

ELG4126- Sustainable Electrical Power Systems- DGD

Economics of Distributed Resources

Maryam Parsa

DGD 03- Jan 21, 2013

Winter 2013

uOttawa

www.uOttawa.ca

Question of the Week

- **Sustainable Grid Development:**

How knowledge of economic, social, and environmental interests can provide sustainable processing of grid development projects?

uOttawa

Paper of the Week

“Energy, economics and environmental impacts of renewable energy systems”

Varun, Ravi Prakash, Inder Krishnan Bhat

Renewable and Sustainable Energy Reviews 13 (2009) 2716–2721

uOttawa

Paper: Energy, economics and environmental impacts of renewable energy systems

Abstract:

- **Three indicators:**
 - Cost of electricity generation
 - Greenhouse gas emissions
 - Energy pay-back time
- **Conclusion:**
 - **Wind and small hydro** are the most sustainable source for the electricity generation

uOttawa

Paper: Energy, economics and environmental impacts of renewable energy systems

Introduction:

- In 2005:
 - the worldwide electricity generation was 17450 TWh
 - 40% originated from coal
 - 20% from gas
 - 16% from nuclear
 - 16% from hydro
 - 7% from oil
 - only 2% from renewable sources

uOttawa

Paper: Energy, economics and environmental impacts of renewable energy systems

Introduction:

- Electricity Production:
 - **Fossil fuels**
 - in their crude form, i.e. wood, coal and oil have traditionally been an extensive used energy resource.
 - **Nuclear power**
 - due to a number of reasons is not accessible to the vast majority of the world and has found its application only within developed countries
 - **Renewable energy**
 - resources are easily accessible to mankind around the world

uOttawa

Paper: Energy, economics and environmental impacts of renewable energy systems

- Sustainability indicators of renewable energy technologies
 - Energy pay-back time
 - GHG emissions
 - Cost of electricity generation
- **Energy pay-back time:**
 - means years to recover primary energy consumption throughout its life cycle by its own energy production

$$\text{EPBT (years)} = \frac{\text{Total primary energy requirement of system throughout its life cycle (GJ)}}{\text{Annual primary energy generation by the system (GJ/year)}}$$

Paper: Energy, economics and environmental impacts of renewable energy systems

- **GHG emissions:**

$$\text{GHG emissions} = \frac{\text{Total CO}_2 \text{ emissions throughout its life cycle (gCO}_{2\text{eq}}\text{)}}{\text{Annual power generation (kWh}_e\text{/year)} \times \text{lifetime (year)}}$$

- **Cost of electricity generation:**

- An average cost of production of electricity over the full life cycle of each generation technology accounting for construction, installation, operation, maintenance, decommissioning, ...

Cost of electricity generation

$$= \frac{\text{Annualised expenses of the system (cent/year)}}{\text{Annual electricity generation by the system (kWh}_e\text{/year)}}$$

uOttawa

Paper: Energy, economics and environmental impacts of renewable energy systems

Sustainability indicators for wind energy systems

S. no.	Year	Location	Power rating (kW)	Life (years)	EPBT (years)	GHG emissions (gCO ₂ eq/kWh _e)	Cost (US cent/kWh _e)
1.	1997 [22]	Denmark	30	20	0.39	16.5	NA
2.	1996 [23]	Japan	100	20	NA	123.7	NA
4.	1999 [24]	India ^a	1500	20	1.0	19	NA
5.	1996 [25]	UK	6600	20	NA	25	NA
6.	2001 [26]	Japan	100	25	1.4	39.4	NA
7.	2005 [6]	Japan	300	NA	NA	29.5	NA
8.	2007 [27]	Turkey	22.5	25	1.4	20.5	5-74

Paper: Energy, economics and environmental impacts of renewable energy systems

Sustainability indicators for PV systems

S. no.	Year	Location	Type of cell	Life time (years)	Power rating (kW)	GHG emissions (gCO ₂ eq/kWh _e)	EPBT (years)	Cost (US cent/kWh _e)
1.	2006 [29]	UK	mc-si	NA	14.4	44	8	NA
2.	2000 [30]	India	c-si	20	.035	300	NA	NA
3.	2000 [31]	Italy	c-si	30	3300	60	3.2	NA
4.	2000 [31]	Italy	a-si	30	3300	50	2.7	NA
5.	1997 [6]	Japan	c-si	20	3	91	15.5	NA
6.	2008 [15]	China	c-si	30	100000	12.1	1.9	19-20
7.	2006 [16]	Singapore	c-si	25	2.7	165	4.5	57
8.	2008 [15]	China	c-si	30	100000	9.4	1.5	19-20
9.	2008 [15]	China	a-si	30	100000	15.6	2.5	19-20
10.	1995 [32]	India	c-si	NA	35 kWh _e /m ²	NA	3.95	NA

uOttawa

Paper: Energy, economics and environmental impacts of renewable energy systems

Sustainability indicators for solar thermal systems

S. no.	Year of study	Location	Type	Life time (years)	Power rating (MW)	EPBT (years)	GHG emissions (gCO ₂ eq/kWh _e)	Cost (US cent/kWh _e)
1.	1999 [34]	Australia	Central receiver	NA	100	NA	36,2	NA
2.	2008 [35]	Spain	Central tower	25	17	NA	202	NA
3.	1990 [36]	US	Central receiver	30	100	NA	43	NA
4.	2008 [35]	Spain	Parabolic trough	25	50	NA	196	NA

