ELG2331: Experiment 5 Simulation of Shunt-Connected DC Motor Based on P19.36 and P19.38 Textbook 5th Edition

Part 1

Derive the differential equations describing the electrical and mechanical dynamics of a shunt-connected DC motor. And draw a simulation block diagram of the system. The motor parameters are k_a , k_T = armature and torque reluctance constant and k_f = field flux constant.

Part 2

Develop a Simulink simulator for the above shunt-connected DC motor. Assume the following parameter values: $L_a = 0.15$ H; $L_f = 0.05$ H; $R_a = 1.8 \Omega$, $R_f = 0.2 \Omega$; $k_a = 0.8$ V-s/rad; $k_T = 20$ N-m/A; $k_f = 0.02$ Wb/A; b = 0.1 N-m-s/rad; J = 1 kg-m².

See Figure P19.36 (5th edition) or Figure P17.35 (4th edition)