
 1

Abstract—Cloud computing provides reliable, affordable,

flexible resources for many applications and users with

constrained computing resources and capabilities. The cloud

computing concept is becoming an appealing paradigm for many

industries including the gaming industry, leading to the

introduction of cloud gaming architectures. Despite its

advantages, cloud gaming suffers from unguaranteed end-to-end

delay as well as server side’s computational complexity. In this

paper, a novel algorithm for reducing the computational

complexity and hence speeding up the video encoding speed is

proposed. Specifically, by performing minimum modifications in

the game engine and the video codec, some information from the

game engine is fed into the video encoder to bypass the motion

estimation process. Our results show that the proposed method

achieves up to 39% speed up in the motion estimation process,

leading to a 24% acceleration in the total encoding process.

Index Terms— Cloud computing, Cloud gaming, Video

encoding, Game video motion estimation, Computational

complexity

I. INTRODUCTION

ideo gaming has become a popular entertainment in our

society. Based on recent industry facts, reported by

Entertainment Software Association (ESA), 59 percent of

Americans play video games [1]. The market revenue from the

gaming industry is expected to reach $111 billion by 2015 [2].

Such market will continue to thrive in the years ahead. This is

mainly due to new opportunities brought by the emerging

cloud computing infrastructure. The ubiquity of data-centers

allows for a scalable environment where service providers can

deploy games faster and reach more customers. Furthermore,

cloud computing allows for offloading traditional as well as

complex computational tasks, such as high definition

rendering, to the server side of a cloud system. These

capabilities turn the idea of Cloud Gaming into a reality,

which is also referred to as the paradigm of “Gaming as a

Service” (GaaS) [3].

The cloud gaming structure can be categorized in three

groups as addressed in [3]. The first category is known as

remote rendering GaaS (RR-GaaS). In this architecture, all of

the computational operations including gaming logic, video

rendering and capturing, video encoding and finally video

streaming are performed at the server side. At the other end, a

thin client only receives a compressed video bitstream and

Mehdi Semsarzadeh, Abdulsalam Yassine and Shervin Shirmohammadi

are with the Distributed and Collaborative Virtual Environment Research

Laboratory (DISCOVER Lab), University of Ottawa, Canada. (e-mail:

{msemsarzadeh | ayassine | shervin}@discover.uottawa.ca).

simply decodes and displays it. Intuitively, since in this

scenario the computation is taking place at the server side, an

important challenge would be the power consumption of the

server, which has computational complexity as its main

contributing factor. Another important challenge affecting

users’ experience is the end-to-end delay. In the second

category, the rendering operation is performed at the client

side. This scheme is called Local Rendering GaaS (LR-GaaS).

In such structure, since the terminal is responsible for

performing the rendering operation such as video encoding,

video streaming and video decoding are eliminated from the

cloud gaming system. But, the client has to be capable of

performing the real-time rendering of game scenes. In addition

to the computational capability of client devices, their power

consumption is also a considerable challenge due to the

portability and hence battery-dependence of many client

devices. In the third category, a cognitive resource allocation

(CRA-GaaS) scheme is considered as the architecture of cloud

gaming. In this structure, some of the computational

operations may be performed at the server side or the client

side based on the network, client and server conditions. In

other words, this architecture enables the cloud gaming system

to select optimal component combinations according to system

situation.

Among the aforementioned categories, the RR-GaaS is the

most mature model. Furthermore, RR-GaaS is commercially

utilized by some of the leading cloud gaming companies, such

as OnLive, Sony (Gaikai) and G-Cluster. For this reason, our

gaming architecture in this paper is based on RR-GaaS.

An RR-GaaS based Cloud gaming system offers many

advantages to both game players and developers [4], but also

raises new challenges, especially in terms of computational

complexity. This is because the tasks of running the game

logic, updating and rendering the scenes, and encoding and

streaming the resultant video are all carried out in cloud

servers. Considering that the cloud will service many and

possibly a massive number of players, any slight reduction of

execution time per player at the server side would really

matter for the cloud gaming service provider. Hence, speeding

up the server-side processes has two direct advantages: lower

delay and less power consumption. If the processing speed

increases, then the end-to-end delay of cloud gaming system

will be reduced. Also since there is a direct relation between

execution time and clock frequency, if the encoding time is

reduced by a certain percentage, the number of CPU clock

cycles would be reduced proportionally. Furthermore, there is

a direct relation between power consumption and clock cycles

used [5]. Hence, by reducing the number of clock cycles for

video encoding, our approach leads to lower power

consumption as well. Considering the large number of game

instances running simultaneously on a cloud gaming system, a

slight acceleration in processing speed would bring

Video Encoding Acceleration in Cloud Gaming

Mehdi Semsarzadeh, Abdulsalam Yassine, Shervin Shirmohammadi

V

 2

considerable benefit for cloud gaming service providers and

ultimately less expensive service to end users.

In [6], the computational steps of a cloud gaming system is

decomposed into four: packetization, format conversion, video

encoding and memory copy. Among these four processes,

video encoding contributes up to 52% of the processing time.

This motivated us to investigate the feasibility of accelerating

the cloud gaming operations at the server side in [7]. The aim

of the mechanism in [7] is to accelerate the power-intensive

process of video encoding, by using available game objects’

information from the game engine. At the video encoder side,

the motion estimation (ME) process is the most time

consuming and power intensive step. Ironically, at the game

engine side, the information about the motion of the objects

within the scene is available during the rendering operation.

Hence, the game engine’s object information could be utilized

in order to bypass the time-consuming ME procedure.

Considering that ME’s contribution in recent video coding

standards (i.e. H.264/AVC and HEVC) is more than 50%, this

modification should lead to a fair amount of encoding

acceleration at the server side. This was confirmed by our

preliminary results in [7], which showed that the proposed

mechanism achieves an average of 14.32% and 8.86%

acceleration in ME and total encoding time, respectively.