uOttawa

Paper: Energy, economics and environmental impacts of renewable energy systems

Sustainability indicators for small hydro systems

S. no.	Year	Location	Type	Life time (years)	Power rating (kW)	GHG emissions (gCO _{2eq} /kWh _e)	EPBT (years)	Cost (US cent/kWh _e)
1.	1996 [39]	Japan	Run-of river	30	10000	18	NA	NA
2.	2008 [40]	India	Run-of river	30	50	74.88	2.71	NA
3.	2008 [40]	India	Run-of river	30	100	55.42	1.99	NA
4.	2008 [41]	India	Run-of river	30	3000	35.29	1.28	NA
5.	2008 [41]	India	Canal-based	30	250	35.35	1.31	NA
6.	2008 [41]	India	Canal based	30	1000	42.98	1.58	NA
7.	2008 [41]	India	Canal based	30	400	33.87	1.26	NA
8.	2008 [41]	India	Dam-toe	30	2000	31.2	1.1	NA
9.	2008 [41]	India	Dam-toe	30	1000	62.4	2.25	NA

Paper: Energy, economics and environmental impacts of renewable energy systems

Figure of Merit

- General meaning:
 - used to compare the different system based upon
 - their performance
 - net energy requirement
 - gross carbon emission from the systems
- In this paper:
 - to evaluate the different sustainability indicators on single platform by giving them equal

$$\text{FM} = \text{Relative rank}_{\text{cost}} \times \text{Relative rank}_{\text{GHG emissions}} \\ \times \text{Relative rank}_{\text{EPBT}}$$

uOttawa

Figure of Merit for Renewable Based Electricity Sources

S. no.	Year	Location	Source	Type	Life time (years)	Power rating (kW)	Cost (US cents/kWh _e)		EPBT (years)		GHG emissions (gCO ₂ eq/kWh _e)		FM
							Cost	Relative	EPBT	Relative	GHG	Relative	
1.	1997	Denmark	Wind	Offshore	20	30	7	9	0.39	10	16.5	10	900
2.	1999	India	Wind	NA	20	1500	7	9	1.0	10	19	10	900
3.	2001	Japan	Wind	Offshore	25	100	7	9	1.4	9	39.4	9	729
4.	2007	Turkey	Wind	Urban area	25	22.5	7	9	1.4	9	20.5	9	729
5.	2006	UK	Solar PV	mc-si	NA	14.4	24	3	8	2	44	8	48
6.	2000	India	Solar PV	c-si	20	0.035	24	3	1.0	10	300	1	30
7.	2000	Italy	Solar PV	c-si	30	3300	24	3	3.2	7	60	8	168
8.	2000	Italy	Solar PV	a-si	30	3300	24	3	2.7	8	50	8	192
9.	1997	Japan	Solar PV	c-si	20	3	24	3	15.5	1	91	6	18
10.	2008	China	Solar PV	c-si	30	100000	19-20	4	1.9	9	12.1	10	360
11.	2006	Singapore	Solar PV	c-si	25	2.7	57	1	4.5	6	165	2	12
12.	2008	China	Solar PV	c-si	30	100000	19-20	4	1.5	9	9.4	10	360
13.	2008	China	Solar PV	a-si	30	100000	19-20	4	2.5	8	15.6	10	320
14.	1999	Australia	Solar thermal	Central receiver	NA	100	20	4	1	10	36.2	9	360
15.	2006	Spain	Solar thermal	Central tower	25	17	20	4	1.02	9	202	1	36
16.	1990	US	Solar thermal	Central receiver	30	100	20	4	1.04	9	43	8	288
17.	2006	Spain	Solar thermal	Parabolic trough	25	50	20	4	1	10	196	1	40
18.	2008	India	Small hydro	Run-of river	30	50	5	10	2.71	8	74.88	7	560
19.	2008	India	Small hydro	Run-of river	30	100	5	10	1.99	9	55.42	8	720
20.	2008	India	Small hydro	Run-of river	30	3000	5	10	1.28	9	35.29	9	810
21.	2008	India	Small hydro	Canal-based	30	250	5	10	1.31	9	35.35	9	810
22.	2008	India	Small hydro	Canal based	30	1000	5	10	1.58	9	42.98	8	720
23.	2008	India	Small hydro	Canal based	30	400	5	10	1.26	9	33.87	9	810
24.	2008	India	Small hydro	Dam-toe	30	2000	5	10	1.1	9	31.2	9	810
25.	2008	India	Small hydro	Dam-toe	30	1000	5	10	2.25	8	62.4	7	560

Paper: Energy, economics and environmental impacts of renewable energy systems

- Figure of merit range for different renewable electricity generation sources

S. no.	System	Figure of merit
1.	Wind	729–900
2.	Solar PV	12–360
3.	Solar thermal	36–360
4.	Small hydro	560–900

uOttawa

REVIEW from DGD 01- Jan 7th

- Standard Residential Rates

Tier Level	Winter: November–April	Summer: May–October
Tier I	First 620kWh	7.378¢/kWh
Tier II	621–825	12.995¢/kWh
Tier III	Over 825	14.231¢/kWh

- Residential Time-Of-Use (TOU) Rates

	November–April	May–October
On-peak	7–10 A.M., 5–8 P.M.	8.335 ¢/kWh
Off-peak	All other times	7.491 ¢/kWh

uOttawa

REVIEW from DGD 01- Jan 7th

- Demand Charges

	Winter Oct–May	Summer June–Sept
Energy charges	\$0.0625/kWh	\$0.0732/kWh
Demand charges	\$7/mo-kW	\$9/mo-kW

- Load Factor

$$\text{Load factor (\%)} = \frac{\text{Average power}}{\text{Peak power}} \times 100\%$$

uOttawa

REVIEW from DGD 02- Jan 14th

- Simple Payback Period

$$\text{Simple payback} = \frac{\text{Extra first cost } \Delta P(\$)}{\text{Annual savings } S(\$/yr)}$$

