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 

Abstract—Multi-view/3D video is currently available in 

games, entertainment, education, security, and surveillance 

applications. Since the amount of data in multi-view/3D 

increases proportionally with the number of cameras, and due 

to different bandwidth and playback capabilities of receivers, 

appropriate compression of multi-view/3D video to produce the 

correct bitrate while maintaining smooth video quality is 

crucial; a task that is mostly performed by the Rate Control 

module of the encoder. There are many existing rate control 

algorithms for single-view and multi-view video coding 

considering the specific features or aspects of these videos. In 

this paper, we introduce a novel view-level Rate Distortion 

(RD) model. We use a systematic methodology to derive this 

RD model by investigating the impact of multi-view/3D video 

characteristics on the bitrate of a compressed video. Our 

proposed RD model considers the concepts of intra-view and 

inter-view disparity as an effective feature of multi-view/3D 

video to estimate the overall bitrate of each view more 

accurately. Evaluation results indicate that our proposed view-

level RD model outperforms existing linear models by a factor 

of 3 and can predict the rate of each view with relatively high 

precision and a low estimation error of 12% on average. 

 
Index Terms— Inter-view disparity, intra-view disparity, 

multi-view video coding, rate control. 

I. INTRODUCTION 

ulti-view/3D video provides viewers with a more 

realistic experience by interactively changing the 

view-points that are captured with the help of 

multiple cameras from different positions and through 

different angles. Stereo video, as the first generation of 3D 

video, provides two distinct views, one for each eye. But 3D 

video as the second generation attempts to overcome one of 

the disadvantages of conventional stereo video: its 

restriction to two views at fixed spatial positions [1]. In 

immersive video communication applications, such as free 

viewpoint and 3D television, the amount of data increases 

proportionally with the number of cameras, which may limit 
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the practicality of multi-view/3D video especially when 

receivers have limited bandwidth. Hence, having an 

appropriate bit allocation method to adapt the video rate to 

available resources is one of the main challenges in Multi-

view Video Coding (MVC). This bit allocation is performed 

by the Rate Control Algorithm (RCA), which plays an 

important role in improving and stabilizing the perceived 

quality at a given bitrate.   

Several RCAs have been proposed for MVC that usually 

utilize a Rate-Distortion (RD) model to describe the 

relationship between the rate and the quality of the encoded 

video. For a rate control algorithm, the RD model is a key 

part since its accuracy greatly affects the rate control 

performance.  

There are two principal methods to obtain an RD model: 

statistical and experimental [2]. Statistical models assume 

that the source signal has a specific distribution such as 

Gaussian distribution. Most existing RD models for MVC 

are statistical models that have a common base theory, but 

differ in the way they have simplified the model or the 

various assumptions they have made to make it more 

practical. Several of these methods will be reviewed in the 

next section. Statistical models are not as accurate as 

experimental models since they use a single model for all 

data. Finding accurate statistical RD models are only 

available for very simple sources under specific criteria. 

On the other hand, experimental models consider the RD 

characteristics of input data, and hence can provide a more 

accurate RD curve [2]. They can be dynamically updated 

through a data fitting process to provide higher prediction 

accuracy. However, existing experimental RD models for 

MVC in the literature have some drawbacks. They do not 

explicitly consider the characteristics or the encoding 

structure and parameters of multi-view/3D sources. Hence, 

their obtained RD performance is limited. 

In this paper, we go beyond existing literature and derive 

a novel and efficient experimental RD model for multi-view 

video coding that specifically considers the characteristic of 

multi-view/3D sources. Usually, MVC rate control 

algorithms are designed for different levels such as view-

level, GOP-level, frame-level, etc. This way, at each level 

the most effective parameters of that level can be used to 

estimate the rate more accurately. In addition, the approach 

can manage the required memory capacity and 

computational complexity of the rate control algorithm. 

Similarly, our proposed scheme considers the rate allocation 

process at the view-level because, as we shall see later, the 

specific characteristics of multi-view/3D video, namely 

inter-view and intra-view disparity [29], are mostly reflected 

at this level. Our proposed approach can indeed be 

generalized easily to the other levels too. The main 

contributions of this paper are as follows: 

 Our extracted RD model uses the statistical 
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dependencies within the multi-view frames as the 

main characteristic of multi-view/3D video, to find 

the RD model parameters. This is important since 

these statistical dependencies, which are the disparity 

between views and motion between temporally 

successive frames, can affect the prediction process 

and therefore the total bitrate of each view 

considerably. 

 Our proposed model uses the concepts of intra-view 

and inter-view disparity to characterize the statistical 

dependencies in multi-view video coding. Then, it 

defines the rate of each view as a function of these 

intra and inter-view disparity. 

 We have used a systematic approach to derive the 

proposed experimental view-level RD model 

parameters considering the main characteristics of 

multi-view/3D video and the application at hand. We 

show that reflecting these features in the RD model 

results in a more accurate view-level RD model. 

 Since the proposed RD model extraction 

methodology considers the properties of the specific 

application, the extracted RD model can be easily 

tuned for a wide range of multi-view/3D video 

applications.  

Although our proposed approach considers the 

H.264/MVC standard and its applications to find the 

proper RD parameters, it can be easily generalized to 

other video compression standards such as the 3D and 

multi-view extensions of the emerging HEVC standard, 

once the appropriate RD parameters are selected 

according to that standard.  

