
An Open Source Cloud Gaming Testbed Using

DirectShow
Hamed Ahmadi1, Mahmoud Reza Hashemi1, Shervin Shirmohammadi1,2

1Multimedia Processing Laboratory (MPL), School of Electrical and Computer Engineering,

College of Engineering, University of Tehran, Tehran, Iran

{ha.ahmadi | rhashemi | sshirmohammadi}@ut.ac.ir

2Distributed and Collaborative Virtual Environments Research Laboratory (DISCOVER Lab),

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada

Abstract— Despite its challenges, cloud gaming is growing its

share in the gaming market by attracting more players. This has

led to an increasing number of researches trying to overcome

cloud gaming’s challenges, including the required high

bandwidth and low latency, to make cloud gaming more

practical and profitable. To perform this research, researchers

need a testbed to evaluate their ideas and find the best solutions.

Currently, GamingAnywhere is the only open source platform

and testbed to serve this goal. However, it cannot be used to

stream all video games, since it depends on hooking APIs which

might be incompatible with some video games. In this paper, we

introduce a new open source cloud gaming testbed. In this

testbed, the screen capturing module is fundamentally a

DirectShow filter and, hence, can be tuned for any DirectShow

compatible video game. The testbed also facilitates the

measurement of delay and quality as the video is processed

through its modules.

Keywords— Cloud Gaming, Evaluation Testbed

I. INTRODUCTION

Cloud gaming is an alternative way to deliver high-quality

gaming experience. The concept of cloud gaming is to render

a video game in the cloud and stream the game scenes as a

video to the players over a broadband network [1]. In a cloud

gaming system, the gameplay control commands (mouse,

keyboard, joystick, or other types of game controller events)

are captured at the client and sent to the cloud to be processed

by the game application. As the game engine receives these

commands, it updates the game state and renders the next

game frame. This game frame is then encoded by the video

encoder and sent over the network to the client’s device where

the frame is decoded and shown on the display.

Cloud gaming has many advantages for users as well as

game developers. On the one hand, users no longer need to

purchase high end graphical hardware to run new games and

can play on virtually any device that can run video. On the

other hand, developers no longer have to fear software piracy,

as the software never leaves the cloud. Furthermore, this

approach can reduce development costs by focusing on one

specific platform. These advantages, among others, have

lighten up a promising future for cloud gaming as the market

analysts predict a nine-time increase in this section of game

industry by 2017 [2].

Cloud gaming, however, has its own challenges. First, it

requires a high bandwidth network to simultaneously stream

the game as a video sequence to multiple players. Second, it is

sensitive to network latencies since a long latency seriously

impairs the interactive experience of a video game. These

restrictions make cloud gaming unavailable to users who have

lower bandwidth connectivity, such as mobile users. Beside

gamers’ need, there are other elements such as efficiency,

error resiliency, scalability, and resource allocation that must

be taken into considerations while designing a cloud gaming

system which exposes an enormous cost to service providers.

Because of its prospering potential, not only cloud

gaming’s challenges have not deterred its market growth, but

also have motivated a great deal of competition among service

providers to acquire the largest share in the market by being

the first to conquer these challenges. It has also levered a lot

of research on both software and hardware aspects of cloud

gaming systems.

One of the key needs of any research pertaining to cloud

gaming, is to have a testbed on which a researcher could run

his experiments and assess the efficiency of his proposed

solutions on practice. The testbed should be close enough to

the real cloud gaming systems so that the results of the

experiments could be applied to the real world with as little

adjustment as possible. In order for researchers to

conveniently utilize their ideas into the framework, the

testbed’s license should also allow free usage and

modification, at least for academic purposes. Being extensible

and configurable are among the other crucial features of such

a testbed.

GamingAnywhere [3] is the first open source cloud gaming

testbed on which researchers can implement and test their new

ideas. It has been written in C/C++ and it leverages several

popular open source libraries such as ffmpeg and libSDL.

GamingAnywhere can be compiled from scratch. One

exception is its dependence on Windows libraries. Since

building them can be tricky, the pre-built Win32 libraries have

been included in the software pack.

