ELG3336: Op Amp-based Active Filters

- Advantages:
- Reduced size and weight, and therefore parasitics.
- Increased reliability and improved performance.
- Simpler design than for passive filters and can realize a wider range of functions as well as providing voltage gain.
- In large quantities, the cost of an IC is less than its passive counterpart.
- Disadvantages:
- Limited bandwidth of active devices limits the highest attainable pole frequency and therefore applications above 100 kHz (passive RLC filters can be used up to 500 MHz).
- The achievable quality factor is also limited.
- Require power supplies (unlike passive filters).
- Increased sensitivity to variations in circuit parameters caused by environmental changes compared to passive filters.
- For applications, particularly in voice and data communications, the economic and performance advantages of active RC filters far outweigh their disadvantages.

First-Order Low-Pass Filter

$$
\begin{aligned}
H(f) & =\frac{V_{o}}{V_{i}}=-\frac{Z_{f}}{Z_{i}} \\
\frac{1}{Z_{f}} & =\frac{1}{R_{f}}+\frac{1}{\frac{1}{j 2 \pi f C_{f}}}=\frac{1}{R_{f}}+\frac{j 2 \pi f R_{f} C_{f}}{R_{f}} \\
Z_{f} & =\frac{R_{f}}{1+j 2 \pi f R_{f} C_{f}} \\
H(f) & =-\frac{Z_{f}}{Z_{i}}=-\left(\frac{R_{f}}{R_{i}}\right) \frac{1}{1+j 2 \pi f R_{f} C_{f}} \\
& =-\left(\frac{R_{f}}{R_{i}}\right)\left[\frac{1}{1+j\left(f / f_{B}\right)}\right] \\
f_{B} & =\frac{1}{2 \pi R_{f} C_{f}}
\end{aligned}
$$

A low-pass filter with a dc gain of $-R_{f} / R_{\mathrm{i}}$

First-Order High-Pass Filter

$$
\begin{aligned}
H(f) & =\frac{v_{o}}{v_{i}}=-\frac{Z_{f}}{Z_{i}} \\
Z_{i} & =R_{i}+\frac{1}{j 2 \pi f C_{i}} \quad Z_{f}=R_{f} \\
H(f) & =-\frac{Z_{f}}{Z_{i}}=-\frac{R_{f}}{R_{i}+\frac{1}{j 2 \pi f C_{i}}} \\
& =-\frac{j 2 \pi f R_{f} C_{i}}{1+j 2 \pi f R_{i} C_{i}}=-\left(\frac{R_{i}}{R_{i}}\right) \frac{j 2 \pi f R_{f} C_{i}}{1+j 2 \pi f R_{i} C_{i}} \\
& =-\left(\frac{R_{f}}{R_{i}}\right)\left[\frac{j\left(f / f_{B}\right)}{1+j\left(f / f_{B}\right)}\right] \\
f_{B} & =\frac{1}{2 \pi R_{i} C_{i}}
\end{aligned}
$$

A high-pass filter with a high frequency gain of $-R_{f} / R_{i}$

Higher Order Filters

$H(f)=H_{1}(f) H_{2}(f) * * * H_{n}(f)$

$$
=(-1)^{n}\left(\frac{R_{f}}{R_{i}}\right)^{n}\left[\frac{1}{1+j\left(f / f_{B}\right)}\right]^{n}
$$

Single-Pole Active Filter Designs

High Pass

Two-Pole (Sallen-Key) Filters

Low Pass Filter

High Pass Filter

Three-Pole Low-Pass Filter

Stage 1

Two-Stage Band-Pass Filter

Multiple-Feedback Band-Pass Filter

Transfer function $H(j \omega)$

$$
H(j \omega)=\frac{V_{o}(j \omega)}{V_{i}(j \omega)}
$$

$$
|H|=\sqrt{\operatorname{Re}(H)^{2}+\operatorname{Im}(H)^{2}}
$$

$$
H=\operatorname{Re}(H)+j \operatorname{Im}(H)
$$

$$
\angle H=\tan ^{-1}\left(\frac{\operatorname{Im}(H)}{\operatorname{Re}(H)}\right) \quad \operatorname{Re}(H) \succ 0
$$

$$
\angle H=180^{\circ}+\tan ^{-1}\left(\frac{\operatorname{Im}(H)}{\operatorname{Re}(H)}\right) \quad \operatorname{Re}(H) \prec 0
$$

Corner Frequency

- The significance of the break frequency is that it represents the frequency where

$$
\mathrm{A}_{\mathrm{v}}(f)=070.7 \angle-45^{\circ}
$$

Let us take the example of LPF.