The rest of this paper is organized as follows. Related 

multi-view rate models and their corresponding rate 

control algorithms are reviewed in the next section. The 

proposed methodology to derive the view-level RD model 

is explained in section III. Section IV presents the derived 

view-level RD model for the H.264/AVC by applying this 

systematic methodology. Section V provides the 

performance evaluation results. Finally, the paper ends in 

section VI with the concluding remarks. 

II. RELATED WORK 

As mentioned in the previous section, most of the 

proposed rate control algorithms use some kind of rate-

distortion model to describe the relationship between rate 

and quality. A quadratic rate-distortion model for rate 

control of MVC is introduced in [3] that consists of three 

levels for more accurate bitrate control: group of GOP, 

GOP, and frame. The rate-distortion model for multi-view 

video proposed in [4] argues that the quality of each view 

follows an increasing logarithmic function of the view 

encoding rate. In [5] the authors argue that the traditional 

video compression methods do not address the perception 

redundancy. This paper introduces a just-noticeable-

distortion (JND) model in MVC to describe the perception 

redundancy quantitatively. An analytical model for rate-

distortion analysis in multi-view image coding is proposed 

in [6] in which the images are predicted using the disparity 

compensation based on depth map. A rate-distortion model 

to characterize the relationship between bitrate and view 

synthesis distortion is derived in [7]. Then, the optimal 

bitrate is allocated to texture and depth using this model. 

The interdependent distortion-quantization model and rate-

quantization model is proposed in [8]. The proposed models 

are based on the analysis of the relationship between the 

spatial-domain residual and the transform-domain residual. 

In [9], a spatially scalable rate-distortion model is proposed 

that consists of quantization-distortion and quantization-rate 

models. 

In addition to the above RD models, some rate control 

algorithms are proposed for multi-view video coding. 

In [10], an MVC  rate control algorithm based on the 

quadratic rate-distortion and the fluid-flow traffic model is 

proposed. A view-level bitrate estimation technique for real-

time multi-view video plus depth is introduced in [11] that is 

based on statistical analysis of the prediction modes used in 

different view types. In [12], the authors argue that MVC 

has many B views which are composed of only B frames. 

Hence, they propose to consider the QP values of B frames 

to allocate proper bitrates to B views. A rate control method 

is proposed in [13] that utilizes the human visual  system to 

distribute bitrate to interesting and non-interesting regions of 

a frame. A rate control technique for multi-view video plus 

depth is introduced in [14] that is performed on three levels: 

view level, video/depth level and frame level. In [15], a rate 

control algorithm for MVC is proposed that remodels the 

quadratic RD model based on the type of each frame. 

Another three level rate control algorithm is proposed 

in [16] that allocates rate at view level, GOP level and frame 

level. In this method, the rate allocation is done according to 

view types using a pre-statistical rate allocation method and 

considering the complexity of each frame. In [17], a rate 

control algorithm for MVC is proposed that uses a bit 

allocation model based on the Lagrange theorem. A rate 

controller for MVC is presented in [18] that exploits inter-

GOP correlations to predict the bitrate of future frames 

considering the intra-GOP linearity. In [19], the authors 

propose a new rate control algorithm for multi-view video 

reference model using the quadratic RD model that consists 

of four levels for bitrate control. The characteristics of 

visual perception for 3D video viewers is utilized in [20] to 

determine the interesting regions in all views. Then the 

adequate quantization parameters are assigned to control the 

bitrate of these interesting and non-interesting regions such 

that the video quality of the interesting regions is preserved. 

In [21], a rate control algorithm for multi-view video coding 

is proposed based on visual perception. This algorithm 

consists of four levels. In the view level, a GOP is pre-

encoded to obtain the bitrates proportion among the views. 

The initial quantization parameter and the target bits are 

calculated for the GOP at the GOP level. The complexity of 

the frame is used for bit allocation at the frame level. As a 

final point, at the macro-block level, the rate distortion 

model is adjusted based on the visual perception. Finally, 

in [22] a novel hierarchical rate control for multi-view video 

coding is presented that addresses the rate control at both 

frame level and basic unit level. 

Despite the benefits of the above approaches, they have a 

one-solution-fits-all mentality. None of them has considered 

the statistical dependencies within the multi-view frames as 

the main characteristic of MVC that affects the effectiveness 

of the prediction process considerably. In addition, the 

features related to the application such as quality of 

experience are not considered in the previous methods. 

These must be taken into account for higher efficiency. In 

our approach, we will introduce a novel view-level RD 
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model for different applications of MVC using the specific 

features of multi-view/3D video format and the application 

at hand. This way, the derived RD model can be applied 

more precisely to a practical situation of multi-view/3D 

video. 

III. METODOLOGY STEPS 

We have used a systematic methodology to derive our 

proposed view-level RD model. In this section, we introduce 

the different steps of this methodology in details. We start 

by explaining the basic observations that have led to our 

methodology. 

A. Observations 

A typical MVC prediction structure proposed by the 

H.264/MVC standard is shown in Fig 1[23]. 

 

 
Fig 1. A typical MVC prediction structure [23] 

Apart from the temporal redundancy between consecutive 

frames, spatial redundancy between frames of neighboring 

views in the prediction structure can also be exploited to 

increase the compression ratio. Motion and disparity 

compensated coding techniques are used for this purpose.  