Despite its excellent usefulness, one of the drawbacks of

GamingAnywhere is the mechanism it uses to capture game

screens. It directly hooks into game executables. If

successfully attached, the hook would highly outperform other

alternative such as periodically capturing the desktop or a

window via its handle. However, very frequently, this hooking

mechanism fails. For example, GamingAnywhere is unable to

successfully hook into the video games which acquire the

Direct3D device for more than once during gameplay.

Unfortunately, this is a common case, since most games

usually start with showing some interesting graphic artworks

while loading the required game data such as textures and

meshes. Once loaded, such games close the current Direct3D

device and acquire it again with different configurations

which better suit the ongoing parts of the game. In fact, in

practice, the hooking challenges differ from game to game,

depending on the technologies used for developing each game.

In this paper, we introduce a new open source cloud

gaming testbed which is based on DirectShow filter graphs [4].

Filter graphs allow incorporating various filters in an arbitrary

order to complete a multimedia task. Hence, they offer a great

deal of extensibility for the testbed. Moreover, each filter can

be configured before and while the filter graph runs. Therefore,

similar to GamingAnywhere, the introduced testbed is both

extensible and configurable. The testbed is not, however,

portable, since DirectShow filter graphs only execute on

Windows operating systems. Albeit, it should be noted that

multimedia filter graphs can also be built on Linux platforms

using GStreamer [5].

The main advantage of the introduced testbed is the

interdependence among its constructive modules (i.e. filters).

More specifically, researchers can modify a filter’s

implementation to address their research requirements without

impairing any other filter’s functionality. For example, the

hooking mechanism can be tuned for each game by only

modifying the capturing filter which is a clearly distinct

module in the proposed framework, compared to

GamingAnywhere. Furthermore, the researcher can expand

the testbed’s functionality by adding and/or removing specific

filters. As an instance, by adding a delay-measurement filter,

it is possible to analyse and compare various methods to speed

up video encoding and video streaming at the cloud side. As

another example, employing a video quality measurement

filter would be of great help to investigate the efficiency of

perceptual video coding on decreasing the video bandwidth

[6].

 The remainder of this paper is organized as follows. The

architecture of our cloud gaming testbed is explained in the

next section, while its deployment is explained in section III.

Section IV described the directory structure of our testbed,

followed by discussions in section V. Finally the paper ends

with concluding remarks.

II. TESTBED ARCHITECTURE

A cloud gaming testbed contains two key parts: server and

client. Rendering, video encoding and streaming are

performed on the server side. On the other side, the client

decodes and displays the video stream on the player’s screen

while capturing and sending to the server the gameplay

control commands.

A. Server side

Our testbed’s server program has been written in C# .NET.

It has two threads. One thread is in charge of receiving user

inputs from the client side and delivering them to the game

engine. The other thread builds and runs a DirectShow filter

graph.

Fig. 1 The DirectShow filter graph at the server side including four filters

DirectShow divides a complex multimedia task into a

sequence of fundamental processing steps known as filters.

Each filter, which represents one stage in the processing of the

data, has input and/or output pins that may be used to connect

the filter to other filters. The generic nature of this connection

mechanism enables filters to be connected in various ways so

as to implement different complex functions. More

specifically, to convey a media from a filter to its next filter in

the graph, an unconnected output pin on the upstream filter is

connected to an unconnected input pin on the downstream

filter. Pins may support different media types, but upon

connection they must agree on a common media type through

a negotiation process. To implement a specific complex task,

a developer must first build a filter graph by creating instances

of the required filters, and then connecting the filters together.

Note that, as mentioned before, there is no restriction on the

number of filters. Users can simply add or remove the filters

and even modify them to adapt the testbed to their specific

academic purposes. However, in our implementation, the

DirectShow filter graph includes four filters to adequately act

as a basic cloud gaming server. Fig. 1 shows the built-in graph

in the testbed’s server program. Each filter, in this figure, has

its own responsibility, as described next.

