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Abstract—Battery Management System (BMS) requires an
indefinite accurate model. With an aging model, the lifetime of
a battery can be precisely predicted. The mathematical model
in terms of state variables is presented in this preliminary work
involving smart BMS system. This work is crucial as the state
space model is able to mimic the complex dynamic behavior of
a battery system. A numerical case study is done to verify the
model obtained through mathematical derivations by adopting
the prominent RC battery model from literature. More works
have to be carried out to investigate the application of the model
in terms of predicting the state of charge (SoC) of a battery
system in order to prolong its lifetime, and thereby saving us
substantial cost.

Index Terms—Battery aging, Battery Management System
(BMS), battery modeling, state-of-charge, state space.

I. INTRODUCTION

THE understanding of a battery system is essential before
efficient management system could be designed [1], [2].

Hence, a generic tool to describe the battery performance
under a wide variety of conditions and applications is highly
desirable [3]. As such, the electrical modeling is able to
provide such a tool that enables visualization of the processes
occurring inside rechargeable batteries. Only with the pres-
ence of these generic models could new battery management
algorithms be developed for reliable performance. These al-
gorithms control the operation and maintain the performance
of battery packs. The ultimate aim is to prolong battery life
and ensuring reliable safety. Battery modeling is done in
many ways depending on the types of battery.

Ultimately, with the battery models aim to determine
state of charge (SoC). However, the complexity of the
nonlinear electrochemical processes has been a great barrier
to modeling this dynamic process accurately. The accurate
determination of SoC will enable utilization of the battery for
optimal performance, long lifetime, and prevent irreversible
physical damage to the battery. Solution to SoC via neural
networks [4] and fuzzy logic [5] have been difficult and
costly for online implementation due to large computation,
causing the battery pack controller to be heavily loaded.
However, this can be a good alternative in the near future
due to the increased computational power of processing chips
alongside their declining cost.
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Model-based state-estimation has been proposed in [6],
[7]. In [7] a state-estimation model has been utilized for the
determination of optimized charging current using Genetic
Algorithm (GA). In [8] ant colony algorithm is applied to
determine the charging current in each stage to reduce charg-
ing time. In control theories, the well-known Kalman filter
[9] have been applied successfully for both state observation
and prediction problems [6]. In this work, a mathematical
derivation leading to a state space model is presented. The
basic schematic model is in fact adopted from [6], [7].
Although the conclusion is the same, we presented more
analysis in the form of state variables. The rest of the paper
is organized as follows. Section II discusses the factors of
battery aging. Section III outlines the aging characteristics
from measurement data. A mathematical model is derived
in Section IV, which is followed by state space model in
Section V, and finally the conclusions are derived in Section
VI.

II. BATTERY AGING

Identification of key aging parameters in battery models
can validate degradation hypotheses and provide a foundation
for estimation of battery status, e.g. State of Health (SOH).
In brief, aging and degradation of batteries can be caused
by capacity fading (the loss of battery charging/discharging
capacity over time) as well as power fading (the loss of
absorbing and delivering electrical power). From another
perspective, power fading and energy fading are associated
with impedance rise and capacity loss, respectively. Detailed
discussion of typical aging effects can be found in [10]. A
few major effects are outlined in the following subsections.

A. Thermal Degradation

The performance of a battery is significantly affected by
temperature. For e.g., Lithium battery can effectively operate
between −30◦C and 52◦C. When the temperature drops
below −30◦C, diffusion and chemical reactions become in-
active and thus battery impedance increased dramatically. On
the other hand, when the temperature rises above 60◦C, the
battery has a significant capacity loss. And eventually if the
temperature rises above 85◦C, the battery could be damaged
easily. Chemical reactions in batteries grow exponentially
when the temperature increases. Meanwhile, since vigorous
chemical reactions generate excessive heat, the battery could
also broke down if the if heat from batteries is not properly
managed.

B. Physical Damage

Battery aging can also be caused by electrode fracture and
fatigue. In existing literatures, a specific electrode model and
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a diffusion-induced stress model have been proposed for in-
vestigation [11]. Results showed that the output voltage does
not change significantly, however it increasingly accumulates
stress.

C. Particles Accumulation

Solid Electrolyte Interphase (SEI) are formed on the sur-
face of electrodes when the battery charges, and in particular,
when electrode starts to react with the electrolyte. SEI ab-
sorbs mobilized Lithium ions and slows down the transporta-
tion of ions between electrode and electrolyte. These formed
crystalline introduce power fading and capacity fading. In the
case of low and high current densities, moss and dendrite are
formed on the surface of negative electrode. These substances
reduces surface area of electrodes for reactions, and thus
causing battery fading.