Motion compensation exploits the temporal correlation 

within each view, and disparity compensation exploits the 

correlation among multiple view sequences. Motion and 

disparity vectors are selected based on the rate-distortion 

criterion which minimizes the rate subject to a constraint on 

overall distortion. Hence, the rate of each view can be 

affected considerably by the correlation between 

neighboring views of the prediction structure, and the 

correlation between the consecutive frames of each view. 

Accordingly, we suggest that the bitrate of each view should 

be a function of intra-view and inter-view disparity indicator 

parameters as represented in (1): 

R = F(Intra − view disparity indicator paremeters , Inter −
view disparity indicator parameters)             (1) 

where R denotes the bitrate of each view and F represents 

the relationship between that bitrate, inter-view and intra-

view disparity related parameters. 

Hence, it follows that a method to derive appropriate 

view-level RD model should consist of three steps, as 

illustrated in Fig 2 and described in more details in sub-

sections B, C and D respectively. 

B. Step 1: Extracting intra-view RD model 

1) Extract the effective parameters to characterize 

intra-view disparity 

 

 
Fig 2. The overall structure of our proposed methodology to derive view-

level RD model for multi-view/3D video 

As mentioned above, motion compensation exploits the 

temporal correlation within the frames of each view. Hence, 

the prediction process and consequently the rate of each 

view can be affected considerably by the correlation 

between the consecutive frames of each view. This 

correlation depends on various parameters such as the GOP 

length, the number of reference picture for each frame, the 

video content complexity and so on. In order to find the 

effective parameters to characterize the intra-view disparity, 

our proposed methodology suggests finding the most 

important parameters that affect the intra-view prediction 

process.  

2) Derive the relationship between the bitrate of each 

view and the intra-view disparity indicator 

parameters 

Now, the relationship between the overall bitrate of each 

view and the related parameter to intra-view disparity 

should be extracted. We suggest an analytical approach 

using curve fitting for this purpose, explained in details in 

section IV. Using this approach, we obtain an RD model 

that shows the relationship between the total bitrate of each 

view and the intra-view indicator parameters. 

C. Step 2: Extracting inter-view RD model 

1) Extract the effective parameters to characterize 

inter-view disparity 

As mentioned before, in addition to the temporal 

redundancy between successive frames, spatial redundancy 

between frames of neighboring views in the prediction 

structure can affect the efficiency of the prediction process 

and the overall bitrate of each view. So, similar to the 

previous step, we should characterize the inter-view 

disparity and find the corresponding effective parameters. 

2) Derive the relationship between the bitrate of each 

view and the inter-view disparity indicator 

parameters 

Similar to the previous step, at this point, the relationship 

between the overall bitrate of each view and the related 

parameter to inter-view disparity should be extracted 

analytically via curve fitting. 

This way, at the end of this step, we obtain an RD model 

that shows the relationship between the total bitrate of each 

view and the inter-view disparity indicator parameters. 



 4 

D. Step 3: General view-level RD model for Multi-

view/3D video 

As the last step of our proposed methodology, the two 

extracted RD models in the previous steps should be 

combined to derive the general view-level RD model for 

multi-view video. 

As we can see in the prediction structure of Fig 1, 

different views of a multi-view video use the intra-view and 

inter-view prediction to improve the coding efficiency. In 

addition, as we explained in subsection A, the motion and 

disparity vectors that are extracted from intra and inter-view 

predictions are completely independent from each other. 

Hence, we can consider the final view-level RD model for 

multi-view/3D video as the weighted sum of two RD models 

extracted from intra-view and inter-view related parameters. 

As explained below, in this paper the ratio between the 

number of intra and inter-view predictions in each view 

determines the proper weigh values. 

Simulation results for various videos show that for 

those views which have one reference view for inter-view 

prediction, such as V2 in Fig 1, the number of inter-view 

predictions is much less than intra-view predictions. 

Similarly, the ratio of inter-view prediction to intra-view 

prediction in views with two inter-view references, such as 

V1 in Fig 1, is much higher. Clearly, when the number of 

inter-view prediction increases, the importance of inter-view 

disparity in determining the final bitrate will increase as 

well. Hence, the ratio of inter-view and intra-view 

predictions can be used to calculate the appropriate weight 

values for our final view-level RD model. 

IV. EXTRACTING THE VIEW-LEVEL RD MODEL FOR MULTI-

VIEW/3D VIDEOS  

In this section we will apply the three steps of the 

proposed methodology to extract an experimental view-level 

RD model for multi-view/3D videos. The details of the 

procedure are described in the following subsections. 

A. Step 1: Extracting intra-view RD model  

1) Extract the effective parameters to characterize 

intra-view disparity 

As explained in the first step of the proposed 

methodology, in order to find the effective parameters to 

characterize the intra-view disparity, the most important 

parameters that affect the bitrate of each view should be 

extracted. 

In [24], a method to select the most effective parameters 

in the bitrate of each view in multi-view/3D video is 

introduced. According to this study, we should collect and 

categorize all of the encoding parameters and features that 

affect the bitrate and the perceptual quality of multi-

view/3D video during the prediction process according to 

the H.264/MVC standard. The effect of each encoding 

parameter and feature in the overall bitrate of each view is 

determined by changing only that parameter or feature in the 

encoding process and considering the rest as fixed. The 

encoding parameters and feature that do not have a 

significant impact on overall bitrate of each view are 

discarded from the list of parameters. This approach found 

that among the related parameters, the “video content 

complexity” concept has the most important effect on the 

bitrate of each view [24]. Hence, based on the outcome of 

this study, we will use this concept to characterize the 

impact of intra-view disparity in the prediction process and 

the total bitrate of each view. 

