unleashing knowledge creation and sharing in a Reflective Open Education

Riadh Habash, PhD, P.Eng

the message: toward positive engineering schools
knowledge content is a means to an end, not an end in itself.
Engineering is a creative social activity; it is about design under constraint. Profession is work that requires sophisticated skills; the use of judgment; and the art of discretionary leadership.
Think Feel Act

topics rather than subjects
what, why, how
problem solving
personalization
whole system
choice
problem finding
studio

involve me i learn
(deep learning)

tell me i forget
teach me i may remember
(content mastery)

ancient Chinese proverb
Interaction Model

Source: Emergence and Innovation in Digital Learning (Veletsianos, 2016)

Digital tools to support the language of reflection
Toward state of flow experience

Teacher Centered
Early Stage
- Goal
- Teacher
- Student
- Content Mastery
- Delivery
- Consumption

Collaboration
Middle Stage
- Knowledge Creation
- Facilitator
- Tool Acquisition

Student Centered
Advanced Stage
- Learning Mastery
- Enabler
- Real Life Applications
The “bucket theory of knowledge”

Course content should not be used as an end in itself, but as a means of helping students learn how to learn.

Teaching should shift from covering all required content to guiding principles of the learning process.

Grading should not be based on reciting back lecture notes. Sometimes, grading is very degrading for students.
Information Consumption
(Basic use of technology)
Practice skills and procedures; take test or turn in homework; find information in the Internet; write reports, etc.

Knowledge Creation
(High-level use of technology)
Analyze data; collaborate with peers and teachers; develop and use simulations, build products; create presentations.
Knowledge needed in engineering

Core: Theoretical science- math-based knowledge.

Lifelong self-educate, to meet new problems: Design concepts; criteria and specifications; quantitative data; practical considerations; knowledge of tools and strategies in project management.

Societal skills: Knowledge of values, norms, and context.
3 Ps of Learning

personalization; participation; productivity

Student learn in many ways, so the challenge for teachers is to discover which approaches help students learn most effectively.

Reflection as a personalized process of informal engagement enables learners to produce results by using real-world contexts, carrying out “whole” tasks, and solving problems as they arise.
Acquisition to participation to creation

Personalized learning is to get away from the concept of “lesson” by designing topic-case-project-based forms of learning.

Gone are the days when people learned and worked in isolation. Media have transformed learning to collaborative environments.

Through applying learner-centred pedagogy, students gain insights by dealing with real-world questions and problems.
Sage on the Stage or Guide on the Side

Studio learning
Team projects and the idea of CDIO
Open-ended problem solving
Learning-by-doing
Engagement in research
Targeting skills and competencies

- Critical and inventive thinking
- Communication, collaboration and information retrieval skills
- Problem finding, defining, and solving
- Social and emotional competencies
- Initiative and creativity basic skills in entrepreneurship
- Project management and leadership skills
- Writing, presentation, and speaking skills
- Ethical, environmental, and sustainability awareness.
Case 1: Course subject content

ELG4125: Electric Power Transmission, Distribution and Utilization

Textbook: Power System Analysis and Design

Components: Lectures; Tutorials; Labs

Course Content:
Transmission system
Protection system
Distribution system
Utility applications of power electronics
Design Case of a “Smarter Grid”

System: Centralized to De-centralized

Load: Passive to Smart Load
LEED Platinum Grocery Store: Case Project Video
Case 2: course subject content

ELG3336: Electronics for Mechanical Engineering
Textbook: Principles and Applications of Electrical Engineering
Components: Lectures; Tutorials; Labs.

Course Content:
Operational amplifiers
Semiconductors, diodes, transistors
Digital logic circuits and systems
A typical “whole” mechatronics system as a “topic-case-project-based” platform for teaching the subject content of ELG3336.
Fostering the state of flow experience

Find out what students know and challenge.

Make assignments relevant to real life applications.

Encourage choice with motivation and engagement in mind.

Set clear goals with proper feedback.

Build positive relationship.

Offer hands-on experiences.
A state of flow experience with the human hamster wheel: A collaborative uOttawa student project with Canada Science and Technology Museum
A state of flow experience with uOttawa SAE Aerospace
March 9, 2018
Florida Air Museum
Questions

a learning journey from routine and unfeeling to

enlightenment

empowerment

emancipation

entrepreneurial mindset.