III. AGING CHARACTERIZATION AND REGULATION
THROUGH MEASURED DATA

Measurements are needed in order to accurately char-
acterize aging in batteries. To investigate the cycle life
capabilities of lithium ion battery cells during fast charging,
cycle life tests have been carried out at different constant
charge current rates. Through measurement results, cycle
life models have been developed to predict the battery cycle
ability. The analysis indicates that the cycle life of the battery
degrades when the charge current rate increases. In addition,
the measurement of battery impedance via electrochemical
impedance spectroscopy (EIS) and the current-pulse tech-
nique [12] helps in determining battery health.

In order to ensure a uniform temperature during battery
operations, maintaining battery performance, and eventually
prolong the battery lifetime, real-time temperature sensing
and monitoring systems as well as cooling systems are
needed [13], [14], [15]. In addition, in order to improve
cycle stability and battery capacity, thick anodes (e.g. about
1 mm) are adopted for Li-ion batteries. These anodes consist
of vertically aligned carbon nanotubes which are coated with
silicon and carbon [16].

A. Aging Models

Aging parameters in Lithium-ion batteries vary with dif-
ferent current rates, working temperatures and depths of
discharge. For example, in order to model the thermal
characteristics of the battery that causes battery aging, it
is necessary to model the generation of heat inside the
battery, heat transfer between battery and the environment,
and the reactivity of chemical reactions with respect to the
temperature [17]. In particular, in order to correctly model
the thermal distribution and characteristics of battery packs,
lumped thermal models are formulated to model the ohmic
heating in battery cell packs [18]. The aging parameters can
be applied for early aging detection. Through early detection
and appropriate maintenance, performance of battery cells
can be significantly improved. Detection can be done by
analyzing real-time data from operations of batteries (e.g.
voltage and current data from lithium-ion cells). In [12],
battery aging detection is done based on the sequential
clustering of battery packs. During operations, a derived
fuzzy model is used to predict operation performance and
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Fig. 1. Schematic of RC battery model

detect the aged battery via similarity comparisons, with
respect to the ideal situation.

IV. BATTERY MODEL

Several battery models existed over the past years. Each
of these models varies in term of its complexity and
applications. In this work, a dynamical battery model is
adopted, consisting of state variable equations, from [6]. The
schematic representation of this model is shown in Fig. 1. In
this model, there exists a bulk capacitor Cbk that acts as a
energy storage component in the form of charge, a capacitor
that models the surface capacitance and diffusion effects
within the cell Csurface, a terminal surface Rt, surface
resistance Rs, and end resistance Re. The voltages across
both capacitors are denoted as VCb and VCs, respectively.

A. Mathematical Derivations of Battery Model

In this derivation, we aim to form a state-space model
consisting of the state variables VCb, VCs and V0. State
variables are mathematical description of the ”state” of a
dynamic system. In practice, the state of a system is used to
determine its future behaviour. Models that consist of paired
first-order differential equations are in state-variable form.

Following the voltages and currents illustrated in Fig. 1,
the terminal voltage V0 can be expressed as:

V0 = IRt + IbRe + VCb, (1)

which is similar to

V0 = IRt + IbRs + VCs. (2)

By equating the (1) and (2), and after simple algebraic
manipulation results in

IbRe = IsRs + VCs − VCb. (3)

From Kirchoff’s laws, I = Ib + Is,

Is = I − Ib, (4)

Substituting (4) into (3) yields

Ib(Re +Rs) = IRs + VCs − VCb. (5)

By assuming a slow varying Cbk, that is Ib = CbkV̇Cb

(from basic formula of i = C ∂V
∂t ) and substituting into (5),

the following equation is obtained after rearrangement

V̇Cb =
IRs

Cbk(Re +Rs)
+

VCs

Cbk(Re +Rs)
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− VCb

Cbk(Re +Rs)
, (6)

By applying a similar derivation, the rate of change of the
surface capacitor voltage, derived also from (1) and (2) as

V̇Cs =
IRe

Csurface(Re +Rs)
− VCs

Csurface(Re +Rs)

+
VCb

Csurface(Re +Rs)
. (7)

By assuming A = 1
Cbk(Re+Rs)

and B = 1
Csurface(Re+Rs)

,
(6) and (7) can be written as

V̇Cb = A · IRs +A · VCs −A · VCb (8)

and

V̇Cs = B · IRe −B · VCs +B · VCb, (9)

respectively. Further, (8) and (9) can be combined to form
a state variable relating voltages VCs and VCb and current
flow I , which is

[
V̇Cb

V̇Cs

]
=

[
−A A
B −B

] [
VCb

VCs

]
+

[
A ·Rs

B ·Re

]
I. (10)

Next, the output voltage is derived from (1) and (2). By
adding both equations,

2V0 = 2IRt + IbRe + IsRs + VCb + VCs. (11)

By substituting Ib =
Rs

Rs+Re
and Is =

Re

Rs+Re
into (11), it

is further simplified as

V0 =
VCb + VCs

2
+

(
Rt +

ReRs

Re +Rs

)
I (12)