A. Contributions and comparison to our previous work

In this paper, we have refined and extended our work in [7]

in various forms. The contributions of this paper can be

summarized as follows:

 Generic method:

The proposed method has several properties that make

it generic and applicable to various game engines and

video encoders. First of all, it needs minor modification at

the game engine and the video encoder sides. Second, no

specific game engine or video encoder is considered in

the general design of the proposed method. In other

words, the needed information from the game engine can

be extracted from any existing game engine. Same thing

is true for the video encoder. Although we have used

H.264/AVC in our design for the proof of concept, the

method is encoder independent and can be applied to any

video encoder such as the emerging HEVC standard.

 Simple and fast interface:

The interface receives some information from the game

engine and modifies them to be readable by the video

encoder. In our design, the interface performs few

operations such as coordinate conversion, object scaling

and object movement computation. Furthermore, there is

no need to save a large amount of information at the

interface or perform drastic computations to perform

these operations.

 Smart speedup scheme:

The proposed method combines three different

approaches to provide a smart speed up mechanism. First,

the proposed method not only uses the information from

the game engine side (such as object location), but also

uses the information from inside the video encoder, such

as the predicted motion vector, to make a smarter decision

in skipping the motion estimation process in order to

speed up the whole encoding operation. Second, the

proposed method differentiates between macroblocks

(MB) located in the foreground and the background, due

to similarity of the motion for the MBs located in the

background area. Third, instead of considering a binary

decision mechanism of fully performing conventional ME

or fully skipping it, three different levels of ME processes

are defined by adopting a total of four thresholds.

All of above are rather significant and lead to having a

method with an R-D performance very close to the

conventional encoder, while achieving up to 24% speed

up in total encoding time.

 Comprehensive evaluation:

The visual quality of the proposed method is evaluated

by performing not only objective tests but also subjective

evaluations. The outcome of the subjective analysis is

promising and supports the objective evaluations. Both

confirm that the proposed method outperforms the

previous work in [7] and achieves an R-D performance

very close to the conventional encoder.

We have evaluated the performance of the proposed method

for a practical game engine and video encoder, where we

gained up to 24% speed-up for the whole encoding process

and 39% for motion estimation operation. This shows that the

proposed method in this paper accelerates the encoding

process by a factor of 2 in comparison with the previous

method in [7].

The rest of this paper is organized as follows. Section II

provides a review of the existing work in cloud gaming and

especially the ones that worked on accelerating the cloud

gaming process. Our observations as well as the proposed

method for speeding up the cloud gaming process are

described in section III. To examine the performance of the

proposed method, evaluations are presented in section IV.

Finally section V concludes the paper.

II. RELATED WORK

As we explained before, in RR-GaaS architecture, power

consumption and computational complexity are challenging

issues for cloud servers, mainly due to intensive graphic

rendering and video encoding tasks. In this section, we first

explore some of the existing works on reducing the

complexity of video encoders. Then, we briefly describe the

works on reducing or maintaining the computational

complexity of cloud gaming systems.

By the introduction of the H.264/AVC standard, real-time

video compression as well as power consumption of video

encoders and decoders became the most challenging issues for

researchers. While some studies (e.g. [8]–[12]) have focused

on reducing the computational complexity of the H.264/AVC

and the emerging HEVC standards, others, such as [13]–[15]

have tried to maintain or control the power consumption of

 3

video codecs. In order to reduce the computational complexity

of video encoders, researchers have focused on two encoding

steps known as motion estimation and mode decision, due to

their considerable contribution to the total computational

complexity. Among the methods working on the motion

estimation process, some have tried to reduce the number of

search candidates of motion estimation process [8], some

others, such as [9] and [10], have proposed fast motion

estimation approaches, while others have worked on the mode

decision procedure and have mostly focused on skipping mode

decision in certain conditions, as described in [12].

To control the computational complexity and hence

maintain the power consumption of the H.264/AVC encoder, a

two stage complexity controller is proposed in [13]. The

authors of [14] have managed the complexity of an

H.264/AVC encoding system for real-time applications by

selectively dropping some frames based on encoding time

consumption. In [15] the encoding parameters are adjusted to

adapt the computational complexity of a video encoder with

the available resources.

Although the above methods can be used to reduce the

computational complexity of video encoding, and hence the

whole cloud gaming server, these are generic video encoding

methods, and do not consider specific characteristic of cloud

gaming system. In other words, they have no information

about the potential of using the side information that may

come with the compressed bitstream in games. Our proposed

method specifically targets video streams encoded from game

scenes, and not only should lead to better performance for

cloud gaming, but is also complementary to the above

methods.

The computational complexity of cloud gaming has also

been taken into attention by several studies; e.g. [16]–[21]. In

[16], the video encoding process is sped up, using the run-time

graphics rendering context. To do so, the video encoder selects

a set of key frames and uses a 3D image-warping algorithm to

interpolate other noncritical frames. In [17] and [18], the

motion estimation process is bypassed using the depth map,

extracted from the game engine. The depth information is also

used by the authors of [19] to accelerate the mode selection

step of H.264/AVC encoder. Unlike the above methods [17]–

[19], our proposed method provides an abstract level solution

for accelerating the cloud gaming process. In our scheme,

neither a special game type (i.e. 2D or 3D), nor a specific

rendering technology (e.g. OpenGL) is assumed. This makes

our method more generic and applicable for any type of game

engine and video encoder. The authors of [20] proposed

tuning the encoding parameters based on the available

complexity to meet the complexity constraint of a cloud

gaming system. The authors of [21] have used their object

prioritization method [22][23] to reduce the processing power

of the encoder by removing less-important objects from the

scene. These methods [20]-[23] are complementary to our

proposed method in this paper. In [24] a layered coding

scheme is presented, which takes advantage of the graphics

processing capability of a mobile client in order to reduce the

bit rate of game streaming.

In [25] a Warping-based motion estimation method is

proposed, with the main objective of improving the video

compression quality. To do so, they have used the additional

information available from the rendering process to improve

the video compression quality. The objective of our work is

reducing the encoding complexity by speeding up the

encoding process, while their objective is improving

compression quality, hence the objectives are different and our

work cannot be compared to theirs.

In this paper, we extend our previous work [7] and propose

a method, which uses the side information of the game engine

and decides to skip or perform the motion estimation process

based on some conditions. The proposed method has several

advantages over our previous work in [7]: In [7], we only sped

up the encoding process of the macroblock inside the objects

and we did not consider the background area, while the

proposed method in this paper detects if a macroblock is

located in the foreground or background and performed

different operations based on the location of the macroblock.

