ELG4135: Tutorial on Chapter 12

Q1 (12.5)

A low-pass filter is specified to have $A_{\text {max }}=1 \mathrm{~dB}$ and $A_{\min }=10 \mathrm{~dB}$. It is found that its specifications can be just met with a single-time-constant RC circuit having a time constant of 1 s and a dc transmission of unity. What must ω_{p} and ω_{s} of this filter be? What is the selectivity factor?

Solution:
The frequency response of the low-pass filter can be plotted as

An R-C low-pass filter can be plotted as

The voltage transfer function $T(j \omega)$ is then
$T(j \omega)=\frac{V_{o}}{V_{i}}=\frac{\frac{1}{j \omega C}}{R+\frac{1}{j \omega C}}=\frac{1}{1+j \omega R C}$
Given $\tau=R C=1 \mathrm{~s}$,

$$
T(j \omega)=\frac{1}{1+j \omega}
$$

The magnitude of $T(j \omega)$ is then

$$
|T(j \omega)|=\frac{1}{\sqrt{1+\omega^{2}}}
$$

At the pass-band edge:
$\left|T\left(j \omega_{p}\right)\right|=10^{\frac{-1}{20}}$. (Note: $10^{\frac{-1}{20}}$ is the linear scale of -1 dB loss.)
ie. $\frac{1}{\sqrt{1+\omega_{p}{ }^{2}}}=10^{\frac{-1}{20}}$
$\Rightarrow \omega_{p}=0.5088 \mathrm{rad} / \mathrm{s}$
At the stop-band edge:
$\left|T\left(j \omega_{s}\right)\right|=10^{\frac{-10}{20}}$. (Note: $10^{\frac{-10}{20}}$ is the linear scale of -10 dB loss.)
ie. $\frac{1}{\sqrt{1+\omega_{s}^{2}}}=10^{\frac{-10}{20}}$
$\Rightarrow \omega_{s}=3 \mathrm{rad} / \mathrm{s}$
\Rightarrow Selectivity $=\frac{\omega_{s}}{\omega_{p}}=5.9$
\#

Q2 (12.11)

Analyze the RLC network of Fig. P11.11 to determine its transfer function $T(s)=\frac{V_{o}(s)}{V_{i}(s)}$ and hence its poles and zeros.

Solution:
The easiest way to solve the circuit is to use nodal analysis at nodes (1), (2) and (3).
At node (3), $\Sigma I=0$
$\frac{V_{o}}{1}+\frac{V_{o}}{1 / s}+\frac{V_{o}-V_{1}}{2 s}=0$,
where V_{1} is the voltage at node (2).
$->V_{1}=V_{o}\left(2 s^{2}+2 s+1\right)$
(a)

At node (2), $\Sigma I=0$
$\frac{V_{1}-V_{i}}{1}+\frac{V_{1}}{1 / s}+\frac{V_{1}-V_{o}}{2 s}=0$,
$->V_{1}\left(2 s^{2}+2 s+1\right)=V_{o}+2 s V_{i}$
(b)

Substitute (a) to (b)
$V_{o}\left(2 s^{2}+2 s+1\right)^{2}=V_{o}+2 s V_{i}$
$\Rightarrow T(s)=\frac{V_{o}(s)}{V_{i}(s)}=\frac{0.5}{s^{3}+2 s^{2}+2 s+1}$
$=\not$ There is no zero.
$=>$ Poles are given by.
$s^{3}+2 s^{2}+2 s+1=0$
$(s+1)\left(s^{2}+s+1\right)=0$
$s=-1, s=-\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$
\#

Q3 (12.12)

Determine the order N of the Butterworth filter for which $A_{\operatorname{maz}}=1 \mathrm{~dB}, A_{\min } \geq 20 \mathrm{~dB}$, and the selectivity ratio $\frac{\omega_{s}}{\omega_{p}}=1.3$. What is the actual value of minimum stopband attenuation realized? If $A_{\min }$ is to be exactly 20 dB , to what value can $A_{\text {max }}$ be reduced?

