ELG3150 Tutorial for the Midterm

1. A system is described by the state variable equations

$$\overset{\bullet}{x} = \begin{bmatrix} 2 & 1 & -1 \\ 4 & 5 & 0 \\ -6 & 1 & 3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u,$$

$$y = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}$$

Determine G(s) = Y(s)/U(s).

2. Determine the state variable matrix differential equation for the circuit shown in Fig. P2. The state variables are $x_1 = i, x_2 = v_1$, and $x_3 = v_2$. The input variable is v(t) and the output variable is $v_0(t)$.

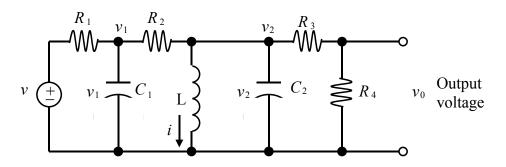


Figure P2. RLC circuit.

- 3. The speed control of a high-speed train is represented by the system shown in Fig. P3. Determine the equation for steady-state error for K for a unit step input r(t). Consider the three values for K equal to 1, 10 and 100.
 - (a) Determine the system transfer function in terms of *K*.
 - (b) Determine and plot the response y(t) for (i) a unit step input r(t) and (ii) a unit step disturbance input d(t) for the three values of *K*.
 - (c) Create a table showing overshoot, settling time (2% criterion), e_{ss} for r(t), and $|y/d|_{max}$ for the three values of K. Select the best compromise value.

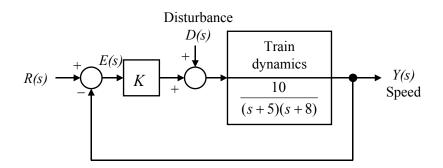


Figure P3. Speed Control.

- 4. The block diagram model of an armature-current-controlled dc motor is shown in Fig. 4.
 - (a) Determine the steady-state error to a ramp input, r(t) = t, $t \ge 0$, in terms of K, K_b and K_m .
 - (b) Let $K_m = 10$ and $K_b = 0.054$, and select K so that steady-state error is equal to 1.
 - (c) Plot the responses to a unit step input and a unit ramp input for 20 seconds. Are the responses acceptable?

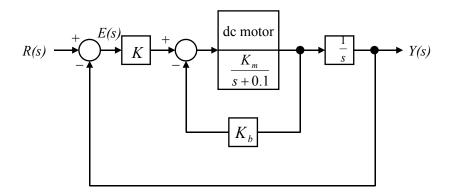


Figure P4. DC motor control.

Solutions

1. Solution

$$G(s) = C(sI - A)^{-1}B = \frac{s^2 - 9s + 4}{s^3 - 10s^2 + 21s + 16}$$

2. Solution

$$v_{2} = L \frac{di}{dt}$$

$$0 = C_{1} \frac{dv_{1}}{dt} + \frac{v_{1} - v}{R_{1}} + \frac{v_{1} - v_{2}}{R_{2}}$$

$$0 = C_{2} \frac{dv_{2}}{dt} + \frac{v_{2} - v_{1}}{R_{2}} + i + \frac{v_{2}}{R_{3} + R_{4}}$$

$$v_{0} = \frac{R_{4}}{R_{3} + R_{4}} v_{2}$$

Let $x_1 = i, x_2 = v_1, x_3 = v_2, u = v$ and $y = v_0$. Then,

$$\dot{x} = \begin{bmatrix} 0 & 0 & \frac{1}{L} \\ 0 & -\frac{1}{C_1} \left(\frac{1}{R_1} + \frac{1}{R_2} \right) & \frac{1}{C_1 R_2} \\ -\frac{1}{C_2} & \frac{1}{C_2 R_2} & -\frac{1}{C_2} \left(\frac{1}{R_2} + \frac{1}{R_3 + R_4} \right) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{C_1 R_1} \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & \frac{R_4}{R_3 + R_4} \end{bmatrix} x$$

3. Solution

The system transfer function is

$$Y(s) = \frac{10K}{(s+5)(s+8) + 10K}R(s) + \frac{10}{(s+5)(s+8) + 10K}D(s)$$

When considering the input response, we set D(s)=0, and similarly, when considering the disturbance response, we set R(s)=0. Te closed-loop step input and disturbance response for K=1, 10, 100 are shown in Figure P3. The performance results are summarized in Table P3. The best value of the gain is K=10, which is

compromise between (i) percent overshoot, and (ii) disturbance rejection and tracking error.