Furthermore, in [7], we only decided to skip the motion

estimation of a macroblock if it was within an object area,

regardless of other information which is available at the

encoder side, such as predicted motion vector (PMV). In this

paper, for the macroblocks inside an object (foreground

macroblocks), we compare the object movement with the

predicted motion vector and decide whether to skip the motion

estimation process, perform a restricted motion estimation

operation or perform a normal motion estimation operation. In

addition to foreground macroblock, the proposed method in

this paper tries to accelerate the motion estimation process of

the background macroblocks. For a macroblock located in the

background area, a background motion vector will be used for

comparison with the predicted motion vector. Here, again

three types of motion estimation processes may be performed

based on the difference between the background motion vector

and the predicted motion vector.

III. PROPOSED FRAMEWORK

In this section, we present our method for accelerating the

cloud gaming process, by providing some side information to

the video encoder. Building on our previous work [7], we first

review, in subsection A, the conventional cloud gaming

system and the basic acceleration scheme. In sub-section B,

we provide some observations about the ways of improving

the speed as well as the accuracy of our previous method.

Finally, in subsection C, we present the proposed acceleration

scheme and discuss its steps in details.

A. Overall design

The block diagram of a conventional cloud gaming system

is shown in Figure 1. As the figure shows, the gaming

operation is performed at both client side and server side. The

client side is responsible for collecting the user interactions, as

well as decoding the received video bitstream from the server

side. At the server side, the game engine runs the game logic,

renders the game scene, and sends the scene frame by frame to

the video encoder. The video encoder treats these frames as

video frames and performs compression to produce video,

which is then streamed to the player. As shown in Figure 1, all

of the computationally complex tasks including rendering,

video encoding and streaming are performed at the server side.

 4

Considering the large number of parallel games running on the

server side, the power consumption of the servers imposes a

significant challenge on the ability and cost of the game

provider to support a very large number of players.

In current cloud gaming systems, the video encoder does

the compression process without having any knowledge about

the game objects or the game engine characteristics. In other

words, the video encoder performs blind compression on

received frames. But, in such a system some side information

is available that can facilitate the encoding operations. This

side information, such as the number of objects and their

location in a scene, whether an area that is located in the

background or not, would help the video encoder to skip some

of the complex encoding operations.

Considering the aforementioned observation, in [7] we

proposed a system which uses some side information to speed-

up the encoding process of video frames. The core idea of the

proposed system is the introduction of an interface between

the game engine and the video encoder, as shown in Figure 2.

This interface collects some information from the game engine

and reshapes them to be understandable by the video encoder.

Having this information, the video encoder will be able to skip

or simplify some encoding operations, especially the motion

estimation process, for some blocks in the frame, leading to

faster encoding.

Game

Engine

Video

Encoder

Rendering

O
b

ject in
fo

R
en

d
ered

 S
cen

e

Video

Streaming

User Interaction

Video Decoder
Compressed

video

Video

 Bitstream

 User

 Commands

Server SideClient Side

Figure 1 Block diagram of a conventioanl cloud gaming system

Game Engine

Interface

Video

Encoder

G
a
m

e in
fo

G
a
m

e

E
n

g
in

e in
fo

Initializer

V
id

eo
 E

n
co

d
er

 In
fo

Rendering

Game Scene

Raw Video

O
b

ject in
fo

O
b

jects

b
o
u

n
d

a
ry

Game

Video

Streaming

User

Interaction

Video Decoder Compressed

video

Video

 Bitstream

 User

 Commands

Server SideClient Side

O
b

jects m
o
tio

n
s

Figure 2 Block diagram of the proposed method [7]

The interface has to be adoptable for vast combinations of

game engines and video encoders. To have such a practical

interface, some generic information produced by almost all of

common game engines has to be extracted from the game

engine. In addition, slight modifications have to be performed

at both game engine and video encoder sides.

In the following sub-sections, we review the operations that

have to be performed on the game engine, the interface and

the video encoder, to make the acceleration operation possible.

1) Game engine

As shown in Figure 2, we have considered the location and

orientation of an object, referred as object info, as the main

information that is extracted from the game engine and passes

through the interface. In addition, the game engine has to

generate some other data, named game info, and game engine

info, described as follows:

 Game info: The number of objects within the game,

size (e.g. width and length) of each object, and the size

of the game frame.

 Game engine info: The game engine’s coordinate

system.

The pseudo code which generates the needed information

from the game engine is shown in List 1. As shown in this list,

the game engine info and the game info are generated only one

time per game. But, the object info has to be reported for

every scene of the frame. In other words, during the rendering

of each scene of the game, the object information including

the object location and its orientation will be reported.

//Report Game Engine Info

send coordination info of game engine;

//Report Game info

send game frame size;

for all Objects of the game

send Object Length;

send Object Width;

send Object Id;

end for

//Report object Info for each Scene

for each Scene

for each object

 send object location;

 send object angle;

 send object id;

endfor

endfor

List 1 Pseudo code for the game engine

As can be observed from List 1, a few modifications have to

be made in the game engine. These modifications are kept as

generic as possible in order to make the proposed method

applicable to any desired game engine.

 5

//Interface receives the following information from game engine:

//Objects: a list of all objects in a Scene

//SceneCenter: Center location of current Scene

// GameEngineCoordinationSysteminfo: coordination info of Game Engine

// GameFrmSize: Frame size of game

//Interface receives the following information from video encoder:

//fps: number of coded frames per second

// VideoEncoderFrmSize: Frame size of video encoder

Interface (objects, SceneCenter, fps, GameEngineCoordinationSysteminfo, GameFrmSize, VideoEncoderFrmSize)

//Derive frame based location of scene center

SceneCenter_frm = ScenetoFrameConvert (SceneCenter, fps);

//Derive Cartesian based location of frame center

SceneCenter_frm_Cartesian = ConverttoCartesian (SceneCenter_frm, GameEngineCoordinationSysteminfo);

//Find the frame size difference between game frame and video frame

ScaleFactor = Scaling (GameFrmSize, VideoEncoderFrmSize);

//Convert Scene based information of each object to frame based. Derive the motion of each object.