- Initial (Simple) Rate-Of-Return

$$\text{Initial (simple) rate of return} = \frac{\text{Annual savings } S (\$/yr)}{\text{Extra first cost } \Delta P(\$)}$$

- e.g. a \$1000 investment which returned \$500 per year would have a two year payback period and 50% rate of return per year.

uOttawa

REVIEW from DGD 02- Jan 14th

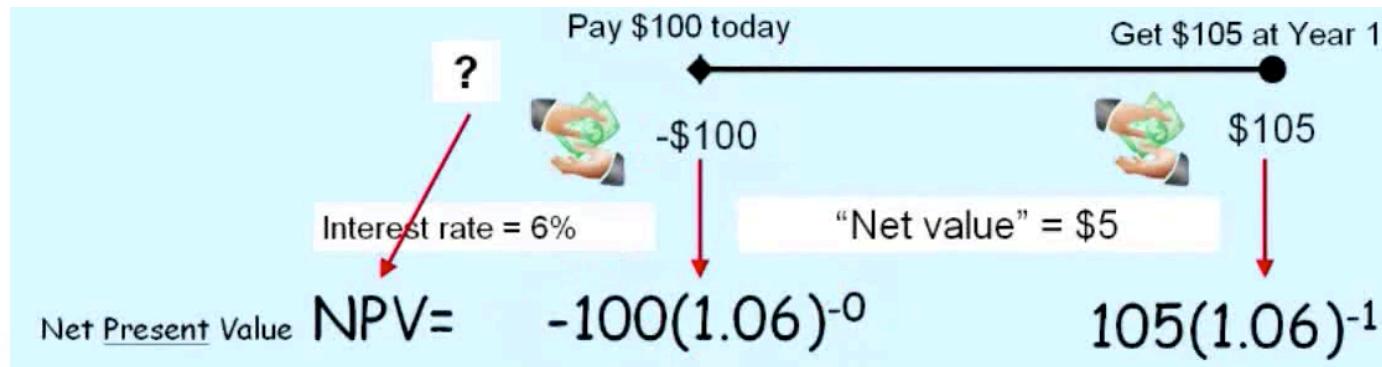
- Net Present Value (NPV)

$$F = P (1 + i)^n$$

$$P = \frac{F}{(1 + i)^n}$$

- e.g:

- Net Value: 5\$



uOttawa

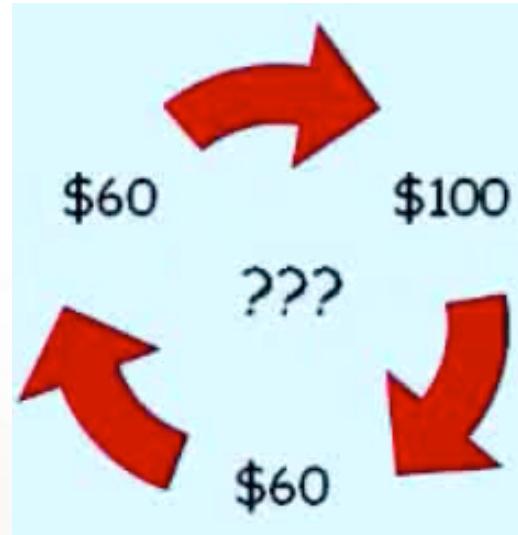
REVIEW from DGD 02- Jan 14th

- Net Present Value (NPV)

- Assume Bank: interest rate: %6
 - Present value formula at year 1: $\$105(1.06)^{-1}$
 - Present value formula at year 0: $\$100(1.06)^{-0}$

$$NPV = -\$100(1.06)^{-0} + \$105(1.06)^{-1} = -\$0.94$$

uOttawa


REVIEW from DGD 02- Jan 14th

- Internal Rate of Return (IRR)
- e.g.: rate of return 3%

rate of return?!!?!

$$-100(1+r)^{-0} + 60(1+r)^{-1} + 60(1+r)^{-2}$$

IRR: 13%

uOttawa

REVIEW from DGD 02- Jan 14th

- IRR: $NPV = \Delta A * PVF(IRR, n) - \Delta P = 0$

$$PVF(IRR, n) = \frac{\Delta P}{\Delta A} = \text{Simple payback period}$$

Life (years)	9%	11%	13%	15%	17%	19%	21%	23%	25%	27%	29%	31%	33%	35%	37%	39%
1	0.92	0.90	0.88	0.87	0.85	0.84	0.83	0.81	0.80	0.79	0.78	0.76	0.75	0.74	0.73	0.72
2	1.76	1.71	1.67	1.63	1.59	1.55	1.51	1.47	1.44	1.41	1.38	1.35	1.32	1.29	1.26	1.24
3	2.53	2.44	2.36	2.28	2.21	2.14	2.07	2.01	1.95	1.90	1.84	1.79	1.74	1.70	1.65	1.61
4	3.24	3.10	2.97	2.85	2.74	2.64	2.54	2.45	2.36	2.28	2.20	2.13	2.06	2.00	1.94	1.88
5	3.89	3.70	3.52	3.35	3.20	3.06	2.93	2.80	2.69	2.58	2.48	2.39	2.30	2.22	2.14	2.07
6	4.49	4.23	4.00	3.78	3.59	3.41	3.24	3.09	2.95	2.82	2.70	2.59	2.48	2.39	2.29	2.21
7	5.03	4.71	4.42	4.16	3.92	3.71	3.51	3.33	3.16	3.01	2.87	2.74	2.62	2.51	2.40	2.31
8	5.53	5.15	4.80	4.49	4.21	3.95	3.73	3.52	3.33	3.16	3.00	2.85	2.72	2.60	2.48	2.38
9	6.00	5.54	5.13	4.77	4.45	4.16	3.91	3.67	3.46	3.27	3.10	2.94	2.80	2.67	2.54	2.43
10	6.42	5.89	5.43	5.02	4.66	4.34	4.05	3.80	3.57	3.36	3.18	3.01	2.86	2.72	2.59	2.47
15	8.06	7.19	6.46	5.85	5.32	4.88	4.49	4.15	3.86	3.60	3.37	3.17	2.99	2.83	2.68	2.55
20	9.13	7.96	7.02	6.26	5.63	5.10	4.66	4.28	3.95	3.67	3.43	3.21	3.02	2.85	2.70	2.56
25	9.82	8.42	7.33	6.46	5.77	5.20	4.72	4.32	3.98	3.69	3.44	3.22	3.03	2.86	2.70	2.56
30	10.27	8.69	7.50	6.57	5.83	5.23	4.75	4.34	4.00	3.70	3.45	3.22	3.03	2.86	2.70	2.56