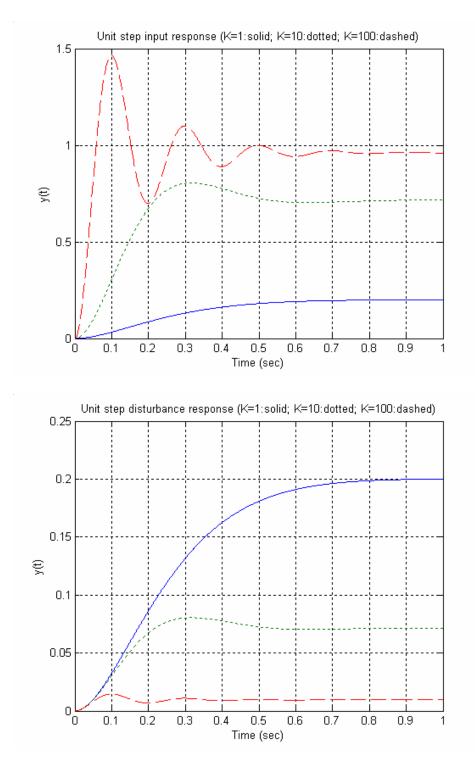


Figure P3. Closed-loop system input and disturbance responses (*K*=1: solid line, *K*=10: dotted line, and *K*=100: dashed line).

K	e_{ss}	T_s	<i>P.O.</i>	$ y/d _{\max}$
1	0.8	0.615	0.0652	0.2
10	0.286	0.615	12.677	0.071
100	0.038	0.615	52.389	0.0096

Table P3. Performance summary

omega_n^2	omega_n	zeta	power	P.O.
50.0000	7. 0711	0. 9192	- 7. 3352	0.0652
140.0000	11. 8322	0. 5494	- 2. 0654	12.6767
1040.0000	32. 2490	0. 2016	- 0. 6465	52.3889

Table P3a. Spread sheet for P.O. calculation

4. Solution

(a) The open-loop transfer function is

$$G(s) = \frac{KK_m}{s(s+0.1+K_bK_m)}$$

The closed-loop transfer function is

$$T(s) = \frac{KK_m}{s(s+0.1+K_bK_m) + KK_m}$$

The steady-state error tracking error for a ramp input $R(s) = 1/s^2$ is

$$K_{v} = \lim_{s \to 0} sG(s) = \lim_{s \to 0} \frac{KK_{m}s}{s(s+0.1+K_{b}K_{m})} = \frac{KK_{m}}{0.1+K_{b}K_{m}}$$
$$e_{ss} = \frac{1}{K_{v}} = \frac{0.1+K_{b}K_{m}}{KK_{m}}$$

Another method to derive the steady-state error for a ramp input is

$$e_{ss} = \lim_{s \to 0} s [1 - T(s)] R(s)$$

=
$$\lim_{s \to 0} \frac{s^2 (s + 0.1 + K_b K_m)}{s (s + 0.1 + K_b K_m) + K K_m} \frac{1}{s^2}$$

=
$$\frac{0.1 + K_b K_m}{K K_m}$$

(b) With $K_m = 10$ and $K_b = 0.054$, we have

$$\frac{0.1 + K_b K_m}{K K_m} = \frac{0.1 + 0.054(10)}{K(10)} = \frac{0.64}{10K} = 1$$

Solving for K yields

$$K = 0.064$$

Therefore, the closed-loop transfer function is

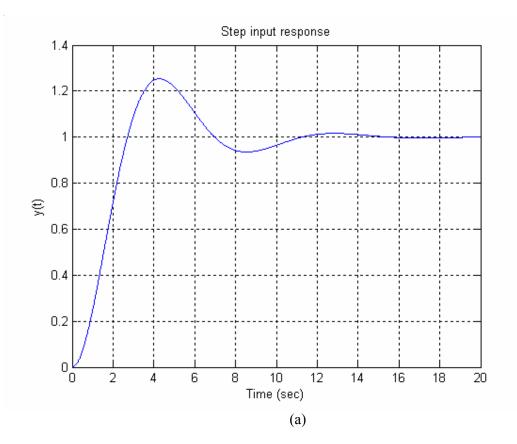
$$T(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2} = \frac{0.64}{s^2 + 0.64s + 0.64}$$

$$\zeta = 0.4$$
 and $\omega_n = 0.8$

Thus, the overshoot and the settling time of the system are:

P.O. = 25.4% and $T_s = 4/0.32 = 12.5$ second

(c) The plot of a unit step input and unit ramp input are shown in Figure P4. The responses are acceptable.



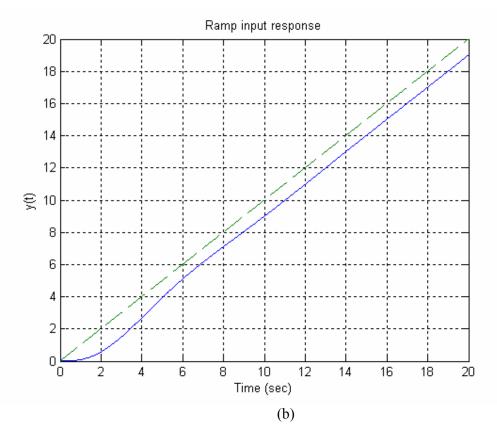


Figure P4. Closed-loop system step and ramp responses.