2) Derive the relationship between the rate of each 

view and the intra-view disparity indicator 

parameters 

According to the methodology, at this point the 

relationship between the bitrate of each view and the video 

content complexity concept should be derived. 

For this purpose, we should parameterize the video 

content complexity concept by defining the appropriate 

parameters that describe it. Several methods have been 

introduced in the literature to parameterize this concept. In 

this paper and similar to [24], we have used the “scene 

complexity” and “level of motion” parameters to 

characterize the video content complexity concept. Using 

these parameters has some advantages. They can be 

calculated using the codec related variables which are 

already calculated in the encoding process. Hence, this 

calculation has a minimal cost compared to calculating the 

content complexity directly from the pixel values of the 

uncompressed frames. Although complexity reduction can 

decrease the accuracy of calculations, but the results of our 

experiments show that using these parameters provides 

acceptable accuracy. It should be noted that the selected 

parameters represent just an example to explain the steps of 

our methodology, and the proposed methodology can be 

used with any other related parameters.  

The “scene complexity” and “level of motion” parameters 

are defined in [24] as follows: 

Scene Complexity(C) =  
BitrateI

2×106×0.89QPI
          (2) 

Level of Motion(M) =  
BitrateP+BitrateB

2×106×0.89(QPP+QPB)        (3) 

where BitrateI, BitrateP and BitrateB are the number of bits 

that are used for I, P and B frames and QPI, QPP and QPB are 

the average quantization parameters of I, P and B frames, 

respectively. The constant values in these equations are 

selected as follows. A total of 52 values of quantization step 

sizes are supported in the H.264/AVC standard that are 

indexed by QPs. The value of the quantization steps are 

arranged in a way that an increase of 6 in QP means 

doubling the quantization step size. Hence, an increase of 1 

in QP corresponds to a reduction of bitrate by approximately 

1 −
1

2

1

6 = 0.89 [24]. 

Now we can extract the relationship between the total 

bitrate of each view and the concept of video content 

complexity using C and M parameters. The details of this 

procedure are as follows. 

Theoretically, the coding complexity function is defined 

as the multiplication of QS and the required bit budget for 

encoding [26]: 

Coding Complexity =  QP × R                (4) 

On the other hand, as we explained before, the coding 

complexity is defined as a function of C and M parameters.  

Coding Complexity =  F(C, M)                (5) 

Hence, we will find the rate of each view as a function of 

QP, C and M parameters using equations (4) and (5) by 

curve fitting: 

QP × R = F (C, M)                   (6) 
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F in (5) and (6) indicates the function that can be 

extracted analytically using curve fitting. 

As is common in all RD modeling research such as [26], 

to extract our RD model, we have used a large number of 

views from some standard multi-view/3D video sequences 

with different content complexity and various resolutions. 

TABLE I summarizes the properties of our test sequences.  

 
TABLE I 

Properties of the test sequences 

Frame 

size 

Frame 
rate 

(fps) 

Number 
of 

views 

Number 
of 

frames 

Video 

Sequences 

1024×768 15 8 100 Ballet 

1024×768 15 8 100 Break-dancer 

1024×768 25 7 500 Balloons 

1024×768 25 7 400 Kendo 

640×480 15 5 1000 Crowd 

640×480 15 5 1000 Flamenco 

640×480 15 7 625 Object 

640×480 15 8 530 Race 

1280×960 15 8 500 Tower 

 

These views are encoded with constant quantization 

parameter using H.264/MVC encoder version 8.5 [27].  

The QP and bitrate values of the coded views are used for 

the curve fitting process to find the relationship between 

QP × R and C, M parameters as in equation (6). The 

objective of curve fitting is to find the parameters of a 

mathematical model that describes a set of data in a way that 

minimizes the difference between the model and the data. 

Fig 3 shows the coding complexity (QP × R) as a function 

of C and M, for the Ballet sequence and with constant QP 

equal to 20. This figure shows that a first degree polynomial 

equation is an exact fit for our tested data. 

 

 
Fig 3. Video coding complexity as a function of video content complexity 

parameters C and M, for the Ballet sequence and QP=20 

The goodness of a curve fitting process is then evaluated 

using the R-square error and Root Mean Squared Error 

(RMSE) based on the fitting result. These statistical 

parameters describe how well the fitted model matches the 

original data set. The following equations describe the 

RMSE and R-Square respectively. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−𝑓(𝑥𝑖))2𝑛−1

𝑖=0

𝐷𝑂𝐹
              (7) 

𝑅 − 𝑆𝑞𝑢𝑎𝑟𝑒 = 1 −
∑ (𝑦𝑖−𝑓(𝑥𝑖))2𝑛−1

𝑖=0

∑ (𝑦𝑖−𝑦̅)2𝑛−1
𝑖=0

           (8) 

Where 𝑦𝑖  is the value of pixel i of original data, 𝑓(𝑥𝑖) is 

the value of pixel i of fitted curve, DOF is the degree of 

freedom, n is the total number of pixels and 𝑦̅ is the average 

value of original data. The R-Square statistic measures how 

successful the fit is in explaining the variation of the data. 