1) Screen Capturer: Since accessing the source code of

commercial video games is typically restricted to companies

that license the game, researchers almost never have the

opportunity to modify a video game such that it directly

provides the game frames for the video encoder. Therefore, in

these cases, there is a need to run the original video game on a

machine and then capture game frames from the graphics

buffer. If the game uses a graphics application programming

interface (API), such as DirectX or OpenGL, a more efficient

alternative would be to grab the game frames directly from the

video memory. Fig. 2 shows the data flow between an

application and a graphics card through different graphics

APIs [7]. As can be seen, unlike GDI, DirectX and OpenGL

Screen

Capturer

Color Space

Converter

Video

Encoder
Streaming

Server

have direct access to the video memory through the Hardware

Abstraction Layer (HAL) device driver. A HAL device

provides hardware acceleration to graphics pipeline functions,

based upon the feature set supported by the graphics card.

In our implementation, we incorporate a C# based virtual

video capture source filter which is written by Maxim

Kartavenkov [8] and licensed under the Code Project Open

License (CPOL). This filter has been rated five out of five and

downloaded over 13500 times by Code Project users. It grabs

the desktop via calling CreateDC API function nested in

“gdi32.dll”. The user can simply modify the filter to acquire

the desired video game window handle by using the

FindWindow API function included in “user32.dll” library.

In some situations, researchers have to design a game from

scratch to investigate a specific behaviour among players.

These kinds of games are not usually as complex as

commercial games since they are designed to serve a pre-

defined academic goal rather than entertaining the players.

Thus, the whole game, in these situations, can be designed as

a DirectShow source filter which reduces the burden of

capturing the screen.

Fig. 2 The relationship among graphics APIs, applications and graphics

hardware

2) Color Space Converter: Most video encoders require

their uncompressed input stream to be in YUV color space.

Therefore, based on the Screen Capturer filter’s output color

space, there might be a need for a color space conversion. In

our implementation, since the incorporated Screen Capturer

filter streams video in RGB format, we uses an RGB to YUV

filter before sending the stream to the video encoder.

3) Video Encoder: Currently, most cloud gaming

companies use H.264/AVC as their basic video encoding

standard. Thus, we utilize an H.264/AVC DirectShow filter in

our implementation. However, it is possible to use any other

video encoding standards, such as High Efficiency Video

Coding (HEVC). Moreover, by using modified filters, video

coding researchers have the opportunity to propose potential

enhancements to the current standards and evaluate new ideas.

4) Streaming Server: Once the video has been encoded, it

should be delivered to a streamer server so that the clients can

connect and acquire the stream. In our implementation, we use

an Real-Time Streaming Protocol (RTSP) server DirectShow

filter written by Geraint Davies [9], which supports

H.264/AVC and AAC media types. When the filter graph is

running, the input is fed to an RTSP server, which will

transmit as a live stream. The filter decouples the sequence

and picture parameter-set (i.e. SPS and PPS) Network Access

Layer (NAL) units from the encoded video sequence to grasp

the media type, format, and all associated persistent properties

of the sequence to prepare a session profile. Upon playing the

stream, the filter encapsulates the media packets into Real-

Time Protocol (RTP) transport packets and sends them to the

client.

B. Client side

The ultimate goal of cloud gaming is to help players play

their favorite video games wherever they are, whenever they

want, and on any device they wish. Unquestionably, if the

client side could run in a web browser, cloud gaming would

rapidly approach what it is meant to be. More specifically,

wireless handheld devices are increasingly becoming

widespread among people. Nearly all these devices enjoy pre-

installed and powerful web browsers which support the

HTML5 video tag. Supporting this tag allows playing videos

in webpages without requiring a plug-in. Although, different

browsers have support for different video formats, the latest

versions of all popular web browsers, be it a desktop or a

mobile browser, support H.264/AVC.