For each object

object.loc_frm = ScenetoFrameConvert (object.loc_Scene, fps);

object.loc_frm_Cartesian = ConverttoCartesian (object.loc_frm, GameEngineCoordinationSysteminfo);

//Adjust the location of object in video encoder frame using ScaleFactor

object.Loc = ObjetLocationAdjustment (object.loc_frm_Cartesian, SceneCenter_frm_Cartesian, ScaleFactor);

//Calculate the motion of objects using its current and previous location in consecutive frames

object.MV = object.Loc - object.Loc_Prev;

object.Loc_Prev = object.Loc;

endfor

Send objects;

List 2 Pseudo code for the Interface

2) Interface

The interface receives the produces information by the

game engine and reshapes them to make them appropriate for

the video encoder. In addition to game engine side

information, the interface also receives some video encoder

info for this purpose. The video encoder info defines the setup

of the video encoder including video frame size, video frame

coordinate system and frames per second (fps).

The interface uses some of the above information in an

initial phase, and configures the interface to be able to convert

the game engine information side to video encoder side

appropriately. After the configuration phase, the game engine

starts sending the object info to the interface. After receiving

the scene-based object information, the interface makes the

object info appropriate for the video encoder and sends them

to the video encoder. A pseudo code which shows the

operations of the interface is shown in List 2.

As shown in this list, the interface takes some information

including: object info, scene center of game engine, number of

coded frames per second (fps), game engine coordinate system

info, game frame size and video encoder frame size. One of

the tasks of the interface is converting various information

form the scene based format to the frame based format in

order to make it compatible with the structure of a video

encoder. In addition, the produced information by the game

 6

engine has to be converted to the Cartesian system. Another

task of the interface is deriving a scale factor to be used in

converting the size and location of objects from game engine

system to video encoder system.

As shown in List 2, for each object, a scene to frame

conversion is performed first, and then the object location in

Cartesian system is produced. Using the scale factor, the

object information is adjusted for the video encoding system.

Next step is deriving the motion of the object by considering

its movement in two consecutive frames.

Since the end-to-end delay has to meet the real-time criteria,

the interface has to impose only minimal latency. As we

discussed here, only a few operations have to be performed in

the interface module, and hence the amount of added latency

is negligible.

3) Video encoder side

In order to take advantage of the generated object motion,

during the interface operations described above, some

modifications have to be made at the encoder side to

accelerate the encoding process. The pseudo code for these

modifications is shown in List 3, which will be explained later

in sub-section C.

As expressed before, motion estimation is the target of our

proposed method. Since in the H.264/AVC standard, a

macroblock is divided into several blocks or partitions, the

motion estimation is performed for all of the possible

partitions inside the macroblock.

For any partition, the motion estimation process is started

from an initial point and an area in the reference frame is

searched in order to find the most similar area to the current

partition. In the H.264/AVC standard, this initial point is

found by calculating the predicted motion vector (PMV). The

PMV is generated based on the motion vector values of the

above, left and above-right partitions of current partition [26].

Further details for the video encoder are provided in the next

sub-section.

In [7], we mostly focused on the feasibility of using object’s

info during the encoding phase for acceleration. In this paper,

we consider new methods, which take advantage of this side

information at the encoder side. The main goal of the proposed

methods is to accelerate the encoding process while

minimizing the negative effect of replacing the motion vectors

with object movements. In this regard, we provide further

analysis and observations in the next sub-section, which are

then used to refine the mechanism of accelerating the

encoding process shown in sub-section C.

B. Analysis and observations

In the initial version of our accelerator, presented in [7], we

assumed that the motion vector of any block located inside an

object is identical with the object movement, derived from the

game engine. This assumption is not always true. In the case

of many MBs, some blocks move or rotate differently from the

movement of the whole object. For example, if we have an

MB containing the eyes of an avatar, the movement of the

blocks that are covering the eyes may be different from the

movement of the face. In such cases, using the object’s

movement as the motion of all blocks will result in non-

optimal final MVs. As a consequence, the cost of inter modes

will be increased and the intra modes will win in the mode

decision steps, which leads to bitrate increase, reported in [7].

The above shortcoming stems from explicitly assigning the

object movement as the final motion vector of the MBs

located inside the object border. Instead, we can consider this

movement only as a potential final MV of a block. In other

words, we can examine the accuracy of this motion by

comparing it with the predicted motion vector (PMV). In case

of having an object movement close to the PMV, we can

deduce that the probability of having a final MV identical to

object motions is high. Then, the motion estimation (ME)

process can be skipped or simplified. Vice versa, if the

object’s motion is far from the PMV, we can conclude that the

movement of the current block is different from the movement

of the whole object. Then, a more intensive ME process is

needed. The object’s information provided by the game engine

could also be used for detecting the MBs located in the

background area and their corresponding movement. As

discussed in [7], the game engine provides object information

for all of the objects within the current frame. Assuming that

no data is provided for the background, we can detect

background MBs as the MBs which do not fall inside the

border of any object. Since the motion of background is

almost homogenous for all of the MBs located inside the

background area, we can detect the motion of the background

and assign it to all of the MBs located in the background area.

C. Proposed method

Considering the above observations, we propose a new

method for using the object info at the encoder side. Our goal

is to speed up the encoding process, while the bitrate increase

or quality degradation is kept to a minimum.

In this new method, the modifications are made at the video

encoder side. The pseudo code of the proposed algorithm as

well as a high level flowchart of it are shown in List 3 and

Figure 3. The main operation of the proposed algorithm is

composed of two separate paths for foreground and

background MBs. In the following sub-sections we will

explain each path in details.

1) Foreground MBs

For each MB, we first examine if it is located inside the

border of any object within the current frame of the game. If

so, the object movement (Obj_MV), reported by the game

engine, would be compared with PMV. If the Obj_MV resides

in a radius of Thr1 from the PMV, it confirms that the derived

movement is a good estimation of the MV and the ME process

would be skipped. If the Obj_MV is not within the Thr1 radius

of PMV but its distance from PMV is less than Thr2, then the

derived movement is almost fine but needs some refinement,

hence instead of performing a full ME, we perform the ME

process within a restricted search area. If none of above cases

are met, the accuracy of the derived object’s motion is low and

hence a normal ME would be performed.

