝑁𝑆 + 𝑆′𝑁𝑆 + 𝑁𝑆(𝑃2𝑁 + 𝑃3)
+ max(𝑁𝑆, 𝑑) min(𝑁𝑆 , 𝑑)2) 

= 𝑶(𝑺′𝑲𝑺𝑵𝑺 + 𝑵𝑺(𝑷𝟐𝑵 + 𝑷𝟑) + 𝐦𝐚𝐱(𝑵𝑺, 𝒅) 𝐦𝐢𝐧(𝑵𝑺, 𝒅)𝟐) 

Note 1:  𝑆′𝑁𝑆 is ignored because the term 𝑆′𝐾𝑆𝑁𝑆 is greater 

than 𝑆′𝑁𝑆. 

Note 2: This estimate assumes that the mouth is given as 

input, otherwise the "computational complexity of mouth 

detection training stage" given for our method must be added 

to this estimate. 

 

Computational complexity of the testing stage:  

As this method needs the mouth image for training the SVM, 

the mouth should be provided as an input. The procedure after 

finding the mouth has the following complexity. 

 

Computational complexity of the retina filtering stage:  

Computational complexity = 𝑂(𝑆′𝐾𝑠) 

𝑆′ =Number of pixels in the bounding box of the mouth 

𝐾𝑆= kernel size 

 

Computational complexity of the Log-polar signature: 

Computational complexity = 𝑂(𝑠′)  

 

Computational complexity of the PCA dimensionality 

reduction: 

Computational complexity = 𝑂(𝑃2𝑆′ + 𝑃3) 

 

Computational complexity of the SVM testing stage:  

Computational complexity = 𝑂(𝑆𝑉) 

𝑆𝑉 = Number of Support vectors 

Note: The classifier is expressed in terms of the number of 

support vectors, and the classification is linear in the number 

of such vectors.  

 

Overall computational complexity of the testing stage:  

𝑂(𝑆′𝐾𝑆 + 𝑆′ + 𝑃2𝑆′ + 𝑃3 + 𝑆𝑉)=𝑶(𝑺′𝑲𝑺 + 𝑷𝟐𝑺′ + 𝑷𝟑 + 𝑺𝑽) 

 

Note 1:  𝑆′ is ignored because term 𝑆′𝐾𝑆  is greater than 𝑆′. 

Note 2: This estimate assumes that the mouth is given as 

input, otherwise the "computational complexity of mouth 

detection training stage" given for our method must be added 

to this estimate. 

 

B. Computational complexity estimate for [21] 

 

The method described in [21] extracts skin pixels based on 

rules derived from a quadratic polynomial model, and this 

polynomial model is also applicable to the extraction of lips 

pixels. The extraction of lips and mouth pixels is followed by 

the extraction of the eyes components using histogram 

equalization of grayscale image and thresholding, after which 

the falsely extracted eyes components are removed by 

verifying spatial and geometrical relationships between eye 

components and the lips/mouth. 

 

This method does not involve any training, so the 

computational complexities given below are the testing 

complexities.  

 

Computational complexity of the testing stage:  

Computational complexity of the skin/face pixels and lips 

pixels extraction stage: 

Computational complexity = 𝑂(𝐼𝐾) 

I = number of pixels in the input image  

K = number of operations performed upon each pixel in the 

input image, which in our case correspond to quadratic 

polynomial model verification for upper and lower boundaries 

of skin and lips locations, for extraction of face and lips pixels. 

 

Computational complexity of the eyes components extraction: 

Computational complexity = 𝑂(𝐼) 

𝐼 = size of the input image 

Note: A thresholding operation is performed on the histogram-

equalized grayscale image to extract the eye components, with 

the computational complexity given above. 

 

Computational complexity of the geometric relationship 

verification stage: 

Computational complexity = 𝑂(𝐺𝐶) 

𝐺 = number of operations performed for the verification of the 

geometrical and spatial relationships between the facial 

components (eyes and lips/mouth) 

𝐶 = number of lips/mouth components found in the input 

image 

 

Computational complexity of the yawning detection stage:  

Computational complexity = 𝑂(𝑆′) 

𝑆′ =Number of pixels in the bounding box of mouth 

 

Overall computational complexity of the testing stage: 

𝑂(𝐼𝐾 + 𝐼 + 𝐺𝐶 + 𝑆′) = 𝑶(𝑰𝑲 + 𝑮𝑪 + 𝑺′) 

 

Note:  𝐼 is ignored, because 𝐼𝐾 is larger than 𝐼. 