Solution:
From equation (12.15)

$$
\begin{align*}
& A\left(\omega_{s}\right)=10 \log \left[1+\varepsilon^{2}\left(\frac{\omega_{s}}{\omega_{p}}\right)^{2 N}\right]=A_{\min } \\
& 1+\varepsilon^{2}\left(\frac{\omega_{s}}{\omega_{p}}\right)^{2 N}=10^{\frac{A_{\min }}{10}} \\
& \left(\frac{\omega_{s}}{\omega_{p}}\right)^{2 N}=\frac{10^{\frac{A_{\min }}{10}}-1}{\varepsilon^{2}} \\
& \log \left[\left(\frac{\omega_{s}}{\omega_{p}}\right)^{2 N}\right]=\log \left[\frac{10^{\frac{A_{\min }}{10}}-1}{\varepsilon^{2}}\right] \\
& N=\frac{\log \left[\frac{10^{\frac{A_{\min }}{10}}-1}{\varepsilon^{2}}\right]}{\log \left[\left(\frac{\omega_{s}}{\omega_{p}}\right)^{2}\right]} \tag{a}
\end{align*}
$$

From equation (11.14), as $A_{m a z}=1 \mathrm{~dB}$,
$\varepsilon=\sqrt{10^{\frac{A_{\max }}{10}}-1}=\sqrt{10^{\frac{1}{10}}-1}=0.5088$

Substitute $A_{\min } \geq 20 \mathrm{~dB}, \varepsilon$, and the selectivity ratio $\frac{\omega_{s}}{\omega_{p}}=1.3$ into (a)
$N \approx 11.3$
$=>$ Choose $\mathrm{N}=12$
The actual value of stopband attenuation can be calculated using $\mathrm{N}=12$ as
$A\left(\omega_{s}\right)=10 \log \left[1+\varepsilon^{2}\left(\frac{\omega_{s}}{\omega_{p}}\right)^{2 N}\right]=27.35 \mathrm{~dB}$
If $A_{\text {min }}$ is to be exactly 20 dB , from equation (12.15)
$\varepsilon^{2}=\frac{10^{\frac{A_{\text {min }}}{10}}-1}{\left(\frac{\omega_{s}}{\omega_{p}}\right)^{2 N}}=0.1824$, with $A_{\text {min }}=20 \mathrm{~dB}$ and $\mathrm{N}=12$
From equation (11.13),
$A_{\text {max }}=10 \log \left(1+\varepsilon^{2}\right)=0.73 \mathrm{~dB}$
\#

Q4 (12.14)
Find the natural modes of a Butterworth filter with a 1-dB bandwidth of $10^{3} \mathrm{rad} / \mathrm{s}$ and $\mathrm{N}=5$.
Solution:
From equation (11.14), as $A_{m a z}=1 \mathrm{~dB}$,
$\varepsilon=\sqrt{10^{\frac{A_{\max }}{10}}-1}=\sqrt{10^{\frac{1}{10}}-1}=0.5088$
And $\omega_{p}=10^{3} \mathrm{rad} / \mathrm{s}, \mathrm{N}=5$, the solutions can be found graphically. (The method is shown in Fig. 11.10)
The radius of the circle is $\omega_{0}=\omega_{p}\left(\frac{1}{\varepsilon}\right)^{1 / N}=873.59$
$P_{1}=\omega_{0} e^{ \pm j\left(\frac{\pi}{2}+\frac{\pi}{2 N}\right)}=-269.96 \pm j 830.84$
$P_{2}=\omega_{0} e^{ \pm j\left(\frac{\pi}{2}+\frac{\pi}{2 N}+\frac{\pi}{N}\right)}=-706.75 \pm j 513.49$
$P_{3}=\omega_{0} e^{ \pm j(\pi)}=-873.59$

Q5 (12.22)
By cascading a first-order op amp-RC low-pass circuit with a first-order op amp-RC high-pass circuit one can design a wideband bandpass filter. Provide such a design for the case the midband gain is 12 dB and the $3-\mathrm{dB}$ bandwidth extends from 100 Hz to 10 kHz . Select appropriate component values under the constraint that no resistors higher than 100 kohms are to be used, and the input resistance is to be as high as possible.

Solution:

Gain $=10^{12 / 20}=3.98 \approx 4$
Want $\mathrm{Ri}=\mathrm{R} 1$ large, so $\mathrm{R} 1=100 \mathrm{kOhm}$
Total gain=Alp*Ahp=4
Alp $=-R 2 / R 1=>R 2=-A l p * R 1$ and $R 2<100 \mathrm{kOhm}$, so
when R1 and R2 are both selected as 100 k , then Alp $=-R 2 / R 1=-1$.

Alp $=-1, \mathrm{R} 2=100 \mathrm{kOhm}$
From Fig. 11.14, $R_{2} C_{1}=\frac{1}{\omega_{0, l p}}$,

$\mathrm{Ahp}=-4, \mathrm{R} 4=100 \mathrm{kOhm}, \mathrm{R} 3=25 \mathrm{kOhm}$
From Fig. 11.14, $R_{3} C_{2}=\frac{1}{\omega_{0, h p}}$,