- This is where the output of the transfer function has an amplitude $3-d B$ below the input amplitude, and the output phase is shifted by -45° relative to the input.
- Therefore, f_{c} is also known as the 3-dB frequency or the corner frequency.

PERFORMANCE CRITERIA

AMPLITUDE RESPONSE

$20 \log _{10}|\mathrm{~A}|=$ Gain in $d B$
$f_{c}=$ Cut-off Frequency
Gain at 3 dB point $\left(\right.$ at $\left.f_{e}\right)=\frac{|A|}{\sqrt{2}}$
pass band stop band

- RIPPLE IN PASS BAND CAUSES NON-LINEARITY
- POSSIBLE TO DESIGN WITH NO RIPPLE
- RIPPLE IN STOP BAND IS LESS IMPORTANT
- FALL OFF dB / Decade (Gain in dB / Decade of f)
- STOP BAND ATTENUATES (SAY - 40dB)

Bode plots use a logarithmic scale for frequency, where a decade is defined as a range of frequencies where the highest and lowest frequencies differ by a factor of 10 .

Real Filters

- Butterworth Filters
- Flat Pass-band.
- $20 n \mathrm{~dB}$ per decade roll-off.
- Chebyshev Filters
- Pass-band ripple.
- Sharper cut-off than Butterworth.
- Elliptic Filters
- Pass-band and stop-band ripple.
- Even sharper cut-off.
- Bessel Filters
- Linear phase response - i.e. no signal distortion in pass-band.

Butterworth Filters

The magnitude response of a Butterworth filter.

Magnitude response for Butterworth filters of various order with $\varepsilon=1$. Note that as the order increases, the response approaches the ideal brickwall type transmission.

Chebyshev Filters

Sketches of the transmission characteristics of a representative even- and oddorder Chebyshev filters.

First-Order Filter Functions

Filter Type and $T(s)$	s-Plane Singularities	Bode Plot for $\|T\|$	Passive Realization	Op Amp-RC Realization
(a) Low-Pass (LP) $T(s)=\frac{a_{0}}{s+\omega_{0}}$				dc gain $=-\frac{R_{2}}{R_{1}}$
(b) High-Pass (HP) $T(s)=\frac{a_{1} s}{s+\omega_{0}}$			High-frequency gain $=1$	High-frequency gain $=-\frac{R_{2}}{R_{1}}$
(c) General $T(s)=\frac{a_{1} s+a_{0}}{s+\omega_{0}}$			$\begin{aligned} C_{1} R_{1} & =\frac{a_{0}}{a_{1}} \\ \text { dc gain } & =\frac{R_{2}}{R_{1}+R_{2}} \\ \text { HF gain } & =\frac{C_{1}}{C_{1}+C_{2}} \end{aligned}$	

First-Order Filter Functions

Second-Order Filter Functions

Filter Type and $T(s)$	s-Plane Singularities	$\|T\|$
(a) Low-Pass (LP) $\begin{gathered} T(s)=\frac{a_{0}}{s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}} \\ \text { dc gain }=\frac{a_{0}}{\omega_{0}^{2}} \end{gathered}$		
(b) High-Pass (HP) $T(s)=\frac{a_{2} s^{2}}{s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}}$ High-frequency gain $=a_{2}$		
(c) Bandpass (BP) $T(s)=\frac{a_{1} s}{s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}}$ Center-frequency gain $=\frac{a_{1} Q}{\omega_{0}}$		

Second-Order Filter Functions

Second-Order Filter Functions

Second-Order LCR Resonator

(g) LPN $\left(\omega_{n}>\omega_{0}\right)$

(b) LP

(e) Notch at ω_{0}

(h) LPN as $s \rightarrow \infty$

(f) General notch

(i) $\operatorname{HPN}\left(\omega_{n}<\omega_{0}\right)$

Second-Order Active Filter: Two-Integrator-Loop

Derivation of an alternative two-integrator-loop biquad in which all op amps are used in a single-ended fashion. The resulting circuit in (b) is known as the Tow-Thomas biquad.