 In addition to playing video, the client side should be

capable of gathering the game controls from the web browser

and sending them to the server. In our implementation, we use

AngularJS [10], an open source JavaScript web application

framework, to capture mouse and keyboard events while the

player interacts with the game’s video through the web

browser. Touch events can also be captured using its ngTouch

module [11]. Furthermore, in order to send the captured game

controls to the server, we use Web Sockets technology which

operates over a single socket and is exposed via a JavaScript

interface in HTML5 compliant browsers. Another point to

mention is that web applications which are developed in

HTML5, JavaScript and CSS can be easily converted into

mobile apps [12]. These apps are run through an invisible

browser that is packaged into a native application.

III. DEPLOYMENT

There are two key considerations to run the server on a

machine. First, .Net Framework 3.5 or later must be installed

on the machine. Second, if there exists a pre-compiled or

third-party DirectShow filter that has been called inside the

server’s source code, it must be registered on the machine.

Afterwards, the server program can be run easily. Fig. 3

shows the main form of the server program.

As can be seen, it comprises two parts: DirectShow Filter

Graph Manager and Gameplay Manager. The former provides

an interface to initialize, play, pause and dispose the filter

Application

 Graphics Card

GDI

OpenGL DirectX

Hardware Abstraction Layer

Video Memory

Display Driver

graph. The latter is in charge of receiving the gameplay

commands and simulates them on the machine via calling the

SendInput API function packed in “user32.dll” library. In this

manner, the game engine accesses the synthesized mouse and

keyboard events while the player generates them on the client

device.

Fig. 3 The main form of the server program

The filter graph is responsible to capture, encode and

stream the game frames. Once initialized, the user can play or

pause the filter graph. If the video game itself is not

implemented as a DirectShow filter and runs as a separate

application, it should be executed before initializing the filter

graph. After finishing the experiment, the user is required to

dispose the filter graph to release the allocated resources.

Fig. 4 shows the testbed in our lab. In this figure, the PC on

the right-hand side runs the “My Beautiful Doll, Somi” video

game and the developed server application. The PC on the

left-hand side receives the stream and displays it.

Fig. 4 A demonstration of the testbed. The server (on the right) is streaming

“My Beautiful Doll, Somi” video game and the client (on the left) is decoding
and displaying the stream.

IV. DIRECTORY STRUCTURE

The testbed is released with an all-in-one software package

which includes the testbed source code, third-party library

source code, and pre-compiled binaries and libraries. The

package is available on the Multimedia Processing Laboratory

(MPL) website here1 . There are three subdirectories in the

package, which are:

 Executables: contains all the required run-time files

and their dependent shared libraries.

 Libraries: contains the pre-compiled versions of all the

required libraries.

 Source code: the source code of the testbed along with

its dependencies have been placed here.

V. DISCUSSION

In cloud gaming, the cloud not only processes the game

logic, but also the video rendering. Nonetheless, in order for

this promising paradigm to become fully practical, researches

are required to overcome its shortcomings. The potential

solutions would cover a broad spectrum including methods to

speed up video encoding and video streaming at the cloud side,

live and real-time parallel video encoding in the cloud,

methods to decrease video bandwidth while maintaining

visual quality, and energy-efficient cloud computing for video

rendering at the server side, among many others. However, no

possible solution is incorporated into real practical systems

unless it has been thoroughly evaluated and has shown

significant enhancement over the existing utilized solutions.

Therefore, researches must be provided with evaluating tools

to conduct exhaustive experiments and find efficient solutions.

The more diverse the evaluating tools are, the more situations

can be simulated and the more efficient solutions can be found.

Currently, GamingAnywhere is the only cloud gaming testbed

that is publicly available for researchers. But it is not enough,

since not all games can be streamed on it. So, in this paper, we

introduce a new cloud gaming testbed to cover a wider range

of games. We hope it will encourage the community to

continue developing more testbeds with different architectures

to cover even more games and situations.

The introduced testbed is in its infancy and should

continuously evolve to build trust among researchers.

Therefore, as our future work, we plan to develop more

DirectShow filters to add more functionality to the testbed and

also provide alternative to the current modules. This allows

researchers to compare the performance of different solutions

and find the optimum configurations. It should be noted that

in addition to open source filters, third-party filters can also be

incorporated into the testbed. To do so, the filter must be first

registered on the machine and then be loaded through its

GUID.

