ELG3150 Tutorial for the Midterm

1. A system is described by the state variable equations

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ccc}
2 & 1 & -1 \\
4 & 5 & 0 \\
-6 & 1 & 3
\end{array}\right] x+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] u, \\
& y=\left[\begin{array}{lll}
2 & 3 & 1
\end{array}\right]
\end{aligned}
$$

Determine $G(s)=Y(s) / U(s)$.
2. Determine the state variable matrix differential equation for the circuit shown in Fig. P2. The state variables are $x_{1}=i, x_{2}=v_{1}$, and $x_{3}=v_{2}$. The input variable is $v(t)$ and the output variable is $v_{0}(t)$.

Figure P2. RLC circuit.
3. The speed control of a high-speed train is represented by the system shown in Fig. P3. Determine the equation for steady-state error for K for a unit step input $r(t)$. Consider the three values for K equal to 1,10 and 100 .
(a) Determine the system transfer function in terms of K.
(b) Determine and plot the response $y(t)$ for (i) a unit step input $r(t)$ and (ii) a unit step disturbance input $d(t)$ for the three values of K.
(c) Create a table showing overshoot, settling time (2% criterion), $e_{s s}$ for $r(t)$, and $|y / d|_{\max }$ for the three values of K. Select the best compromise value.

Figure P3. Speed Control.
4. The block diagram model of an armature-current-controlled dc motor is shown in Fig. 4.
(a) Determine the steady-state error to a ramp input, $r(t)=t, t \geq 0$, in terms of K, K_{b} and K_{m}.
(b) Let $K_{m}=10$ and $K_{b}=0.054$, and select K so that steady-state error is equal to 1.
(c) Plot the responses to a unit step input and a unit ramp input for 20 seconds. Are the responses acceptable?

Figure P4. DC motor control.

Solutions

1. Solution

$$
G(s)=C(s I-A)^{-1} B=\frac{s^{2}-9 s+4}{s^{3}-10 s^{2}+21 s+16}
$$

2. Solution

$$
\begin{aligned}
& v_{2}=L \frac{d i}{d t} \\
& 0=C_{1} \frac{d v_{1}}{d t}+\frac{v_{1}-v}{R_{1}}+\frac{v_{1}-v_{2}}{R_{2}} \\
& 0=C_{2} \frac{d v_{2}}{d t}+\frac{v_{2}-v_{1}}{R_{2}}+i+\frac{v_{2}}{R_{3}+R_{4}} \\
& v_{0}=\frac{R_{4}}{R_{3}+R_{4}} v_{2}
\end{aligned}
$$

Let $x_{1}=i, x_{2}=v_{1}, x_{3}=v_{2}, u=v$ and $y=v_{0}$. Then,

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{ccc}
0 & 0 & \frac{1}{L} \\
0 & -\frac{1}{C_{1}}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) & \frac{1}{C_{1} R_{2}} \\
-\frac{1}{C_{2}} & \frac{1}{C_{2} R_{2}} & -\frac{1}{C_{2}}\left(\frac{1}{R_{2}}+\frac{1}{R_{3}+R_{4}}\right)
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{1}{C_{1} R_{1}} \\
0
\end{array}\right] u \\
& y=\left[\begin{array}{lll}
0 & 0 & \frac{R_{4}}{R_{3}+R_{4}}
\end{array}\right] x
\end{aligned}
$$

3. Solution

The system transfer function is

$$
Y(s)=\frac{10 K}{(s+5)(s+8)+10 K} R(s)+\frac{10}{(s+5)(s+8)+10 K} D(s)
$$

When considering the input response, we set $D(s)=0$, and similarly, when considering the disturbance response, we set $R(s)=0$. Te closed-loop step input and disturbance response for $K=1,10,100$ are shown in Figure P3. The performance results are summarized in Table P3. The best value of the gain is $K=10$, which is
compromise between (i) percent overshoot, and (ii) disturbance rejection and tracking error.

Figure P3. Closed-loop system input and disturbance responses ($K=1$: solid line, $K=10$: dotted line, and $K=100$: dashed line).

K	$e_{s s}$	T_{s}	$P . O$.	$\|y / d\|_{\max }$
1	0.8	0.615	0.0652	0.2
10	0.286	0.615	12.677	0.071
100	0.038	0.615	52.389	0.0096

Table P3. Performance summary

omega_n^2	omega_n	zeta	power	P.O.
50.0000	7.0711	0.9192	-7.3352	0.0652
140.0000	11.8322	0.5494	-2.0654	12.6767
1040.0000	32.2490	0.2016	-0.6465	52.3889

Table P3a. Spread sheet for P.O. calculation
4. Solution
(a) The open-loop transfer function is

$$
G(s)=\frac{K K_{m}}{s\left(s+0.1+K_{b} K_{m}\right)}
$$

The closed-loop transfer function is

$$
T(s)=\frac{K K_{m}}{s\left(s+0.1+K_{b} K_{m}\right)+K K_{m}}
$$

The steady-state error tracking error for a ramp input $R(s)=1 / s^{2}$ is

$$
\begin{aligned}
& K_{v}=\lim _{s \rightarrow 0} s G(s)=\lim _{s \rightarrow 0} \frac{K K_{m} s}{s\left(s+0.1+K_{b} K_{m}\right)}=\frac{K K_{m}}{0.1+K_{b} K_{m}} \\
& e_{s s}=\frac{1}{K_{v}}=\frac{0.1+K_{b} K_{m}}{K K_{m}}
\end{aligned}
$$

Another method to derive the steady-state error for a ramp input is

$$
\begin{aligned}
& e_{s s}=\lim _{s \rightarrow 0} s[1-T(s)] R(s) \\
& =\lim _{s \rightarrow 0} \frac{s^{2}\left(s+0.1+K_{b} K_{m}\right)}{s\left(s+0.1+K_{b} K_{m}\right)+K K_{m}} \frac{1}{s^{2}} \\
& =\frac{0.1+K_{b} K_{m}}{K K_{m}}
\end{aligned}
$$

(b) With $K_{m}=10$ and $K_{b}=0.054$, we have

$$
\frac{0.1+K_{b} K_{m}}{K K_{m}}=\frac{0.1+0.054(10)}{K(10)}=\frac{0.64}{10 K}=1
$$

Solving for K yields

$$
K=0.064
$$

Therefore, the closed-loop transfer function is

$$
\begin{aligned}
& T(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n}+\omega_{n}^{2}}=\frac{0.64}{s^{2}+0.64 s+0.64} \\
& \zeta=0.4 \text { and } \omega_{n}=0.8
\end{aligned}
$$

Thus, the overshoot and the settling time of the system are:
P.O. $=25.4 \% \quad$ and $\quad T_{s}=4 / 0.32=12.5$ second
(c) The plot of a unit step input and unit ramp input are shown in Figure P4. The responses are acceptable.

(a)

(b)

Figure P4. Closed-loop system step and ramp responses.