Low-Pass Active Filter Design

Design a fourth-order low-pass Butterworth filter having a frequency cut-off of 100 Hz

$$
R_{1}=R_{2}=R_{11}=R_{12}=15.8 \mathrm{k} \Omega
$$

$$
K=1.152
$$

Choose C $=0.1 \mu \mathrm{~F}$

$$
\begin{aligned}
R & =\frac{1}{2 \pi C f_{B}}=\frac{1}{2 \pi\left(0.1 \times 10^{-6}\right)(100 \mathrm{~Hz})} \\
& =15.92 \mathrm{k} \Omega
\end{aligned}
$$

Low-Pass Active Filter Design

Low-Pass Active Filter Design

Infinite-Gain Multiple-Feedback (IGMF) Negative Feedback Active Filter

Substitute (1) into (2) gives

$$
\begin{equation*}
\frac{V_{i}}{Z_{1}}+\frac{Z_{3}}{Z_{1} Z_{5}} V_{o}=-\frac{Z_{3}}{Z_{5} Z_{2}} V_{o}-\frac{V_{o}}{Z_{5}}-\frac{Z_{3}}{Z_{4} Z_{5}} V_{o}-\frac{V_{o}}{Z_{4}} \tag{3}
\end{equation*}
$$

rearranging equation (3), it gives,

$$
H=\frac{V_{o}}{V_{i}}=-\frac{\frac{1}{Z_{1} Z_{3}}}{\frac{1}{Z_{5}}\left(\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}}+\frac{1}{Z_{4}}\right)+\frac{1}{Z_{3} Z_{4}}}
$$

Or in admittance form:

$$
H=\frac{V_{0}}{V_{i}}=-\frac{Y_{1} Y_{3}}{Y_{5}\left(Y_{1}+Y_{2}+Y_{3}+Y_{4}\right)+Y_{3} Y_{4}}
$$

Filter Value	Z_{1}	Z_{2}	Z_{3}	Z_{4}	Z_{5}
$\mathbf{L P}$	R_{1}	C_{2}	R_{3}	R_{4}	C_{5}
$\mathbf{H P}$	C_{1}	R_{2}	C_{3}	C_{4}	R_{5}
$\mathbf{B P}$	R_{1}	R_{2}	C_{3}	C_{4}	R_{5}

IGMF Band-Pass Filter

Band-pass: $\quad H(s)=K \frac{s}{s^{2}+a s+b}$
To obtain the band-pass response, we let
$Z_{1}=R_{1} \quad Z_{2}=R_{2} \quad Z_{3}=\frac{1}{j \omega C_{3}}=\frac{1}{s C_{3}} \quad Z_{4}=\frac{1}{j \omega C_{4}}=\frac{1}{s C_{4}} \quad Z_{5}=R_{5}$
$H(s)=-\frac{\frac{s C_{3}}{R_{1}}}{s^{2} C_{3} C_{4}+s \frac{C_{3}+C_{4}}{R_{5}}+\frac{1}{R_{5}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)}$

This filter prototype has a very low sensitivity to component tolerance when
 compared with other prototypes.

Simplified Design (IGMF Filter)

$$
H(s)=-\frac{\frac{s C}{R_{1}}}{\frac{1}{R_{1} R_{5}}+s \frac{2 C}{R_{5}}+s^{2} C^{2}}
$$

Comparing with the band-pass response

$$
H(s)=K \frac{s}{s^{2}+\frac{\omega_{P}}{Q_{P}} s+\omega_{P}^{2}}
$$

It gives,

$$
\omega_{p}=\frac{1}{C \sqrt{R_{1} R_{5}}} \quad Q_{p}=\frac{1}{2} \sqrt{\frac{R_{5}}{R_{1}}} \quad H\left(\omega_{p}\right)=-2 Q^{2}
$$

