ELG3150: Chapter 4

E4.1

(a) The system sensitivity to τ is

$$
\begin{aligned}
& G(s)=\frac{100}{\tau s+1} \\
& S_{\tau}^{T}=S_{G}^{T} S_{\tau}^{G} \\
& S_{G}^{T}=\frac{\partial T}{\partial G} \times \frac{G}{T}=\frac{1}{1+G H(s)}=\frac{1}{1+\frac{100}{3 s+1}}=\frac{3 s+1}{3 s+101} \\
& S_{\tau}^{G}=\frac{-\tau s}{\tau s+1}=\frac{-3 s}{3 s+1} \\
& S_{\tau}^{T}=\frac{\tau s+1}{3 s+101} \times \frac{-\tau s}{\tau s+1}=\frac{-3 s}{3 s+101}[\text { when } \tau=3]
\end{aligned}
$$

(b) The closed-loop transfer function

$$
T(s)=\frac{G(s)}{1+G H(s)}=\frac{100}{3 s+101}=\frac{100 / 101}{\frac{3}{101} s+1}=\frac{0.99}{\tau_{c} s+1}
$$

The time constant $\tau_{c}=3 / 101=0.0297$.

P4.2

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}}
$$

$K_{a}=$ Actuator constant
$K_{1}=$ Roll Sensor constant
(a) The open-loop transfer function is

Therefore	$T(s)=K_{a} G(s)$
	$S_{K_{a}}^{T}=1$

The closed-loop transfer function

$$
\begin{aligned}
& T(s)=\frac{K_{a} G(s)}{1+K_{a} K_{1} G(s)} \\
& S_{K_{1}}^{T}=\frac{\partial T}{\partial K_{1}} \cdot \frac{K_{1}}{T}=\frac{-K_{a} K_{1} G(s)}{1+K_{a} K_{1} G(s)} \\
& S_{K_{a}}^{T}=\frac{1}{1+K_{1} K_{a} G(s)}
\end{aligned}
$$

(b) The tracking error, $E(s)=\theta_{d}(s)-\theta(s)=-\theta(s)$ since $\theta_{d}(s)=0$. The transfer function from the wave disturbance to the output $\theta(s)$ is

$$
\theta(s)=\frac{G(s)}{1+K_{1} K_{a} G(s)} T_{d}(s)
$$

Consider a step disturbance input for the open- and closed-loop systems. For the open-loop system

$$
e_{S S}=-\lim _{s \rightarrow 0} s G(s) \frac{A}{s}=-A
$$

For the closed-loop system

$$
e_{s s}=\lim _{s \rightarrow 0} s\left(\frac{-G(s)}{1+K_{1} K_{a} G(s)}\right) \frac{A}{s}=\frac{-A \omega_{n}^{2}}{1+K_{1} K_{a} \omega_{n}^{2}}
$$

P4.12

(a) The two transfer functions

$$
\begin{aligned}
& T_{1}(s)=\frac{Y(s)}{R(s)}=\frac{K_{1} K_{2}}{1+0.0099 K_{1} K_{2}} \\
& T_{2}(s)=\frac{Y(s)}{R(s)}=\frac{K_{1} K_{2}}{\left(1+0.09 K_{1}\right)\left(1+0.09 K_{2}\right)}
\end{aligned}
$$

(b) When $K_{1}=K_{2}=100$

$$
\begin{aligned}
& T_{1}(s)=\frac{Y(s)}{R(s)}=\frac{100^{2}}{1+0.0099 \times 10000}=100 \\
& T_{1}(s)=\frac{Y(s)}{R(s)}=\frac{K_{1} K_{2}}{(1+0.09 \times 100)(1+0.09 \times 100)}=100
\end{aligned}
$$

© The sensitivity

$$
\begin{aligned}
& S_{K_{1}}^{T_{1}}=\frac{\partial T_{1}}{\partial K_{1}} \cdot \frac{K_{1}}{T_{1}}=\frac{1}{1+0.0099 K_{1} K_{2}}=0.01 \\
& S_{K_{1}}^{T_{2}}=\frac{\partial T_{2}}{\partial K_{1}} \cdot \frac{K_{1}}{T_{2}}=\frac{1}{1+0.09 K_{1} K_{2}}=0.1
\end{aligned}
$$

For $K_{1}=100$
$S_{K_{1}}^{T_{1}}=\frac{S_{K_{1}}^{T_{2}}}{10}$

AP4.1

The plant transfer function

$$
G_{p}(s)=\frac{R}{R C s+1}
$$

The closed-loop transfer function

$$
H(s)=\frac{1}{1+G G_{p}(s)} Q_{3}(s)+\frac{G G_{p}(s)}{1+G G_{p}(s)} H_{d}(s)
$$

With $E(s)=H_{d}(s)-H(s)$

$$
E(s)=\frac{-1}{1+G G_{p}(s)} Q_{3}(s)
$$

(a) When $G(s)=K$

$$
e_{s s}=\lim _{s \rightarrow 0} s E(s)=\frac{-1}{1+K R}
$$

(b) When $G(s)=K / s$
$e_{s s}=\lim _{s \rightarrow 0} s E(s)=0$

