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Chapter 13: Design of a digital controller 

Method 1: a. design the controller Gc(s) in s domain; 

                  b. convert the Gc(s) to z domain D(z). 

Method 2: a. convert the given s domain plant G(s) into z domain; 

                  b. design the digital controller in z domain directly. 
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This week we explain the first method. 

Step b: convert s domain Gc(s) to z domain D(z): 
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Step a: design the controller Gc(s) in s domain 

Gc(s) can be designed using the method explained in Chapter 10,11, and 12. 

Review the design of a phase lead controller in Chapter 10 and explain the example 13.5 in 

details. 

 

1. review the concept of phase margin (Chapter 7): 

Definition: The phase margin is the amount of phase shift of the GH(jw) at unity 

magnitude that will result in a marginally stable system with intersection of the –1+j0 

point on the Nyquist diagram. 

It means phase margin is the phase shift needed to 180 or –180 at the frequency where the 

magnitude of GH(jw) is one, i.e. 0 dB, or it is 180 or –180 minus the phase 180 at the 

frequency where the magnitude of GH(jw) is 0dB . Using the Bode plot to explain the phase 

margin is shown in the following figure. 

For example: 
)125.0(

1740)(
+

=
ss

sGH  

2 



DGDnotes_March10 

 

pm=2.7466=(-177.3)-180.    usually, we define phase margin within (-180 180). 

the preferred closed-loop phase margin is greater than 45, we need phase compensation about 

at lest 45-2=43. 

Another example from section 9.4 
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2. review the phase-lead design using phase margin (Section 10.3 and 10.4): 
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The phase is ∠    (Eq 2) )(tan)(tan)( 11 ωτωατω −− −=jGc

Or we can write the phase in another formular, 
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The phase is 22
1
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The bode diagram of the general phase-lead compensator is shown in textbook figure 10.3, or 

reference to the figure in the last page of this notes. The maximum value of the phase lead 

occurs at a frequency mω , and 
ατ
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== zpm . 

 It should also be noted that at mω , the Gc(s) add additional gain about    

                           αα 1010 log102/log20 = . 

At frequency mω , the corresponding maximum phase is  
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So if we can derive the requested  phase compensation mΦ , then the  can be calculated from 

(Eq 4). 

Design step is expressed in Section 10.4: 

1. plot the Bode diagram of the uncompensated G(s), find the phase margin of G(s); 

2. calculate the maximum phase lead mΦ ,   

3. using Eq 4calculated α ; 

4. calculate α10log10  and determine the frequency where the uncompensated magnitude 

curve is equal to - α10log10 . Because the compensation network provide a gain of 

α10log10  at mω . This frequency is the new 0 dB crossover frequency and mω  

simultaneously. 

5. using mω  and α  to calculate z and p  using  
z
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6. k is calculated to yield | 1|=GcG  

 

Example 13.5: 
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As shown previously, the phase margin of the uncompensated system is 2.7, to achieve the 

closed-loop phase margin greater than 45, we need additional phase lead >45-2.7; mΦ

 

 the preferred closed-loop phase margin is greater than 45, we need phase compensation about 

at lest 45-2=43. But considering that 
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the system, to be safely, we need larger mΦ  as illustrated in above figure. So we chose =46. 
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sin1α =6.25. At the end, we need verify the performance, if it does not achieve 

required performance, we need to pick a larger mΦ  
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α10log10 =7.9588 dB 
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