ELG 4151

Linear Systems

TA: Fouad Khalil, P.Eng., Ph.D. Student

 fkhal022@uottawa.ca
Agenda for this tutorial session

- 1) I will talk about the Linear System Elements (Devices): Elements Store Energy (Inductive Elements \& Capacitive Elements), Elements Dissipate Energy, Elements Transfer Energy: Mass, Inertia, Inductor, Pipe, Spring, Rotary Spring, Capacitor, Tank, Friction, Rotational Friction, Damper, Resistor, Liquid Resistance, Gears, Transformer, Lever, Motor.
(25 min)
- 2) I will present two examples on how to drive the mathematical model and state space representation of two mechanical systems.
(20 min)
- 3) I will present two examples on how to drive the mathematical model and state space representation of two electrical systems.
(20 min)
- 4) I will present one example on how to drive the mathematical model and state space representation of an electromechanical system.
(10 min)

Elements of Linear Systems

Elements Store Energy

- Inductive Elements
- Mass
- Inertia
- Inductor
- Pipe
- Capacitive Elements
\square Spring
- Rotary Spring
- Capacitor
- Tank

Elements Dissipate Energy

- Friction
- Rotational Friction
- Damper
- Resistor
- Liquid Resistance
- Elements Transfer Energy
- Gears
- Transformer
- Lever
- Motor

Mathematical Formulas and State

 Variables of Energy Storage Elements- Mass

$$
\sum F=M \dot{v} \quad \xrightarrow{\text { s.v. }} V
$$

- Inertia

$$
\sum T=J \dot{\omega} \quad \xrightarrow{\text { s.v. }} \omega
$$

- Inductor

$$
e=L i \quad \xrightarrow{\text { s.v. }} i
$$

Pipe

$$
\tilde{P}=I_{w} \dot{Q} \quad \xrightarrow{\text { s.v. }} Q
$$

- Spring

$$
F_{s}=k x
$$

$$
\xrightarrow{\text { s.v. }} x
$$

- Rotary Spring

$$
T=k \theta \quad \xrightarrow{\text { s.v. }} \theta
$$

Capacitor

$$
e=\frac{1}{C} q \quad \quad \xrightarrow{\text { s.v. }} q
$$

Tank

$$
P=\rho g h \quad \xrightarrow{\text { s.v. }} h
$$

Mathematical Formulas of Energy Dissipating Elements

- Friction

$$
F=b v
$$

- Rotational Friction

$$
T=b \omega
$$

Damper

$$
F=b v
$$

- Resistor

$$
e=R i
$$

- Liquid Resistance

$$
\tilde{P}=R_{w} Q
$$

Mathematical Formulas of Energy

 Transferring Elements$$
\begin{gathered}
P_{\text {in }}=P_{\text {out }} \\
P_{\text {elct }}=v i \quad P_{\text {mech }}=T \omega
\end{gathered}
$$

Gears

$$
\begin{gathered}
T_{1} \omega_{1}=T_{2} \omega_{2} \\
\omega_{2}=\frac{r_{1}}{r_{2}} \omega_{1} \quad T_{2}=\frac{r_{2}}{r_{1}} T_{1}
\end{gathered}
$$

Transformer

$$
v_{1} i_{1}=v_{2} i_{2}
$$

$$
v_{2}=\frac{n_{2}}{n_{1}} v_{1}
$$

$$
i_{2}=\frac{n_{1}}{n_{2}} i_{1}
$$

- Lever

$$
F_{1} l_{1}=F_{2} l_{2}
$$

Motor

$$
e_{b} i=T \omega
$$

$$
e_{b}=k_{t} \omega
$$

$$
T=K_{t} i
$$

Your Questions

