ELG3336: Celebrating the Confederation Line (O-Train), 2019

History: The first electric passenger train was presented by Werner von Siemens at Berlin in 1879. The locomotive was driven by a 2.2 kW, series DC motor, and the train consisting of the locomotive and three cars, reached a speed of 13 km/h.

Case: The train uses two electric locomotive DC motors (1500 V, 1 MW, each) powered by electricity from overhead DC lines. Assume 10 locomotives operating in the line at the same time for 20 hours per day.

\[
\Delta I = V_o(V_s-V_o)/fLV_s; \Delta V_c = \Delta I/8fC; D = V_o/V_s \\
\Delta I = V_sDT/L; \Delta V_c = I_oD/fC; D = 1-V_s/V_o \\
\eta = P_o/P_{in}
\]

Question 1: Design a solar farm and a storage facility that provides enough energy to the entire overhead power line of the train system. Use solar panels (V, W, per unit). Feel free to use suitable converters. Estimate the harvested power in kW and kWh.
Question 2: Design a suitable DC to DC converter to supply $i_o = ?$ A to the locomotive DC series motor from the overhead power line (1500 V). Assume: $E_a = ?$ V, $R_a = ?$ Ohm, $f_s = ?$ Hz. Assume $\%$ ripple current, 10% ripple voltage, and efficiency of $\%$.
Question 3: Consider the following step-down and step-up chopper (two quadrant chopper). The circuit can provide both motoring forward operation (S_1 and D_1) and regenerating braking operation (S_2 and D_2).

For the motoring mode (I), chopper circuit (S_1 and D_1), determine the duty cycle and turn-on time in the motoring mode if $n = \, ? \, r/min$, and $i_o = \, ? \, A$. Assume $V_s = 1500 \, V$, $E_a = \, ? \, n$, $R_a = \, ? \, \Omega$, $f_s = \, ? \, Hz$. Calculate the absorbed power in the motor armature winding and the power delivered by the voltage supply. What is the role of the diode (D_1)? Draw the voltage waveform first with D_1 and second without D_1.
Question 4: Consider the following step-down and step-up chopper (two quadrant chopper). The circuit can provide both motoring forward operation (S_1 and D_1) and regenerating braking operation (S_2 and D_2).

![Chopper Circuit Diagram]

For the forward breaking mode (IV), chopper circuit (S_2 and D_2), determine the duty cycle and turn-on time in the motoring mode if $n = ?$ r/min, and $i_o = -$ A. Assume $V_s = ?$ V, $E_a = ?$ V, $R_a = ?$ Ohm, $f_s = ?$ Hz. Calculate the absorbed power in the motor armature winding and the power delivered by the voltage supply. What is the role of the diode (D_2)? Draw the voltage waveform first with D_2 and second without D_2.