 7

for each MacroBlock

 BackGroundMB = 1;

 //loop on all objects and determine if there is any object which contains current MacroBlock

 for each Object

 isInside = LocateMBInsideObject(object.Loc, object.Angle, object.Length, object.Width, MBAddress);

 //if current MacroBlock is inside any object, compare object’s motion and PMV

 //if object’s motion is within Thr1 radius of PMV set SkipME, to skip ME process

 //if object’s motion is within Thr2 radius of PMV RestrictedME, to perform a restricted ME operation

 if (isInside) then

 BackGroundMB = 0;

 if (Distance (object.MV, PMV) < Thr1) then

 MV= object.MV;

 SkipME = 1;

 else if (Distance (object.MV, PMV) < Thr2) then

 RestrictedME = 1;

 Endif

 Endif

 endfor

 //if current MacroBlock is not inside any object, it is located in the background area

 //compare background movement(BK_MV) and PMV

 //if BK_MV is within Thr3 radius of PMV set SkipME, to skip the motion estimation process

 //if BK_MV is within Thr4 radius of PMV set RestrictedME , to perform a restricted ME operation

 if (BackGroundMB)then

 if (((collocated(MacroBlock)).isBackGround) then

 if (Distance (BK_MV, PMV) < Thr3) then

 MV= BK_MV;

 SkipME = 1;

 else if (Distance (BK_MV, PMV) < Thr4) then

 RestrictedME = 1;

 endif

 endif

 endif

 //perform motion estimation process considering the value of skipME and RestrictedME

 MV = PerfromME (MBAddress, SkipME, RestrictedME, MV);

 //update value of BK_MV if current MacroBlock is located in background

 if (BackGroundMB) then

 BK_MV = MV;

 MacroBlock.isBackGround = 1;

 endif

endfor

List 3 Pseudo code for the video encoder

 8

Figure 3 Flowchart of our algorithm at the video encoder side, per Macroblock.

2) Background MBs

In the case when the MB is not located inside any object

border, we conclude that we are processing a background MB.

We have made the worst-case assumption that the game

engine does not provide any information about the background

and its movement. If, for a specific game, this assumption is

not true and the engine actually reports the background

information, then naturally our proposed method makes use of

that. Otherwise, since no information is provided for a

background MB by the game engine, first we have to make

sure if the background MB in the current frame also resides in

the background area of the previous frame or if it was behind

another object in the previous frame. This examination is

necessary, since the MV of latter case would be different from

the MV of an MB which has been located in the background

in two consecutive frames. If the MB was not a background

MB in the previous frame, a normal ME process will be

performed. Otherwise, a tentative MV, named BK_MV would

be extracted for the current MB located in the background.

BK_MV is updated by considering the final MV of all MBs in

current frame, which are located at the background. For early

MBs in the frame, where no BK_MV is available, the normal

ME process will be performed. After extracting the BK_MV,

we go through similar steps as we did for MBs located in the

foreground. As shown in Figure 3, if the BK_MV is located

inside an area with a distance of Thr3 from PMV, the ME

process will be skipped. If BK_MV is not residing in that area

but is still located in an area with a distance of Thr4, the ME

process will be performed within a restricted search area. If

none of the above conditions are met, a normal ME process

will be performed.

The above process for foreground and background MBs is

repeated for all of the available modes of the current MB,

hence based on the value of PMV, the ME process may be

skipped for some modes but performed for other modes.

The value of the said threshold parameters depends on the

motion estimation algorithm and the definition of PMV in the

specific video coding standard. These threshold values can be

adjusted in an initial step for any specific encoder. The values

of these threshold parameters for the H.264/AVC standard are

addressed in section IV, where we explore the experimental

results of the proposed method.

IV. EXPERIMENTAL RESULTS

In this section, we perform several evaluations to examine

the performance of the proposed method. In our tests, we

report the amount of acceleration obtained by our proposed

method. In addition, we explore the negative effects of our

method including bitrate increase and quality loss.

Furthermore, we compare the performance of our proposed

method with our earlier work [7] in terms of encoding speed-

up, objective and subjective quality.

A. Objective measurements

For objective evaluations, we have prepared two setups, one

for the conventional method and based on the architecture

shown in Figure 1, and another for the proposed method and

based on the block diagram of Figure 2. For both scenarios,

we have used the Torque2D [27] as our game engine and three

games including TruckToy, DeathBallToy and AquariumToy.

In each game, we have chosen an object, as shown in Figure

4, and sent its information to the video encoder. In addition to

one object, the background is also taken into account for speed

up, but no additional information is provided by the game

engine for the background. In order to capture the game scenes

and deliver them to the video encoder, FRAPS software [28] is

used, which is set to capture the game scenes at 30 frames per

second. For video encoding, the reference software of

H.264/AVC standard [29] is used. Inside this encoder, we

have defined the threshold values of 10, 20, 2 and 10 for Thr1,

Thr2, Thr3 and Thr4, respectively. In order to determine the

above threshold values, we have performed several

simulations on a set of video sequences outside our evaluation

pool. This simulation set contains videos with different

contents that are coded at different bitrates. For any other

desired video codec, an initial simulation has to be performed

to adjust the threshold parameters. These threshold parameters

would be kept unchanged afterwards.

In order to evaluate the performance of the proposed

system, the captured video scenes are coded with four QP

Is MB located

inside an object?

Is Obj_MV located

inside an area of Thr1

from PMV?

Is Obj_MV located

inside an area of Thr2 from

PMV?

Set the Obj_MV as the final MV

Skip Motion Estimation process

Perform Motion Estimation

process within a restricted

search area

Perform normal Motion

Estimation process

Is collocated MB

in previous frame in

background?

Is BK_MV located

inside an area of Thr3

from PMV?

Set the BK_MV as the final MV

Skip Motion Estimation process

Is BK_MV located

inside an area of Thr4

from PMV?

Perform Motion Estimation

process within a restricted

search area

Perform normal Motion

Estimation process

Perform normal Motion

Estimation process

Finish

Start

Yes

YesYes

Yes

Yes Yes

No

NoNo

NoNoNo

 9

values. The encoder setting and adopted QP values are shown

in Table 1.