For example, an R-Square value of 1 means that all of the 

variation in data is shown by the fitted curve on average and 

the regression line corresponds to the data exactly. 

Subsequently, we used the MATLAB curve fitting 

toolbox for the curve fitting process and measured RMSE 

and R-Square values, which for our curve fitting process 

were 0.0009 and 1 respectively on average for all sequences, 

indicating excellent fits.  

As we can see in Fig 3, for the tested data, the results of 

curve fitting process shows that the rate fits well into a first 

order function of the video content complexity indicator 

parameters C and M. In other words, according to (6) and 

assuming a constant QP, the curve fitting results can be 

expressed as: 

R =  α × C + β × M + γ                (9) 

where R is the total bitrate of each view and 𝛼 , 𝛽 and 𝛾 are 

the constant coefficients extracted from curve fitting. In the 

general case where QP is not constant we can assume that: 

QP × R =  α(QP) × C + β(QP) × M + γ(QP)          (10) 

So, 

R =  
α(QP)

QP
× C +

β(QP)

QP
× M +

𝛾(𝑄𝑃)

𝑄𝑃
= a(QP) × C +

b(QP) × M + c(QP)               (11) 

Where a(QP), b(QP) and c(QP) are replacements of α, β and 

γ in the general case. For consistency with existing RC 

models, we have considered the inverse values of QP in our 

RD model equation. Hence, the relationship between the 

bitrate of each view and the video content complexity 

indicator parameters can be as follows: 

R(𝑄𝑃−1) = a(𝑄𝑃−1) × C + b(𝑄𝑃−1) × M + c(𝑄𝑃−1)  (12) 

In order to find a(QP−1), b(QP−1) and c(QP−1), we should 

repeat the curve fitting process for different values of QPs. 

For each value of QP, we find a value for a, b and c 

coefficients of the fitted curves. These values can be used to 

extract the proper equations for a(QP−1), b(QP−1) and 

c(QP−1). We performed this process as described next. 

We coded 100 frames of different views of various multi-

view video sequences of TABLE I at various QPs: 15, 20, 

25 and 30. Then for each view, the values of C and M 

parameters were extracted from equations (2) and (3). Then, 

we used the extracted values for C and M parameters and 

the values of total bitrate of each view and QP for curve 

fitting to extract the relationship between R and C and M as 

shown in equation (12). This way, for each value of QP, the 

value of a, b and c, the zero-order and first-order constant 

coefficients of RD model in (12), will be extracted from the 

curve fitting process. As a snapshot, TABLE II shows the 

extracted values of these parameters and the multiplication 

of bitrate and quantization parameter for the Ballet sequence 

and for QP = 15. These extracted values of a, b and c 

coefficients are shown in TABLE III. 

 
TABLE II 

The extracted values for C and M parameters and the multiplication of 
bitrate and QP for the Ballet sequence and for QP = 15 

Bitrate × QP C M View Number 

49355.78 0.0423 0.0068 V0 

47466.12 0.0425 0.0062 V1 

49682.14 0.0433 0.0067 V2 

46749.83 0.0411 0.0062 V3 

46262.21 0.0416 0.0060 V4 

46476.81 0.0425 0.0059 V5 

49264.43 0.0436 0.0065 V6 

48246.75 0.0422 0.0065 V7 
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TABLE III 

The extracted values for RD model coefficients, a, b and c and RMSE and 
R-square parameters related to curve fitting process 

QP = 15 

R-square RMSE c b a 

1 0.05755 0.0996 230266.7 0893.33 

QP = 20 

R-square RMSE c b a 

1 0.08228 0.10115 121100 21500 

QP = 25 

R-square RMSE c b a 

0.9997 104 -0.9428 65040 11584 

QP = 30 

R-square RMSE c b a 

1 9.496 0.153367 35433.33 6282.667 

 

Using the values of a, b, c and QP of TABLE III, the 

proper equations to express a(QP−1), b(QP−1) and c(QP−1), 

can be derived. Results of the experiments are shown in Fig 4 

and equations (13), (14) and (15). 

a(QP−1) = 853409(QP−1) − 21722       (13) 

b(QP−1) = 5E + 6(QP−1) − 125295       (14) 

c(QP−1) =  −1E + 07(QP−1)3 + 1E + 6(QP−1)2 −
52901(QP−1) + 705.82              (15) 

 

 
Fig 4. Coefficients of the RD model in (12)  

B. Step 2: Extracting inter-view RD model  

1) Extract the effective parameters to characterize 

inter-view disparity 

In order to characterize the inter-view disparity and find 

the corresponding effective parameters, we have previously 

analyzed the bitrate distribution of multi-view video 

sequences in [28]. There, we argued that frames of each 

view can use the inter-view prediction to improve the 

compression efficiency in multi-view video coding. 

As shown in Fig 1, the frames of 𝑉0 use only intra-view or 

temporal prediction. But the frames of 𝑉2 use the inter-view 

prediction from 𝑉0 in addition to intra-view prediction to 

increase the effectiveness of the compression process. 

Similarly, the frames of 𝑉1 use the inter-view prediction 

from 𝑉0 and 𝑉2for this issue. According to this discussion, 

the inter-view disparity between the reference and predicted 

views can affect the compression efficiency considerably. In 

order to verify this hypothesis, we have conducted an 

experiment as follows. 