$$PVF(d, n) = \frac{1}{1+d} + \frac{1}{(1+d)^2} + \cdots + \frac{1}{(1+d)^n} = \frac{(1+d)^n - 1}{d(1+d)^n}$$

DGD 03- Jan 21- Outline

- Energy Economics
 - **NPV and IRR with Fuel Escalation**
 - Annualizing the Investment
 - Levelized Bus-Bar Codes

uOttawa

NPV and IRR with Fuel Escalation

- The cost of fuel is not constant and may be higher in future than what it is today
- It is worth to include a fuel price escalation factor in the present worth analysis
- We had: $PVF(d, n) = \frac{1}{1+d} + \frac{1}{(1+d)^2} + \cdots + \frac{1}{(1+d)^n}$
- Rewrite the above equation so that it is the sum of present values for an annual amount that is worth \$1 at time $t = 0$, but becomes $$(1 + e)$ at $t = 1$ year, and escalates to $$(1 + e)^n$ in the n th year

$$PVF(d, e, n) = \frac{1+e}{1+d} + \frac{(1+e)^2}{(1+d)^2} + \cdots + \left(\frac{1+e}{1+d}\right)^n$$

NPV and IRR with Fuel Escalation

$$\text{PVF}(d, e, n) = \frac{1 + e}{1 + d} + \frac{(1 + e)^2}{(1 + d)^2} + \dots + \left(\frac{1 + e}{1 + d} \right)^n$$

- d is the buyer's discount rate and e is the escalation rate of the annual savings

$$\frac{1 + e}{1 + d} = \frac{1}{1 + d'}$$

- Therefore Equivalent discount rate with fuel escalation:

$$d' = \frac{d - e}{1 + e}$$

uOttawa

Finding The IRR When There is Fuel Escalation

- New Formulas are:

$$NPV = \Delta A \times PVF(d', n) - \Delta P = 0$$

$$PVF(d', n) = \frac{\Delta P}{\Delta A} = \text{Simple payback period}$$

- Where ΔA is the annual savings at $t=0$.
- IRR_0 : Internal Rate of Return without Fuel Escalation
- IRR_e : Internal Rate of Return with Fuel Escalation

$$IRR_0 = \frac{d - e}{1 + e}$$

$$IRR_e = IRR_0(1 + e) + e$$

Example 1. Net Present Value of Premium Motor with Fuel Escalation

- Q: The premium motor costs an extra \$500 and saves \$192/yr at today's price of electricity. If electricity rises at an annual rate of 5%, find the net present value of the premium motor if the best alternative investment earns 10%. (for 20 years)

- *Answer:*

$$d' = \frac{d - e}{1 + e} = \frac{0.10 - 0.05}{1 + 0.05} = 0.04762$$

- The present value function for 20 years of escalating savings is

$$\text{PVF}(d', n) = \frac{(1 + d')^n - 1}{d'(1 + d')^n} = \frac{(1 + 04762)^{20} - 1}{0.04762(1 + 0.04762)^{20}} = 12.717 \text{ yr}$$

- The net present value is

$$\text{NPV} = \Delta A * \text{PVF}(d', n) - \Delta P$$

$$\text{NPV} = \$192/\text{yr} * 12.717 \text{ yr} - \$500 = \$1942$$

Example 2. IRR for an HVAC Retrofit Project with Fuel Escalation

- Q: Suppose the energy-efficiency retrofit of a large building
 - Reduces the annual electricity demand for heating and cooling from $2.3*10^6\text{kWh}$ to $0.8*10^6\text{kWh}$ and the peak demand for power by 150 kW
 - Electricity costs \$0.06/kWh
 - Demand charges are \$7/kW-mo
 - Both of which are projected to rise at an annual rate of 5%.