VI. CONCLUSIONS

In this paper, we presented an open source cloud gaming

testbed based on DirectShow. This open source testbed allows

researchers to implement their own ideas, on how to overcome

cloud gaming’s challenges and increase gamers’ experience,

using DirectShow filters. They can simply modify or replace

the built-in filter graph’s nodes to adjust the testbed based on

their own research requirements. Using DirectShow filters

1 http://www.site.uottawa.ca/~shervin/CGTestbed

http://www.site.uottawa.ca/~shervin/CGTestbed

also makes the testbed extensible and configurable. Thus, it

can be adopted in various usage scenarios.

REFERENCES

[1] H. Ahmadi, S. Z. Tootaghaj, M. R. Hashemi, and S. Shirmohammadi,

"A game attention model for efficient bit rate allocation in cloud

gaming," Multimedia Systems, vol. 20, pp. 485–501, 2014.
[2] (2015/08/08). Distribution and monetization strategies to increase

revenues from cloud gaming [Online]. Available:

http://www.cgconfusa.com/report/documents/Content-
5minCloudGamingReportHighlights.pdf

[3] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen,

"GamingAnywhere: an open cloud gaming system," in Proceedings of
the 4th ACM Multimedia Systems Conference, 2013, pp. 36-47.

[4] (2015/08/08). The Filter Graph and Its Components [Online]. Available:
https://msdn.microsoft.com/en-

us/library/windows/desktop/dd407188(v=vs.85).aspx

[5] (2015/08/08). GStreamer: open source multimedia framework [Online].
Available: http://gstreamer.freedesktop.org/

[6] J.-S. Lee and T. Ebrahimi, "Perceptual video compression: A survey,"

Selected Topics in Signal Processing, IEEE Journal of, vol. 6, pp. 684-
697, 2012.

[7] (2015/08/08). DirectDraw Architecture [Online]. Available:

https://msdn.microsoft.com/en-
us/library/windows/hardware/ff553820(v=vs.85).aspx

[8] M. Kartavenkov. (2015/08/08). DirectShow Virtual Video Capture

Source Filter in C# [Online]. Available:
http://www.codeproject.com/Articles/437617/DirectShow-Virtual-

Video-Capture-Source-Filter-in

[9] G. Davies. (2015/08/08). DirectShow RTSP Server filter and RTSP
Jukebox [Online]. Available: http://www.gdcl.co.uk/2013/05/16/RTSP-

Jukebox.html

[10] (2015/08/08). AngularJS — Superheroic JavaScript MVW Framework
[Online]. Available: https://angularjs.org/

[11] (2015/08/08). ngTouch [Online]. Available:

https://docs.angularjs.org/api/ngTouch
[12] J. MORONY. (2015/08/08). The Step-by-Step Guide to Publishing a

HTML5 Mobile Application on App Stores [Online]. Available:

http://www.joshmorony.com/the-step-by-step-guide-to-publishing-a-
html5-mobile-application-on-app-stores/

http://www.cgconfusa.com/report/documents/Content-5minCloudGamingReportHighlights.pdf
http://www.cgconfusa.com/report/documents/Content-5minCloudGamingReportHighlights.pdf
http://gstreamer.freedesktop.org/
http://www.codeproject.com/Articles/437617/DirectShow-Virtual-Video-Capture-Source-Filter-in
http://www.codeproject.com/Articles/437617/DirectShow-Virtual-Video-Capture-Source-Filter-in
http://www.gdcl.co.uk/2013/05/16/RTSP-Jukebox.html
http://www.gdcl.co.uk/2013/05/16/RTSP-Jukebox.html
http://www.joshmorony.com/the-step-by-step-guide-to-publishing-a-html5-mobile-application-on-app-stores/
http://www.joshmorony.com/the-step-by-step-guide-to-publishing-a-html5-mobile-application-on-app-stores/