The prediction structure of Fig 1 has been used to code 4 

views of several multi-view video sequences in two 

different scenarios each with a different average inter-view 

disparity. In the first scenario, the views have low average 

inter-view disparity with each other, and in the second 

scenario they have higher average inter-view disparity. In 

order to find the views with the lowest average inter-view 

disparity, we performed the following steps. First, V0 is 

selected as the base view in the prediction structure of Fig 1. 

As seen in this figure, V2 should be predicted from V0. 

Hence, among all the remaining views, the view with 

minimum disparity to V0 is selected as V2. Similarly, a view 

with minimum disparity to V0 and V2 is selected as V1 and 

the view with minimum inter-view disparity to V2 is selected 

as V3. The same approach has been used to select the views 

with highest average inter-view disparity for the second 

scenario. The selected views for minimum and maximum 

average inter-view scenarios and the corresponding inter-

view disparity for four tested sequences are shown in 

TABLE IV. 

 
TABLE IV 

The selected views for minimum and maximum average inter-view 

scenarios and the corresponding inter-view disparity for tested sequences 

Video 

sequences 

Case I 

Average disparity 

between views is low 

Case II 

Average disparity  

between views is high 

 Views 
Inter-view 
disparity 

Views 
Inter-view 
disparity 

Ballet 0-1-4-2 0.45 0-2-1-5 0.6 

Break-dancer 0-7-1-5 0.29 0-6-4-2 0.4 

Kendo 0-4-6-5 1.03 0-1-2-6 1.15 

Balloons 0-3-4-2 0.4 0-3-6-5 0.69 

 

Then, we encoded 100 frames of each view of these four 

video sequences using the H.264/MVC video encoder 

version 8.5 [27] and the prediction structure of Fig 1. The 

results of this experiment for the Ballet sequence at various 

QPs are shown in TABLE V. 
 

TABLE V 
Bitrate distribution at view-level for the Ballet sequences in two different 

scenarios, low and high average inter-view disparity, and at various QPs 

Views 

Case I 

Average disparity 

between views is low 

Case II 

Average disparity 

between views is high 

QP = 15 

 PSNR 
Bitrate 

(kbps) 
PSNR 

Bitrate 

(kbps) 

V0 43.62 2522 43.62 2522 

V1 43.64 2285 43.53 2445 

V2 43.64 2363 43.65 2392 

V3 43.71 2371 43.54 2514 

QP = 20 

 PSNR 
Bitrate 

(kbps) 
PSNR 

Bitrate 

(kbps) 

V0 41.67 379 41.67 379 

V1 41.63 292 41.57 323 

V2 41.85 336 41.85 356 

V3 41.58 341 41.53 361 

 

This experiment indicates that for a better performance, 

each view in MVC should be predicted from the views with 
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lower inter-view disparity. This concern can be addressed by 

controlling the rate of each view of a MVC sequence using 

the concept of average disparity between views as suggested 

in [28]. 

On the other hand, [28] discusses that the power 

consumption and network capacity are other important 

parameters that should be considered in a view-level rate 

model, specifically for multi-view/3D video coding, since 

there is a trade-off between quality, bandwidth and 

processing power in multi-view/3D video applications. Two 

real life cases were considered in [28] to explain this trade-

off as follows. When the receiver has limited processing 

power but sufficient bandwidth, the best solution to reach 

the acceptable QoE is to send all views and avoid a 

synthesis algorithm with high computational complexity. 

But for receivers with sufficient processing power and 

limited bandwidth, the bitrate should be significantly 

reduced by not transmitting some views. In this case, rate 

control should allocate the available bitrate to the more 

important views to improve the QoE at the receiver. The 

missing views should then be synthesized at the decoder 

side using the received views [29]. 

Based on the above discussion, inter-view disparity 

between the neighboring views of the prediction structure, 

processing power, and QoE are three main parameters that 

should be considered as inter-view disparity indicator 

parameters. 

In this work, we will use a simple power consumption 

measure for multi-view/3D applications that was introduced 

in [28]. This metric is defined as the total number of views 

that can be synthesized at the decoder side according to the 

power constraints of each application/decoder profile. 

2) Derive the relationship between the rate of each 

view and the inter-view disparity indicator 

parameters 

According to our methodology, at this point we should 

extract the relationship between the total bitrate of each 

view and the inter-view disparity indicator parameters.  

As mentioned before, an analytical approach will be used 

to extract this relationship.  This approach is completely 

similar to the curve fitting approach in step 1 of the 

methodology and has been explained extensively in [28]. 

The results show that the rate of each view fits well into a 

power function of inter-view indicator parameters, inter-

view disparity, and processing power, and can be denoted by 

the following equation [28]: 

R(QP−1) = d(QP−1)Xe(QP−1) + f(QP−1)              (16) 

Where 𝑋 is the multiplication of the inter-view disparity 

and the processing power consumption metrics. In [28], we 

mentioned that there is a direct relationship between the 

inter-view disparity, processing power parameters, and the 

rate of each view. To summarize and for further 

simplification, a new parameter 𝑋 has been introduced in 

equation (16) as the multiplication of inter-view disparity 

and processing power consumption metric. 