If the project costs \$500,000, what is the internal rate of return over a project lifetime of 15 years?

uOttawa

Example 2. IRR for an HVAC Retrofit Project with Fuel Escalation

- *Answer:* The initial annual savings will be
 - Energy Savings: $(2.3 - 0.8) * 10^6 \text{ kWh/yr} * \$0.06/\text{kWh} = \$90,000/\text{yr}$
 - Demand Savings: $150 \text{ kW} * \$7/\text{kW-mo} * 12 \text{ mo/yr} = \$12,600/\text{yr}$
 - Total Annual Savings: $\Delta A = \$90,000 + \$12,600 = \$102,600/\text{yr}$
- The Simple payback period will be

$$\text{Simple payback period} = \frac{\Delta P}{\Delta A} = \frac{\$500,000}{\$102,600/\text{yr}} = 4.87 \text{ yr}$$

- From Table 1, the internal rate of return without fuel escalation IRR_0 is very close to 19%.
- The internal rate of return with fuel escalation is

$$IRR_e = IRR_0(1 + e) + e = 0.19 (1 + 0.05) + 0.05 = 0.2495 = 25\%/\text{yr}$$

Table 1. Present Value Function to Help Estimate the Internal Rate of Return ^a

Life (years)	9%	11%	13%	15%	17%	19%	21%	23%	25%	27%	29%	31%	33%	35%	37%	39%
1	0.92	0.90	0.88	0.87	0.85	0.84	0.83	0.81	0.80	0.79	0.78	0.76	0.75	0.74	0.73	0.72
2	1.76	1.71	1.67	1.63	1.59	1.55	1.51	1.47	1.44	1.41	1.38	1.35	1.32	1.29	1.26	1.24
3	2.53	2.44	2.36	2.28	2.21	2.14	2.07	2.01	1.95	1.90	1.84	1.79	1.74	1.70	1.65	1.61
4	3.24	3.10	2.97	2.85	2.74	2.64	2.54	2.45	2.36	2.28	2.20	2.13	2.06	2.00	1.94	1.88
5	3.89	3.70	3.52	3.35	3.20	3.06	2.93	2.80	2.69	2.58	2.48	2.39	2.30	2.22	2.14	2.07
6	4.49	4.23	4.00	3.78	3.59	3.41	3.24	3.09	2.95	2.82	2.70	2.59	2.48	2.39	2.29	2.21
7	5.03	4.71	4.42	4.16	3.92	3.71	3.51	3.33	3.16	3.01	2.87	2.74	2.62	2.51	2.40	2.31
8	5.53	5.15	4.80	4.49	4.21	3.95	3.73	3.52	3.33	3.16	3.00	2.85	2.72	2.60	2.48	2.38
9	6.00	5.54	5.13	4.77	4.45	4.16	3.91	3.67	3.46	3.27	3.10	2.94	2.80	2.67	2.54	2.43
10	6.42	5.89	5.43	5.02	4.66	4.34	4.05	3.80	3.57	3.36	3.18	3.01	2.86	2.72	2.59	2.47
15	8.06	7.19	6.46	5.85	5.32	4.88	4.49	4.15	3.86	3.60	3.37	3.17	2.99	2.83	2.68	2.55
20	9.13	7.96	7.02	6.26	5.63	5.10	4.66	4.28	3.95	3.67	3.43	3.21	3.02	2.85	2.70	2.56
25	9.82	8.42	7.33	6.46	5.77	5.20	4.72	4.32	3.98	3.69	3.44	3.22	3.03	2.86	2.70	2.56
30	10.27	8.69	7.50	6.57	5.83	5.23	4.75	4.34	4.00	3.70	3.45	3.22	3.03	2.86	2.70	2.56

^aEnter the row corresponding to project life, and move across until values close to the simple payback period, $\Delta P / \Delta A$, are reached. IRR is the interest rate in that column. For example, a 10-year project with a 5-year payback has an internal rate of return of just over 15%.

Outline

- Energy Economics
 - NPV and IRR with Fuel Escalation
 - **Annualizing the Investment**
 - Levelized Bus-Bar Codes

uOttawa

Annualizing the Investment

- Where extra capital required for an energy investment
 - will be borrowed from a lending company
 - obtained from investors who require a return on their investments
 - or taken from one's own accounts
- In all of these circumstances, the economic analysis can be thought of as a **LOAN**
That converts the extra capital cost into a series of equal annual payments that eventually pay off the loan with interest.

Annualizing the Investment

$$A = P \times \text{CRF}(i, n)$$

- A represents annual loan payments (\$/yr)
- P is the principal borrowed (\$)
- i is the interest rate (e.g. 10% corresponds to $i = 0.10/\text{yr}$)
- n is the loan term (yrs), and

$$\text{CRF}(i, n) = \text{Capital recovery factor}(\text{yr}^{-1}) = \frac{i(1+i)^n}{(1+i)^n - 1}$$

- CRF is just the inverse of the present value function (PVF).
 - we are treating the first cost of the investment as a loan, we have gone back to using an interest rate i rather than a discount rate d .

Table 2. Capital Recovery Factors as a Function of Interest Rate and Loan Term

Years	3%	4%	5%	6%	7%	8%	9%	10%	11%	12%	13%
5	0.2184	0.2246	0.2310	0.2374	0.2439	0.2505	0.2571	0.2638	0.2706	0.2774	0.2843
10	0.1172	0.1233	0.1295	0.1359	0.1424	0.1490	0.1558	0.1627	0.1698	0.1770	0.1843
15	0.0838	0.0899	0.0963	0.1030	0.1098	0.1168	0.1241	0.1315	0.1391	0.1468	0.1547
20	0.0672	0.0736	0.0802	0.0872	0.0944	0.1019	0.1095	0.1175	0.1256	0.1339	0.1424
25	0.0574	0.0640	0.0710	0.0782	0.0858	0.0937	0.1018	0.1102	0.1187	0.1275	0.1364
30	0.0510	0.0578	0.0651	0.0726	0.0806	0.0888	0.0973	0.1061	0.1150	0.1241	0.1334

- To find the monthly payment:

$$\text{CRF}(i, n) = \frac{(i/12)[1 + (i/12)]^{12n}}{[1 + (i/12)]^{12n} - 1} \text{ per month}$$