Table 1 Parameter setting of the video encoder

Profile Baseline

Level 3

Number of coded frames 100

Number of reference frames 1

Search range 256

RDO On

Quantization parameters 28, 30, 32, 34,36

Motion estimation precision ¼ pixel

The total encoding speed up of the proposed method in

comparison with the conventional scheme is shown in Figure

5. As we can see in this figure, the total encoding time using

the proposed method is accelerated by up to 24% over various

Qp settings of Table 1. The figure also shows the results of our

previous method [7]. As we can see, the proposed method

outperforms [7] by at-least a factor of 2.

The acceleration of ME for the proposed method and [7] are

shown in Figure 6. As shown in this figure, ME’s speed is

increased by up to 39% in the proposed method and

outperforms [7] by a factor of 2, as well.

The Rate-Distortion (R-D) performance of the proposed

method and its comparison with [7] and the conventional

encoder for TruckToy and DeathBallToy games are shown in

Figure 7. Unlike [7], the proposed method achieves an R-D

performance very close to the conventional method. This is

the result of involving PMV in our decision making step. By

doing so, the MBs, whose final motion vector is different from

the object’s movement, would be detected. This leads to less

miss-prediction and in consequence less quality degradation.

Hence, the proposed method achieves up to 39% speed up in

motion estimation process while imposing a negligible quality

loss.

B. Subjective quality measurement

In addition to the objective tests provided above, we have

also performed subjective quality tests by following ITU-R’s

Double Stimulus Continuous Quality Scale method [30]. For

the subjective tests, the same scenario as for the objective tests

is followed. In the following sub-sections we discuss the

demographic of the users, the methodology of test and

evaluation outcomes, respectively.

a) AquariumToy b) DeathBallToy

c) TruckToy

Figure 4 A scene of chosen games and their objects for evaluation purpose a) AquariumToy b) DeathBallToy c) TruckToy

 10

Figure 5 Total encoding time speed up comparison between proposed method and [7] for TruckToy, DeathBallToy and AquariumToy games

Figure 6 ME time speed up comparison between proposed method and [7] for TruckToy, DeathBallToy and AquariumToy games

a) b)

Figure 7 R-D Performance comparison of the proposed method, conventional and [7] for a) TruckToy game, b) DeathBallToy game

 11

1) User study

We asked 15 users to participate in our study. The case

study consisted of university students and employees. The

users had no expertise in video processing and video

assessments. In order to evaluate the gaming experience of

users, we asked them several questions regarding their skill

and experience in gaming. The demographic of the users is

represented in Table 2. As shown in this table, 83% of users

had a gaming experience of fair or above. 67% of users play

games more than five times a month. Most of the users have

the experience to play on the PC platform, while the Tablet

and Cell phone are the next popular platforms. The most

popular genre in this case study is Sports, while Action and

Adventure genres are the next popular genres.

2) Methodology

We asked the users to score 9 different sets of video

sequences. The nine sets come from 3 different games

(AquariumToy, DeathBallToy and TruckToy) each coded with

3 different bitrates, shown in Table 3. Each set contains three

video sequences, coded with traditional, proposed in this

paper, and proposed in [7]. In order to have more realistic

results, we have coded 60 second long videos (1800 frames)

for each of the video bitstreams. The user must rate the videos

as Excellent, Good, Fair, Poor and Bad. The user has to score

the videos in each set, independent from other sets, since the

videos in each set are coded with different bitrates.

The video sequences were displayed at their original

resolution to avoid any distortions due to scaling operation.

The viewing distance was set to four times the screen height as

recommended in [30].

3) Subjective test results

The mean opinion score (MOS), as the subjective metric,

for conventional, proposed encoder, and the encoder of [7] is

shown in Table 4. The MOS for each combination of settings

and method is the average MOS score of all participants. As

shown in Table 4, the MOS of the proposed method is better

than [7] in all cases. As shown in the last column of Table 4,

the MOS of the proposed method is only 17.55% far from the

conventional encoder, on average, while this metric for [7] is

30.32%, 1.7 times more than the proposed method. Since we

have used different bitrates for the subjective test, in

comparison with the objective ones, we have also reported the

bitrate and PSNR results of each test condition. As shown in

Table 4, the bitrate variation of the proposed method and [7]

are negligible. Whereas, the average quality of the proposed

method degrades by 0.16 dB in comparison with the

conventional method, the average quality degradation of [7] is

0.86 dB. The PSNR and MOS results confirm the better

quality and performance of the proposed method.

It is worth mentioning that the proposed method works the

same as the conventional method in case of illumination

changes. As we know, the motion estimation process is in

charge of finding the best motion vector for any block,

calculating the residual between the current and the reference

block, and coding it by the entropy coder. In case of

illumination change, the amount of residual and hence the rate

would be different from the normal case. Since our method

only modifies the motion estimation process, its behavior due

to illumination variation is similar to the conventional motion

estimation approach.

Table 2 Demographics of the subjects

Gaming experience

Bad Poor Fair Good Excellent

8 9 33 33 17

Monthly game play

≤5 6-10 11-20 21-30 >30

33 25 26 8 8

Gaming platform (already played on)

PC Console Tablet Cell phone

92 42 58 75

Genres (Already played)

Action Adventure Role-playing

67 58 50

Simulation Strategy Sports

42 42 75

Table 3 Selected bitrates for various games in subjective test

Game Name
Rate 1

(Kbps)

Rate 2

(Kbps)

Rate 3

(Kbps)

TruckToy 2700 2200 1700

DeathBallToy 3200 2400 1600

AquariumToy 1600 1100 800

V. DISCUSSION

In this section we discuss two issues of our proposed

method: its effect on energy saving, and its usage beyond

cloud gaming applications.

A. About energy savings

As described in the paper, the main goal of our work is to

speed up the video encoding part of cloud gaming, in order to

contribute towards reducing the overall delay experienced by

the user. But, as a byproduct of this, our approach can also

save energy in the cloud, although it is not its main goal.

Nevertheless, here we examine the power saving effect in

some details.