Similar to the previous step, for each value of QP, a 

value for d(QP−1), e(QP−1) and f(QP−1), which are 

coefficients of the RD model in (16), should be extracted. In 

order to find them, we should repeat the curve fitting process 

for different values of QPs. For each value of QP, we found 

a value for d, e and f coefficients of the fitted curves as 

shown in TABLE VI. These values were then used to extract 

the proper equations for d(QP−1), e(QP−1) and f(QP−1) as 

illustrated in Fig 5 and equations (17), (18) and (19). 

 
TABLE VI 

The extracted values for RD model coefficients, d, e and f and RMSE and 

R-square parameters related to curve fitting process 

QP = 15 

R-square RMSE f e d 

0.976 407.7 3129 -3.111 8.827 

QP = 20 

R-square RMSE f e d 

0.9778 125.5 1138 -2.906 3.736 

QP = 25 

R-square RMSE f e d 

0.975 40.09 559.5 -3.126 0.5981 

QP = 30 

R-square RMSE f e d 

0.975 109.7 310.4 0.8122 3.705 

 

d(QP−1) =  −1E + 6(QP−1)3 + 221066(QP−1)2 −
10963(QP−1) + 175.83                 (17) 

e(QP−1) = 8355(QP−1)2 − 931.12(QP−1) + 21.977  (18) 

f(QP−1) = 2E + 6(QP−1)2 − 119709(QP−1) + 2054  (19) 

 

 

 

 
Fig 5. The coefficients of RD model in (16) 

C. Step 3: General view-level RD model for Multi-

view video 

Finally, at the last step of the proposed methodology, 

the two RD models extracted in the previous steps should be 

combined to derive the general view-level RD model for 

multi-view/3D video using a weighted sum approach. The 

proper weights should be extracted according to the ratio of 

intra and inter-view predictions.  

In order to calculate the proper weight values, 100 

frames of our test videos in TABLE I were coded using the 

prediction structure of Fig 1. Then, the numbers of inter-

view and intra-view predictions for each view were 

extracted. The results of this experiment show two things: 

first, for the views with one inter-view reference, on average 
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96% of predictions are intra-view and only 4% of 

predictions are inter-view. Second, for the views with two 

inter-view references, 70% and 30% of predictions are intra-

view and inter-view prediction, respectively. Hence, our 

proposed approach suggests to set the weighted values 

experimentally and as follows: for views with one inter-

view reference, they will be 0.04 and 0.96, and for the views 

with two inter-view references they will be 0.3 and 0.7, 

respectively. 

Hence, the final view-level RD model will be as 

follows: 

R(QP) = ωintra_pred [a(QP−1) × C + b(QP−1) × M +

c(QP−1)] + ωinter_pred[d(QP−1)Xe(QP−1) + f(QP−1)]  (20) 

Where X is the multiplication of average inter-view 

disparity and processing power. C and M are scene 

complexity and motion level, the video content complexity 

indicator parameters that can be calculated using (2) and (3). 

ωinter_pred and ωintra_pred are the weighted values for inter-

view and intra-view prediction. a, b, c, d, e and f are the 

model coefficients and can be calculated from (13), (14), 

(15) and (17), (18) and (19), respectively. 

 

V. EVALUATION 

To evaluate our proposed RD model, we have selected a 

large number of views from several MVC sequences. These 

selected sequences and views are different from the ones 

that were used to extract the model in sections A and B. 

TABLE VII shows the properties of these video sequences. 

 
TABLE VII 

Properties of the Test Sequences 

Video Sequences 
Frame 

size 

Frame 

rate 

(fps) 

view 

Number 
Frame 

Number 

Ballroom 640×480 15 7 250 
Exit 640×480 15 7 250 

Pantomim 1280×960 15 7 500 
Book Arrival 1024×768 15 5 100 

 

We encoded the test views using the same H.264/MVC 

encoder. Then, we estimated the encoded bits of these views 

using our proposed model and compared the estimated 

values with the exact values that were determined 

experimentally from the encoder. TABLE VIII shows the 

average estimation error for the views of the tested video at 

different QPs. The percentage of Average Estimation Error 

(A.E.E) has been defined in (21).  

𝐀. 𝐄. 𝐄 = 𝐦𝐞𝐚𝐧 (
𝟏𝟎𝟎 ×𝐚𝐛𝐬(𝐑𝐞𝐚𝐥 𝐁𝐢𝐭𝐬−𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐞𝐝 𝐁𝐢𝐭𝐬)

𝐑𝐞𝐚𝐥 𝐛𝐢𝐭𝐬
)         (21) 

The table shows that the average estimation error of the 

proposed model is 12% which is reasonably low. For the 

results of this table, we have assumed that the receivers can 

synthesize two views at the decoder side and four views 

should be coded and sent to the receivers. Hence, this large 

number of encoded views causes a little more estimation 

error at low target bitrate (high quantization parameter (QP 

= 30)). 

In order to show the effectiveness of our proposed RD 

model, the estimation error of our model has been compared 

with the estimation error of existing Linear RD models such 

as [30]. The results of this comparison are shown in TABLE 

IX for 4 views of our test sequences.  

As shown in this table, our proposed model outperforms 

existing methods by a factor of 3 in terms of estimation 

error. As a sample snapshot, the average actual and 

estimated bitrates using our proposed RD model and the 

Linear RD model [30] for 4 views of the Ballroom sequence 

at various QPs are shown in Fig 6. 
 