Example 3. Comparing Annual Costs to Annual Savings

- Q: An efficient air conditioner that costs an extra \$1000 and saves \$200 per year is to be paid for with a 7% interest, 10-year loan.
 - a. Find the annual monetary savings.
 - b. Find the ratio of annual benefits to annual costs.
- *Answer:*
- The capital recovery factor:

$$\text{CRF}(0.07, 10) = \frac{0.07(1 + 0.07)^{10}}{(1 + 0.07)^{10} - 1} = 0.14238/\text{yr}$$

- The annual payments will be $A = \$1000 * 0.14238/\text{yr} = \$142.38/\text{yr}$.

uOttawa

Example 3. Comparing Annual Costs to Annual Savings

- a. The annual savings will be $\$200 - \$142.38 = \$57.62/\text{yr}$.
 - Notice that by annualizing the costs the buyer makes money every year so the notion that a 5-year payback period might be considered unattractive becomes irrelevant.

- b. The benefit/cost ratio would be

$$\text{Benefit/Cost} = \frac{\$200/\text{yr}}{\$142.38/\text{yr}} = 1.4$$

Example 4. Cost of Electricity from a Photovoltaic System

- Q: A 3-kW photovoltaic system, which operates with a capacity factor (CF) of 0.25, costs \$10,000 to install. There are no annual costs associated with the system other than the payments on a 6%, 20-year loan. Find the cost of electricity generated by the system (¢/kWh).
- *Answer:*
 - From Table 1, the capital recovery factor is 0.0872/yr
 - The annual payment:

$$A = P \times \text{CRF}(0.06, 20) = \$10,000 \times 0.0872/\text{yr} = \$872/\text{yr}$$

uOttawa

Example 4. Cost of Electricity from a Photovoltaic System

- *Answer:*
 - The annual electricity generated: $(8760 = 365 * 24)$
Annual Energy (kWh/yr) = Rated Power (kW) * 8760 hr/yr * CF
Annual energy = 3kW * 8760 h/yr * 0.25 = 6570 kWh/yr
 - The cost of electricity from the PV system is therefore

$$\text{Cost of PV electricity} = \frac{\$872/\text{yr}}{6570 \text{ kWh/yr}} = \$0.133/\text{kWh} = 13.3\text{¢/kWh}$$

uOttawa

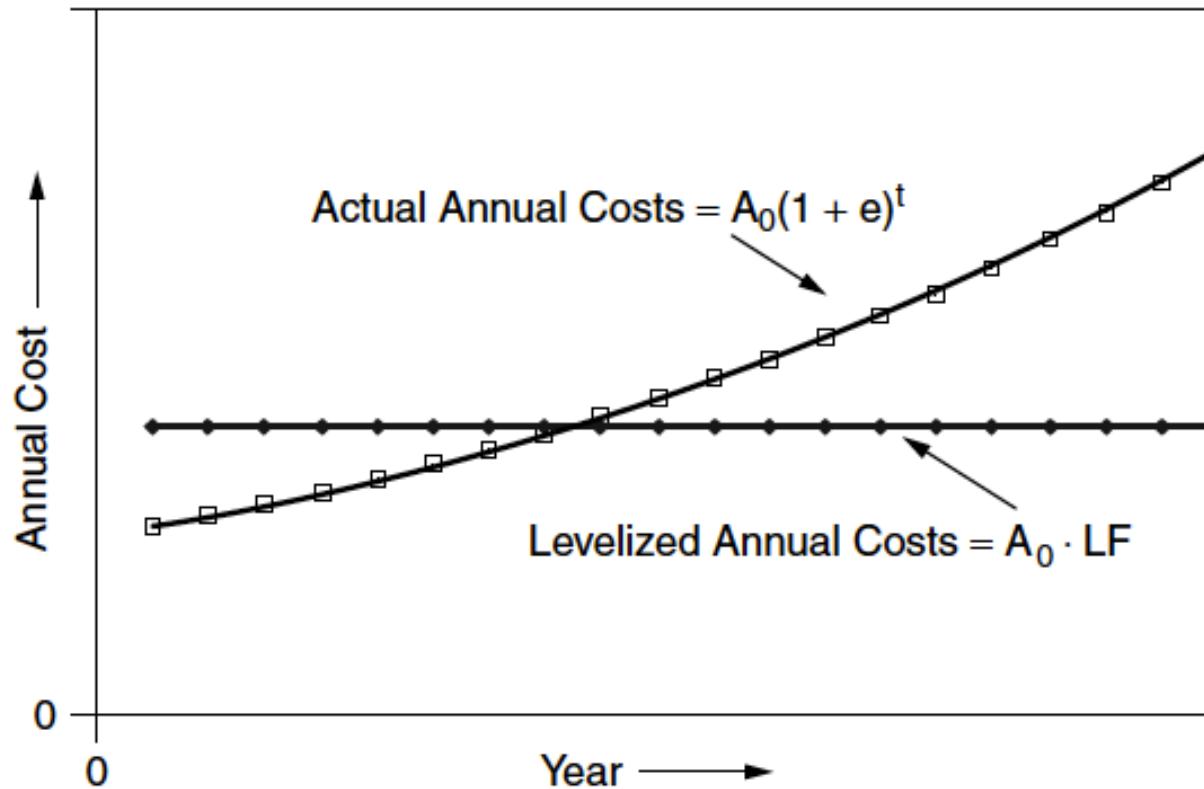
Outline

- Energy Economics
 - NPV and IRR with Fuel Escalation
 - Annualizing the Investment
 - **Levelized Bus-Bar Codes**

uOttawa

Levelized Bus-Bar Codes

- To do an adequate comparison of cost per kilowatt-hour from a renewable energy system versus that for a fossil-fuel-fired power plant, the potential for escalating future fuel costs must be accounted for.
- key advantages of the renewable energy systems
 - independence from the uncertainties associated with future fuel costs.
- The cost of electricity per kilowatt-hour for a power plant has two key components
 - an up-front fixed cost to build the plant
 - an assortment of costs that will be incurred in the future