By taking the time derivative of the output voltage and
assuming dI/dt ≈ 0 (this simply mean that the change
rate of terminal current can be ignored when implemented
digitally). Hence we get

V̇0 =
V̇Cb + V̇Cs

2
. (13)

By substituting the values obtained earlier in (8) and (9)
into (13) results in

2V̇0 = (−A+B)VCb+(A−B)VCs+(ARs+BRe)I. (14)

Then, by solving for VCs from (12) we obtain

VCs = 2V0 − 2(Rt +
ReRs

Re +Rs
)I − VCb, (15)

and after substitution into (14) yields

V̇0 = (−A+B)VCb + (A−B)V0

+ [A (0.5Rs +Rt +D) +B (0.5Re −Rt −D)] I. (16)

Finally, the complete state variable network is obtained by
integrating (16) into (10), thus the complete state variable
description of the network is obtained as V̇Cb

V̇Cs

V̇0

 =

 −A A 0
B −B 0

(−A+B) 0 (A−B)

 ·

 VCb

VCs

V0

+

 A ·Rs

B ·Re

A (0.5Rs −Rt −D) +B (0.5Re +Rt +D)

 I. (17)

whereby constants A, B and D have been given earlier
and hereby restated as A

B
D

 =


1

Cbk(Re+Rs)
1

Csurface(Re+Rs)
ReRs

Re+Rs

 .

This completes the initial derivation of a battery model.

V. STATE SPACE MODELING

Considering the effect of both time and charging current
leading to the time and current dependent model for Cbk

makes the state equations to be nonlinear. Further, we adopt
the formula for Cbk from [7], given as

Cbk =

{
C0 t ≤ t0

−K1I(t− t0)−K2(t− t0) + C0 t ≥ t0
(18)

whereby K1 and K2 are given in [7] and not included here
as we deem this as not important in this work. This Cbk can
be augmented (or included) into the existing state variable
of (10). As mentioned, the value of Cbk shows the ability of
the battery to store charge. As such, Cbk is a good factor for
consideration in determining the State of Health (SoH) of the
battery. Assuming the rate of change of Cbk over a sampling
interval is negligible; in other words Ċbk = ∂Cbk/∂t = 0.
Therefore, the battery model, specified by (19) can be re-
written as

V̇Cb

V̇Cs

V̇0

Ċbk

 =


−A A 0 0
B −B 0 0

(−A+B) 0 (A−B) 0
0 0 0 0




VCb

VCs

V0

Cbk



+


A ·Rs

B ·Re

A (0.5Rs −Rt −D) +B (0.5Re +Rt +D)
0

 I,

(19)
with the output y(t) given as

y(t) =


VCb

VCs

V0

Cbk

 . (20)

Based on control theories, a lumped linear network can be
written in the form

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t).

By comparison of the above pair state variables, and
substituting all resistor and capacitor values (see Table I)
the values A, B, C and D are calculated as follows

A =


−0.001508 0.001508 0 0
1.6238379 −1.6238379 0 0
1.6223291 0 −1.6223291 0

0 0 0 0

 ,
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Fig. 2. Unit step response for Battery Model

B =


0.000005657847553
0.006089392278651
0.010542685882214

0

 ,

C =
[
0 0 1 0

]
,

D =
[
0
]
.

Further, the above state space variables are transformed
to a transfer function, G(s). This is done by using ss2tf
function in Matlab, and thereby yielding

G(s) =
0.01054s3 + 0.0171s2 + 2.981× 10−5s

s4 + 3.248s3 + 2.637s2 − 1.144× 10−18s
(21)

The plot of the unit step response for the gain in (21)
is given in Fig. 2. Basically, it shows that the open circuit
terminal voltage V0 in Fig. 1 increases linearly during
charging operation. This behaviour is consistent with the
linear cell discharge characteristics illustrated in Fig. 15 of
[6]. This somehow validates the results obtained from the
mathematical analysis done. However, we deem it necessary
to further explore the model in the aim of tackling SoC. This
will be one priority task for future work.

TABLE I
PARAMETERS FOR CELL MODEL [6]

Cbk Csurface Re Rs Rt

88372.83 F 82.11 F 0.00375Ω 0.00375Ω 0.002745Ω

VI. CONCLUSION

In this work, the factors of battery aging are discussed
in detail. Subsequently, we successfully obtain the state
variables of the RC model that represents a battery in
terms of Mathematical derivations. The derivations come to
a conclusion that there exists four state variables relevant
to battery model. Further, based on control theories, we
successfully plotted the response of the system, depicting a
linearly increasing characteristic. With this state-estimation
model, the technique such as Kalman filter can be applied
in the aim of estimating state of charge. We leave this as an
open option for future investigation.
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