TABLE VIII 
The average estimation error for the proposed RD model for various views 

of our tested sequences and at different QPs 

Ballroom 

QP Estimated Error Average 

Estimated 

Error 
 View 1 View 2 View 3 View 4 

15 9.1% 6.9% 4.7% 5.2% 6.5% 

20 10.6% 9.1% 2% 6.4% 7.0% 

25 6.7% 0.2% 14.7% 1.9% 5.9% 

30 19.1% 4.3% 29.1% 6.8% 14.8% 

Exit 

QP Estimated Error Average 

Estimated 

Error 
 View 1 View 2 View 3 View 4 

15 11.4% 13.5% 12.2% 11.5% 12.1% 

20 13% 21.2% 15.2% 15.4% 16.2% 

25 25.6% 7% 9% 5.3% 11.7% 

30 61% 5.8% 3.5% 23.1% 23.4% 

Pantomim 

QP Estimated Error Average 

Estimated 

Error 
 View 1 View 2 View 3 View 4 

15 15.7% 7.2% 10.7% 6.9% 10.1% 

20 14.3% 2.9% 3.3% 4% 6.1% 

25 19.4% 5.5% 16.3% 5.8% 11.8% 

30 21.5% 10.4% 38% 10.7% 20.1% 

 
 

TABLE IX 

Comparison of the average estimated error for our proposed RD model 
compared to Linear RD model [30]  for 4 views of our tested sequences  

Video 

Sequences 
QP 

Average Estimated Error 

Proposed Method 
Linear RD 

Model [30] 

Ballroom 

15 6% 42% 

20 7% 22% 

25 5% 12% 

30 14% 17% 

Exit 

15 12% 27% 

20 16% 28% 

25 13% 50% 

30 23% 60% 

Pantomim 

15 11% 62% 

20 6% 45% 

25 13% 30% 

30 23% 32% 

Average  12% 36% 

 

Moreover, we compared the performance of our 

proposed RD model with another experimental view-level 

RD model [11] which is based on the prediction mode 

distribution used in the different view types. Fig 7 shows the 

result for the Book Arrival sequence and with different QPs 

ranging from 15 to 38. This figure shows the percentage of 

estimated and actual bitrate distribution of each view over 

the total bitrate for various QPs on average. As we can see, 

our proposed approach can predict the actual bitrate 

distribution more accurately for both B-views and P-views. 

Additionally, in order to further show the effectiveness 

of our proposed model, we have considered Multi-View plus 

Depth (MVD) video format that is used in the Depth Image-

Based Rendering (DIBR) technique. DIBR is one of the real 

applications of multi-view/3D video that has recently 

become popular for generating additional views in the multi-
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view video plus depth representation. The multi-view plus 

depth video format allows the construction of bitstreams that 

represent texture views with corresponding depth 

views [31]. In this video format, compression is based on 

algorithms for multi-view video coding, which exploit 

statistical dependencies from both temporal and inter-view 

reference pictures for the prediction of both color and depth 

data [32]. So our proposed RD model can be used for this 

video format effectively. To show the performance of our 

proposed RD model for this video format, we have arranged 

an experiment in which the depth views are coded using 

other depth views as a reference. 

 

 

 

 

 
Fig 6. Actual value of encoded bits for different views of the Ballroom 

sequence at various QP, compared to the estimated value by the proposed 

RD model and Linear RD model [30] 

 
 Fig 7. Comparison of bitrate distribution of each view type over the total 

bitrate for our proposed RD model and the proposed model in [11] 

First, the model parameters such as inter-view disparity, 

video content complexity and processing power have been 

extracted for depth views. Then the estimated bitrate has 

been calculated using equation (20). Finally, the estimated 

bitrate has been compared to the actual bitrate and the 

estimation error has been calculated using equation (21). 

The average estimated errors for various depth views of 

the Pantomim sequence and at different QPs are shown in 

TABLE X. In addition, the estimated errors for the proposed 

RD model for different depth views of the Pantomim 

sequence are shown in Fig 8. The results show that the 

view-level RD model that has been extracted using our 

proposed methodology can predict the rate of each view 

with a low estimation error of 12% and 10% for texture and 

depth views on average, respectively. 

 
TABLE X 

Average estimated error for various depth views of Pantomim sequence at 
different QPs 

QP Estimated Error Average Estimated 

Error  View 1 View 2 

15 9% 2% 5.5% 

20 9% 4% 6.5% 

25 13% 7% 10% 

30 26% 10% 18% 

 

 

 

 

 
Fig 8. Actual value of encoded bits for depths views of the Pantomim 

sequence, compared to the estimated value by the proposed RD model 

VI. CONCLUSIONS 

This paper proposes a systematic approach to derive a 

new experimental view-level RD model for MVC 

considering the main characteristics of multi-view/3D video 

and the application at hand. Our proposed approach takes in 

to account that the statistical dependencies, which are the 

disparity between views and motion between temporally 

successive frames, can affect the prediction process and 

therefore the total bitrate of each view. So, statistical 

dependencies; i.e., intra-view and inter-view disparity, as the 
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main characteristics of multi-view/3D video can be used to 

find the RD model parameters. Experimental results show 

that our view-level RD model can predict the rate of each 

view with a low estimation error of 12% for multi-view/3D 

video (texture and depth views) on average. 
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