Levelized Bus-Bar Codes

- The usual approach to cost estimation:
 - Finding an **equivalent initial cost**: A present value calculation
 - **Spreading out the amount into a uniform series of annual costs**.
- **The ratio of the equivalent annual cost (\$/yr) to the annual electricity generated (kWh/year) is called the *Levelized Bus-Bar Cost of power***
- *the “bus-bar” refers to the wires as they leave the plant boundaries*
- In the first step, the present value of all future costs must be found, including the impacts of inflation. To keep things simple, we'll assume that the annual costs today are A_0 , and that they escalate due to inflation (and other factors) at the rate e . Figure 1 illustrates the concept.

Figure 1. Levelizing annual costs when there is fuel escalation

Levelized Bus-Bar Codes

- The present value of the escalating annual costs over a period of n years is given by

$$PV(\text{annual costs}) = A_0 \cdot PVF(d', n)$$

where d' is the equivalent discount rate including inflation introduced in

$$d' = \frac{d - e}{1 + e}$$

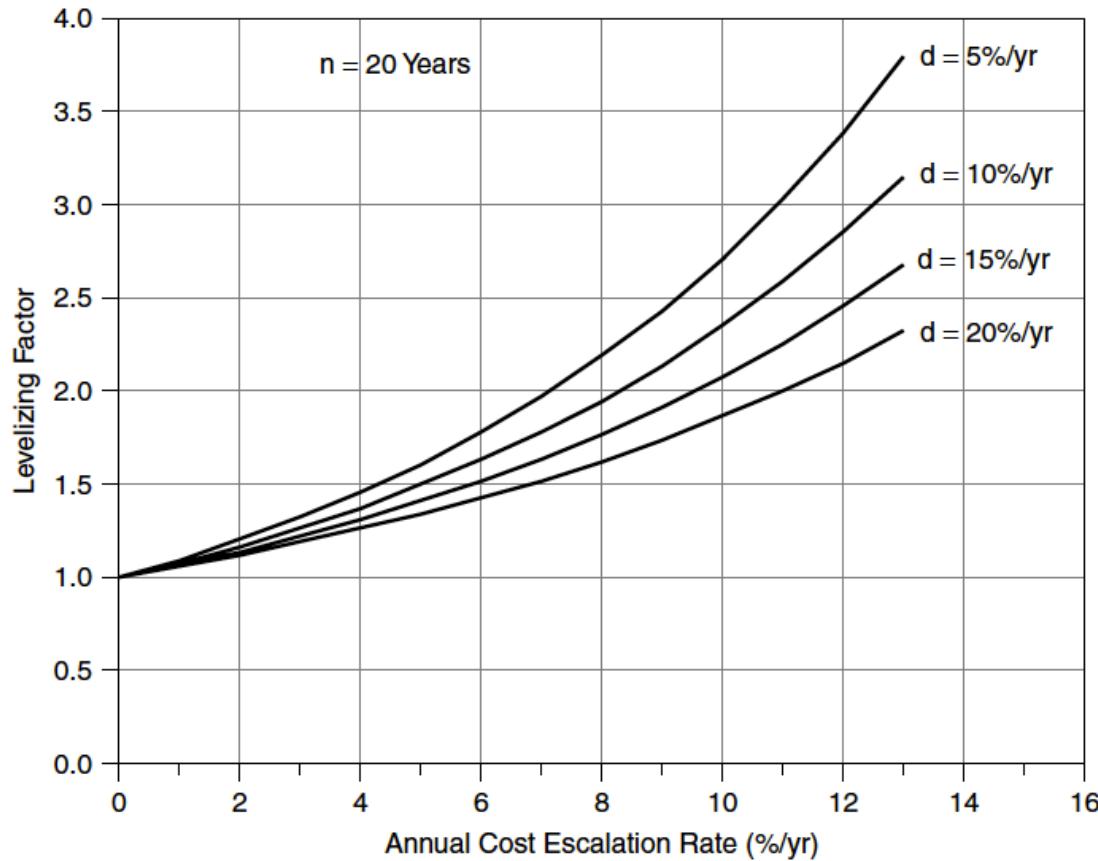
Having found the present value of those future costs, we now want to find an equivalent annual cost using the capital recovery factor

$$\text{Levelized annual costs} = A_0[PVF(d', n) \cdot CRF(d, n)]$$

uOttawa

Levelized Bus-Bar Codes

- The product in the brackets, called the leveling factor , is a multiplier that converts the escalating annual fuel and O&M costs into a series of equal annual amounts:


$$\text{Levelizing factor (LF)} = \left[\frac{(1 + d')^n - 1}{d'(1 + d')^n} \right] \cdot \left[\frac{d(1 + d)^n}{(1 + d)^n - 1} \right]$$

- Notice that when there is no escalation ($e = 0$), the $d' = d$ and the leveling factor is just unity!
- The impact of the leveling factor can be very high, as is illustrated in Figure 2.

uOttawa

Figure 2. Levelizing Factor

Figure 2. Levelizing Factor

- Levelizing Factor for a 20-year term as a function of the escalation rate of annual costs, with the owner's discount rate as a parameter.
- e.g. if fuel prices increase at 5%/yr for an owner with a 10% discount rate, the levelizing factor is 1.5. If they increase at 8.3%/yr, the impact is equivalent to an annualized cost of fuel that is double the initial cost.
- Normalizing the levelized annual costs to a per kWh basis by using:
 - the heat rate of the plant (Btu/kWh)
 - the initial fuel cost (\$/Btu)
 - the per kWh O&M costs
 - the levelizing factor