Example: IGMF Band Pass Filter

To design a band-pass filter with $\quad f_{O}=512$ Haxd $\quad Q=10$
$\omega_{P}=\frac{1}{C \sqrt{R_{1} R_{5}}}=2 \pi(512 \mathrm{~Hz})$

$$
C=100 n F \rightarrow R_{1} R_{5}=9,662,741 \Omega^{2}
$$

$$
Q_{P}=\frac{1}{2} \frac{\sqrt{R_{5}}}{\sqrt{R_{1}}}=10
$$

$$
\rightarrow R_{1}=155.4 \Omega \quad R_{5}=62,170 \Omega
$$

With similar analysis, we can choose the following values:

$$
C=10 n F \quad R_{1}=1,554 \Omega \quad \text { and } \quad R_{5}=621,700 \Omega
$$

Butterworth Response (Maximally Flat)

$$
|H(j \omega)|=\frac{1}{\sqrt{1+\left(\frac{\omega}{\omega_{o}}\right)^{2 n}}}
$$

where n is the order

Normalize to $\omega_{0}=1 \mathrm{rad} / \mathrm{s}$

$$
|\hat{H}(j \omega)|=\frac{1}{\sqrt{1+\omega^{2 n}}}
$$

Butterworth polynomials:

$$
|\hat{H}(j \omega)|=\frac{1}{\left|B_{n}(j \omega)\right|}
$$

Butterworth polynomials

$$
B_{1}(s)=s+1
$$

$$
B_{2}(s)=s^{2}+\sqrt{2} s+1
$$

$$
B_{3}(s)=s^{3}+2 s^{2}+2 s+1
$$

$$
=(s+1)\left(s^{2}+s+1\right)
$$

$$
B_{4}(s)=s^{4}+2.61 s^{3}+3.41 s^{2}+2.61 s+1
$$

$$
=\left(s^{2}+0.77 s+1\right)\left(s^{2}+1.85 s+1\right)
$$

$$
B_{5}(s)=s^{5}+3.24 s^{4}+5.24 s^{3}+5.24 s^{2}+3.24 s+1
$$

$$
=(s+1)\left(s^{2}+0.62 s+1\right)\left(s^{2}+1.62 s+1\right)
$$

Second order Butterworth Filter

$$
\begin{aligned}
& H(s)=\frac{K}{1+s C_{4}\left(R_{1}+R_{2}\right)+s R_{1} C_{3}(1-K)+s^{2} R_{1} R_{2} C_{3} C_{4}}=\frac{K^{\prime}}{s^{2}+\frac{\omega_{P}}{Q_{P}} s+\omega_{P}^{2}} \\
& Q_{P}=\frac{1}{\sqrt{\frac{R_{1} C_{4}}{R_{2} C_{3}}}+\sqrt{\frac{R_{2} C_{4}}{R_{1} C_{3}}}+(1-K) \sqrt{\frac{R_{1} C_{3}}{R_{2} C_{4}}}} \\
& \text { Setting } R_{1}=R_{2} \text { and } C_{1}=C_{2} \\
& Q_{p}=\frac{1}{\sqrt{1}+\sqrt{1+(1-K) \sqrt{1}}}=\frac{1}{2+(1-K)}=\frac{1}{3-K} \\
& \text { Now } K=1+R_{\mathrm{B}} / R_{\mathrm{A}}
\end{aligned}
$$

$Q_{P}=\frac{1}{3-K}=\frac{1}{3-\left(1+\frac{R_{B}}{R_{A}}\right)}=\frac{1}{2-\frac{R_{B}}{R_{A}}}$
For Butterworth response:
$Q_{P}=\frac{1}{\sqrt{2}} \Rightarrow Q_{P}=\frac{1}{\sqrt{2}}=\frac{1}{2-\frac{R_{B}}{R_{A}}}$

We have

$$
2-\frac{R_{B}}{R_{A}}=\sqrt{2}=1.414
$$

We define Damping Factor (DF) as:

$$
D F=\frac{1}{Q_{P}}=2-\frac{R_{B}}{R_{A}}=1.414
$$