We have reported the speed up of the proposed algorithm

over the conventional method in terms of execution time.

Since there is a direct relationship between execution time and

clock frequency, if the encoding time accelerates by α% we

can assume that the number of CPU clock cycles and in

consequence the system’s frequency is reduced by α%.

Considering this fact, let us derive the amount of power saving

up on a specific acceleration amount.

The power consumption is given by the following equation

as expressed in [31]:

ὖ ὠ Ὢ ὅ ȟ (1)

where V, Ὢ and ὅ are the supply voltage, clock

frequency, and effective switched capacitance of the circuits.

 12

It has been observed that Ὢ is approximately linearly

proportional to V [5]. Therefore, we have power as a cubic

function of clock frequency as shown in (2).

ὖᶿὪ ȟ (2)

Let us define P1 and P2 as the power consumption for the

conventional encoder and the proposed method, respectively.

As reported in simulation results section, the proposed method

accelerates the encoding process by 24% on average, which

means 24% fewer clock cycles for the whole encoding process

and hence 24% lower clock frequency. Since power is a cubic

function of clock frequency as shown in (2), then P2 would be

around 0.44 P1. In other words, P2 = 0.44 × P1. Hence, the

proposed method reduces the power consumption by 54%, on

average.

B. Usage Beyond Cloud Gaming

The main prerequisite for our method to work is that the

Interface in Figure 2 must know which objects have moved to

which positions. In Cloud Gaming, this information is

provided by the game engine, as also shown in Figure 2.

However, any application other than Cloud Gaming that can

provide such information can also benefit from our method

and increase its video encoding speed. One example is

screencasting [32] or remote desktop applications, where the

screen of a desktop is captured, encoded, and streamed, in a

live manner, so that a remote user can view and interact with it

as if the user was locally sitting at the desktop. In such an

application, the graphical subsystem of the operating system

knows which windows are moving to which position on the

screen, and which parts of the objects need to be redrawn and

which parts haven’t changed. For the ones that haven’t

changed and are moving, our method can be applied to speed

up video encoding. Another example is video-based tele-

presence or tele-immersive systems [33] where the motion of

rigid objects (including body parts of humans) can potentially

be measured with markers, computer vision, magnetic sensors,

or other types of multimodal instruments. Such application can

then inform our system’s interface which object has moved to

which position, enabling our method to speed up the video

encoding in such systems.

VI. CONCLUSION

A new video encoding acceleration scheme for cloud

gaming applications is presented in this paper. The

acceleration comes from reusing the side information of game

objects inside the game engine. This side information is fed

into the video encoder to skip the motion estimation process in

certain situations. In addition, the MBs located in the

background are determined and their motion estimation

process is accelerated if some criteria are met, leading to

higher quality. The proposed method increases the total

encoding and motion estimation speed by up to 24% and 39%,

respectively. The proposed method can be implemented inside

any game engine and video encoder with minor modifications

due to its high-level design.

While the method currently can support any type of game

including 3D games, supporting 3D games by using the

specific characteristics of 3D games, as well as embedding the

method in the GamingAnywhere [6] platform are potential

future works of the proposed system.

Table 4 Subjective results, bitrate and PSNR comparison for various games and bitrates

 Mean opinion score

 TruckToy DeathBallToy AquariumToy
Average Change (%)

Rate 1 Rate 2 Rate 3 Rate 1 Rate 2 Rate 3 Rate 1 Rate 2 Rate 3

Conventional 4.83 4.67 4.67 4.92 4.67 4.50 4.83 4.42 4.92 -

Proposed 4.08 4.08 4.00 4.00 3.92 4.08 3.67 3.83 3.25 -17.55

[7] 3.92 3.33 3.00 3.50 3.83 3.67 3.08 3.08 2.08 -30.32

Bit rate (Kbps)

TruckToy DeathBallToy AquariumToy
Average Change (%)

Rate 1 Rate 2 Rate 3 Rate 1 Rate 2 Rate 3 Rate 1 Rate 2 Rate 3

Conventional 2733 2241 1748 3264 2440 1603 1656 1166 765 -

Proposed 2923 2422 1722 3297 2481 1667 1681 1015 790 1.34

[7] 2964 2392 1700 3116 2434 1597 1693 1032 793 0.19

PSNR (dB)

TruckToy DeathBallToy AquariumToy
Average Change (dB)

Rate 1 Rate 2 Rate 3 Rate 1 Rate 2 Rate 3 Rate 1 Rate 2 Rate 3

Conventional 39.18 37.80 36.36 36.52 35.05 33.09 39.33 37.14 35.14 -

Proposed 39.16 37.77 35.66 36.51 35.04 33.07 39.33 36.54 35.11 -0.16

[7] 38.38 36.92 34.80 35.63 34.24 32.40 38.57 36.52 34.44 -0.86

 13

REFERENCES

[1] “Industry Facts,” Entertainment Software Association

(ESA). [Online]. Available:

http://www.theesa.com/facts/index.asp.

[2] “Gartner’s Press Release,” Gartner Inc. [Online].

Available:

http://www.gartner.com/newsroom/id/2614915.

[3] W. Cai, M. Chen, and V. Leung, “Toward Gaming as

a Service,” IEEE Internet Comput., vol. 18, no. 3, pp.

12–18, 2014.

[4] R. Shea, J. Liu, E. Ngai, and Y. Cui, “Cloud gaming:

architecture and performance,” IEEE Netw., pp. 1–23,

2013.

[5] T. D. Burd and R. W. Brodersen, “Processor Design

for Portable Systems,” J. VLSI Signal Process. Syst.,

vol. 13, no. 2–3, pp. 203–221, 1996.

[6] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and

C.-H. Hsu, “GamingAnywhere: The first open source

cloud gaming system,” ACM Trans. Multimed.

Comput. Commun. Appl., vol. 10, no. 1s, 2014.

[7] M. Semsarzadeh, M. Hemmati, A. Javadtalab, A.

Yassine, and S. Shirmohammadi, “A Video Encoding

Speed-up Architecture for Cloud Gaming,” in Cloud

Gaming Systems and Networks in conjunction with

IEEE International Conference on Multimedia &

Expo, 2014.