Levelized Bus-Bar Codes

- Levelized annual costs:

$$\text{Levelized annual costs}(\$/\text{kWh}) = \left[\text{Heat rate} \left(\frac{\text{Btu}}{\text{kWh}} \right) \times \text{Fuel} \left(\frac{\$}{\text{Btu}} \right) + \text{O \& M} \left(\frac{\$}{\text{kWh}} \right) \right]_0 \times \text{LF}$$

Levelized Bus-Bar Codes

- Just as the future cost of fuel and O&M needs to be levelized, so does the capital cost of the plant.
- To do so
 - Combine the CRF with other costs that depend on the capital cost of the plant into a quantity called the ***fixed charge rate (FCR)***
- The fixed charge rate covers costs that are incurred even if the plant doesn't operate, including depreciation, return on investment, insurance, and taxes.
- Fixed charge rates vary depending on plant ownership and current costs of capital, but tend to be in the range of 10–18% per year.

Levelized Bus-Bar Codes

- The governing equation that annualizes capital costs is then

$$\text{Levelized fixed cost}(\$/\text{kWh}) = \frac{\text{Capital cost}(\$/\text{kW}) \times \text{FCR}(1/\text{yr})}{8760 \text{ h/yr} \times \text{CF}}$$

- Where CF is the capacity factor of the plant
- Table 2 provides estimates for some of the key variables in last two equations.

Table 3. Example Cost Parameters for Power Plants

Technology	Fuel	Capital Cost (\$/kW)	Heat Rate (Btu/kWh)	Fuel Cost (\$/million Btu)	Variable O&M (¢/kWh)
Pulverized coal steam	Coal	1400	9,700	1.50	0.43
Advanced coal steam	Coal	1600	8,800	1.50	0.43
Oil/gas steam	Oil/Gas	900	9,500	4.60	0.52
Combined cycle	Natural gas	600	7,700	4.50	0.37
Combustion turbine	Natural gas	400	11,400	4.50	0.62
STIG gas turbine	Natural gas	600	9,100	4.50	0.50
New hydroelectric	Water	1900	—	0.00	0.30

Source: Based on data from Petchers (2002) and UCS (1992).

uOttawa

Example 5. Cost of Electricity from a Micro-turbine

- Q: A micro-turbine has the following characteristics:
 - Plant cost = \$850/kW
 - Heat rate = 12,500 Btu/kWh
 - Capacity factor = 0.70
 - Initial fuel cost = \$4.00/ 10^6 Btu
 - Variable O&M cost = \$0.002/kWh
 - Fixed charge rate = 0.12/yr
 - Owner discount rate = 0.10/yr
 - Annual cost escalation rate = 0.06/yr

Find its leveled (\$/kWh) cost of electricity over a 20-year lifetime

uOttawa

Example 5. Cost of Electricity from a Micro-turbine

- *Answer:*

- We know:

$$\text{Levelized fixed cost}(\$/\text{kWh}) = \frac{\text{Capital cost}(\$/\text{kW}) \times \text{FCR}(1/\text{yr})}{8760 \text{ h/yr} \times \text{CF}}$$

- Therefore:

$$\text{Levelized fixed cost} = \frac{\$850/\text{kW} \times 0.12/\text{yr}}{8760 \text{ h/yr} \times 0.70} = \$0.0166/\text{kWh}$$

- We know: (Levelized annual costs = A_0^* LF

$$\begin{aligned} \text{Levelized annual costs}(\$/\text{kWh}) = & \left[\text{Heat rate} \left(\frac{\text{Btu}}{\text{kWh}} \right) \times \text{Fuel} \left(\frac{\$}{\text{Btu}} \right) \right. \\ & \left. + \text{O \& M} \left(\frac{\$}{\text{kWh}} \right) \right]_0 \times \text{LF} \end{aligned}$$

Example 5. Cost of Electricity from a Micro-turbine

- Therefore the initial annual cost for fuel and O&M is

$$A_0 = 12,500 \text{ Btu/kWh} * \$400/10^6 \text{ Btu} + \$0.002/\text{kWh} = \$0.052/\text{kWh}$$

This needs to be levelized to account for inflation.

- We know:

Equivalent discount rate with fuel escalation = $d' = \frac{d - e}{1 + e}$

- Therefore the inflation adjusted discount rate d would be

$$d' = \frac{d - e}{1 + e} = \frac{0.10 - 0.06}{1 + 0.06} = 0.037736$$

Example 5. Cost of Electricity from a Micro-turbine

- We know:

$$\text{Levelizing factor (LF)} = \left[\frac{(1 + d')^n - 1}{d'(1 + d')^n} \right] \cdot \left[\frac{d(1 + d)^n}{(1 + d)^n - 1} \right]$$

- Therefore we have:

$$\text{Levelizing factor (LF)} = \left[\frac{(1.037736)^{20} - 1}{0.037736(1.037736)^{20}} \right] \cdot \left[\frac{0.10(1.10)^{20}}{(1.10)^{20} - 1} \right] = 1.628$$

- Levelized annual cost:

$$A_0 \text{LF} = \$0.052/\text{kWh} * 1.628 = \$0.0847$$

- Levelized fixed plus annual cost:

$$\text{Levelized bus-bar cost} = \$0.0166/\text{kWh} + \$0.0847/\text{kWh} = \$0.1013/\text{kWh}$$

