Interdisciplinary nature of electrical and electronics engineering studies. Case study: Electronics Product Development and

Technology Information Management (TIM)

Nerva Joachim

Presented at University of Ottawa To second year Electrical Engineering students March 23, 2012

Objective(s)

- Provide insight to electrical engineering students in using basic electronic knowledge, well defined and well known functions and sub-modules building blocks in their project design
- Show relationships between circuit theory, system and control theory, signal processing and electronic in the context of designing an RMS-to-DC converter used in a wind turbine design
- Underline the importance of using engineering methodology guidelines such as: system requirements, specifications and architecture, algorithm, trade-off between Hardware and software, design for test, maintenance, manufacture and service and documentation.

Core competency and complementary studies asset

- Electric Electronic Engineering
 - Automatics
 - Telecommunications
 - Microelectronics
 - Electrical Energy
- Technology Information Management (TIM) in comparison to Industrial Engineering
 - Production
 - Organization and Technological Innovation
 - Technology Project Management

Case Study

- Electrical Energy and Power Electronics
- As electrical engineers advance in their career this profession becomes more and more interdisciplinary such as a difference of potential is built between the fields presented above and their areas of specialization not to repulse them apart but to create a necessary and tightly connected knowledge network space. The following case study symbolizes this paradox in the next figure

Interdisciplinary Study

nejoach@yahoo.com

Waveforms signals

Waveforn	ns signals
Periodic (parameters)	Non-periodic (parameters)
Sine wave	DC signal
(amplitude, peak, peak to	(amplitude, ripple)
peak, RMS, average,	
Frequency)	
Square wave	Random signal
(rise time, fall time, duty	
cycle, overshoot, slew rate)	
Saw tooth wave	Isolated pulse

Equations and Measurements Methods

	Useful Equations	
Average value	Root mean Square	Rectified mean or mean absolute deviation
$V_{avg} = \frac{1}{T} \int_0^T v(t) dt$	$V_{rms} = \sqrt{\frac{1}{T} \int_0^T v(t)^2}$	$V_{mad} = \frac{1}{T} \int_0^T v(t) dt$

	Methods of RMS Measurement
1	Rectified and average, analog computing
2	Thermal
3	Sampling techniques

RMS Measurements using simple blocks

nejoach@yahoo.com

March 23 2012

RMS Measurements using simple blocks

In the previous design if we change the divider for a log module that implies v_in^2/ V_o yields to $Log (v_in^2 / V_o) = log (v_in^2) - log (V_o)$ $Log (v_in^2 / V_o) = 2log [abs(v_in)] - log (V_o)$ A control bloc diagram for the previous equation can be Vin 2log |Vin Vo Log(Vo)

RMS Measurements using simple blocks

References

- [1] Mohan, Ned; Tore M. Undeland; Williams P. Robbins, 2003. Power Electronics
- [2] Ashan, R.; M.T. Iqbal, George K.I. Mann, 2008. Controller for a small induction generator based wind turbine. Applied Energy, 85, 218-227.
- [3] Northrop Robert B., 2004. Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation
- [4] Digital and Analogue Instrumentation Testing and Measurements
- <u>http://www.analog.com/static/imported-files/Data_Sheets/AD637.pdf</u>
- <u>http://www.analog.com/static/imported-files/Data_Sheets/AD636.pdf</u>
- http://www.analog.com/static/imported-files/Data_Sheets/AD532.pdf
- http://www.analog.com/static/imported-files/Data_Sheets/AD532.pdf