[8] J. Zhou, D. Zhou, and S. Goto, “Alternating

asymmetric search range assignment for bidirectional

motion estimation in H.265/HEVC and H.264/AVC,”

J. Vis. Commun. Image Represent., vol. 25, no. 5, pp.

1275–1286, Jul. 2014.

[9] W. Lin, K. Panusopone, D. M. Baylon, M. Sun, and Z.

Chen, “A Fast Sub-Pixel Motion Estimation

Algorithm for H.264/AVC Video Coding,” IEEE

Trans. Circuits Syst. Video Technol., vol. 21, no. 2,

pp. 237–242, 2011.

[10] S. Dikbas, T. Arici, and Y. Altunbasak, “Fast Motion

Estimation With Interpolation-Free Sub-Sample

Accuracy,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 20, no. 7, pp. 1047–1051, 2010.

[11] M. Khan, M. Shafique, M. Grellert, and H. Jörg,

“Hardware-software collaborative complexity

reduction scheme for the emerging HEVC intra

encoder,” in Design, Automation and Test in Europe

(DATE), 2013, pp. 125–128.

[12] B. Hilmi, C.-S. Park, and B.-G. Kim, “A Survey of

Fast Inter Mode Decision Algorithms for H.264/AVC

Video Encoding System,” Int. J. Soft Comput., vol. 5,

no. 2, pp. 128–148, 2010.

[13] W. Kim, J. You, and J. Jeong, “Complexity control

strategy for real-time H. 264/AVC encoder,” IEEE

Trans. Consum. Electron., vol. 56, no. 2, pp. 1137 –

1143, 2010.

[14] C. S. Kannangara, I. E. Richardson, and A. J. Miller,

“Computational Complexity Management of a Real-

Time H.264/AVC Encoder,” IEEE Trans. Circuits

Syst. Video Technol., vol. 18, no. 9, pp. 1191–1200,

2008.

[15] M. Semsarzadeh, A. Lotfi, M. R. Hashemi, and S.

Shirmohammadi, “A fine-grain distortion and

complexity aware parameter tuning model for the

H.264/AVC encoder,” Signal Process. Image

Commun., vol. 28, no. 5, pp. 441–457, 2013.

[16] S. Shi, C. Hsu, K. Nahrstedt, and R. Campbell, “Using

graphics rendering contexts to enhance the real-time

video coding for mobile cloud gaming,” in ACM

Multimedia, 2011, pp. 103–112.

[17] P. Fechteler and P. Eisert, “Accelerated video

encoding using render context information,” in

International Conference on Image Processing (ICIP),

2010, pp. 2033–2036.

[18] N. Tizon, C. Moreno, and M. Preda, “ROI based video

streaming for 3D remote rendering,” in IEEE

International Workshop on Multimedia Signal

Processing (MMSP), 2011, pp. 1–6.

[19] G. Cheung, A. Ortega, and T. Sakamoto, “Fast H. 264

mode selection using depth information for distributed

game viewing,” Vis. Commun. Image Process., 2008.

[20] M. R. Hosseinzadeh Taher, H. Ahmadi, and M. R.

Hashemi, “Power-Aware Analysis of H.264/AVC

Encoding Parameters for Cloud Gaming,” in Cloud

Gaming Systems and Networks in conjunction with

IEEE International Conference on Multimedia &

Expo, 2014.

[21] M. Hemmati, A. Javadtalab, A. A. Nazari Shirehjini,

S. Shirmohammadi, and T. Arici, “Game as video: Bit

rate reduction through adaptive object encoding,” in

ACM Workshop on Network and Operating Systems

Support for Digital Audio and Video, 2013, pp. 7–12.

[22] M. Hemmati, S. Shirmohammadi, H. Rahimi, and A.

A. Nazari Shirehjini, “Optimized Game Object

Selection and Streaming for Mobile Devices,” in

International Conference of Information Science and

Computer Applications, in Advances in Information

Technology and Applied Computing, 2012, no. 1, pp.

144–149.

[23] H. Rahimi, A. A. Nazari Shirehjini, and S.

Shirmohammadi, “Context-Aware Prioritized Game

Streaming,” in Workshop on Interactive Ambient

Intelligence Multimedia Environments, in IEEE

International Conference on Multimedia & Expo,

2011, pp. 1–6.

[24] S. P. Chuah, C. Yuen, and N. M. Cheung, “Cloud

gaming: a green solution to massive multiplayer

online games,” IEEE Wirel. Commun. Mag., vol. 21,

no. 4, pp. 8 – 87, 2014.

[25] F. Giesen, R. Schnabel, and R. Klein, “Augmented

Compression for Server-Side Rendering,” in Proc. of

Interna- tional Fall Workshop on Vision, Modeling,

and Visualiza- tion (VMV), 2008, pp. 207–216.

[26] I. E. G. Richardson, H.264 and MPEG-4 Video

Compression. New York, NY, USA: Wiley, 2003.

[27] “Torque2D Game Engine.” [Online]. Available:

http://www.garagegames.com/products/torque-2d.

[28] “FRAPS, Real-time video capture & benchmarking.”

[Online]. Available: http://www.fraps.com.

 14

[29] “JVT reference Software version 18.5.” [Online].

Available:

http://iphome.hhi.de/suehring/tml/download/old_jm/.

[30] ITU-R, “Methodology for the subjective assessment of

the quality of television pictures.”

[31] Z. He, Y. Liang, L. Chen, I. Ahmad, and D. Wu,

“Power-rate-distortion analysis for wireless video

communication under energy constraints,” IEEE

Trans. Circuits Syst. Video Technol., vol. 15, no. 5,

pp. 645–658, 2005.

[32] Y. Lin, W. Xie, L. Jin, and R. Shen, “Content-adpative

H.264 rate control for live screencasting,” in IEEE

Conference on Visual Communications and Image

Processing, 2012, pp. 1–6.

[33] W. Wu, A. Arefin, G. Kurillo, P. Agarwal, K.

Nahrstedt, and R. Bajcsy, “CZLoD: A psychophysical

approach for 3D tele-immersive video,” ACM Trans.

Multimed. Comput. Commun. Appl., vol. 8, no. 3, pp.

1–21, 2012.

