fﬁa?mlﬂw_ AL 3ol

C'HAPTER 3. CranErAl LIKCAR Sy LS

m.,. O ml.ﬂivm -
12
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3.5.3 Iterative Improvement
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LT und that we wish
1f e ek

r=b AR
Sabve Ly = T
Calve Uz =9-
H..“-rﬂl.n_._ = m rl -.#.

(3.5.4)

phen in exach arithmetic ATaew = A Az = (h—r)-tr = b. Tnlornuetely,
the naive foating poink eeention of these farumilag renders AL Eaew hat is
o qnote pocuTale Then #. This i3 to be ecprcked sinre i = flib— AZ) hus
fowe, if sy, cocect siznificant digits. {Recall Heuristic 1.) Consaquenly.
;= fliA~lr) = 4-1. poise = noise Isa VELY poor cotrection from the
standpoint of improwny the gecuracy af & Howeer, Skeel {1950] has done
on error analysis that indicates when (3.5.4) gives an mproved Snew fOR
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¢ = (A ) e (Al fe (AN
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i.1.1 The Jacohi and Gauss-Seidel lterations

Perhaps the simplest iterative scheme is the Jocobi dteration. 1L is defined
for matrices that hove nemzern disgonal elements. The method can b
motivated by rewriting the 3-by-3 system Az = b as follows:

2, = (by—aTe—axsxa)foeu

wy = (ba— agxy — waiva)ino

3 = (ba—aqz1 — eapr) s
Suppose 8 is an approximation to & = A7 A vatural way o generate
a new approximation 4! is vo compute

., _.h,

e | IE,MHWE — gy Lo

MY = (b —ane - apsl)fon (10.1.1)
: :

u..Au_rt__ = (g - _uf.ﬁm.r“_ — azzh Y0z

‘I'his defines the Jucobi iteration for the case = 3. For general v v have

for 1= 1w
=1 L :
iyt = |4y = Mncﬁws -2 ayay” | [ (10.13)
F=1 Jmip1l
cnd

Tote that in the Jacobi iteration c:.“_ng.m__mm not uge the _Eﬁw recontly avail-
ahle information when compating Hm U For muhm.mp_”__.._wu @y 15 used in the
caleuletion of z5! even though component Y i known. L we revise
the Jucobi iteration sn that we always uge the mest current cstimate of the
caact @y then we obtain
for i = 1m
=1 "
H.mwi”_ = |ty — Haﬁﬁwmf&. MU E.*H.W..”. a,; (10.1.3)
d=k jei)l
cnd
This defines what iz called Lhe Gouss-Seidal iferntion.
For hoth the Jacobi snd Gaues-Seidel tterations, the transition from
28 40 251 can L succinetly described in Lerms of the matrices L, D,

and L5 defingd by
i [ B S {

il bz

] ]
€ql Baz 0 G 0

10.1. 'TEE STANDALD ITERATIONS all
o — disglay, ... e0m) (1L1.4)
[0 g Mn |
0 o
U= 1a b Br—2m
] Ba—1a
R R R R

Tn partienlar, the Jacobi stop hos Uhe form Mye=+2 — N 2B 4 b where
My="0and N; = .I,n._..._ + 1) O the oller hand, Gauss-Seidel is defined
by Mgzt = Newt 4 b with Mo = (D1 L) aud Ng — =17,

10.1.2  Splittings and Convergence

The Jacobi and Guuss-Seidel procedures are typical members of a luree
family of iterations thul have the form

M=t = izt g (10,15

where A = M— N is a splitting of the matrix A. For the iteration (10.1.5)
b be practical, it muar be “ensy™ to solve o lnear system with A as the
matriz, Nole that For Jacohi and Gaass Szidel, A is dingonal and lomeor
triangular respectively,

Whether ar not (10.1.5) converges to = = A~ depends upon the vige-
values of M—LN. In particular, if (he spectral redins of an -t matrix
& is defined by

M) = max] [Al:Ac M3,
then it is the size of p(Ad ' A) i critical Lo the sueerss of (10,1.5).

Thearem 10.1.1 Suppose be R and A = M — X £ ™ i nonsingue
lar. If M is nonsingular and the spectral rodis of M7'N salisfies the
inequality p{M N} < 1, then dhe fteroies 29 Aefined by Mot —
Nol®) 4+ b converge ta = AU Jor eny steriing vectar 2100

Proof. Let &' = 2% _ o denate the error in the fth ilorole. Since Mo
=Nz +hit follows that M+ —p) — A% _ 0y and thug, the error in
2%+ s given hy e®F1 = jy-lyels) _ n_aﬁl_?w”_._nb_n.‘n_.. Biotr L e
7.3.2 we kuow that (M-I — 00T p/M-IN < 1.0

This result is centeal o the andy of iteratve mothods where alporithmic
development typically proceeds along the fellowing lines:

o A splitking A = M — I is proposerd where Enear systems of the form
Mz = d are “sasv” to solve,
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o Clasees of malrices are identified for which the iteration matri: =
AN satisfies pl) < L

» Turther results nbout p(G) are cstablished to gain intuision abouk
how tae creor @5 tends oz,

Far example. consider the Jacobi fberation, Dxi=1l = L+ _u_._.,n_.,w”. + b
{ne condition that guarantees p{ My =Ni) < 118 sbrict disgonal dominanes,
Indewrd, it A has that property {defined in §3.4.10), then

ks
; i
TN < | L4 U || = max M .FM < 1
1<in i
i i=1
e

Usually, the “more dominant” the diagonal the more rapid the convergenoe
bt there ars counterexumples, See P10.L.T,

A more complicaled spectral rading angument is neaded o show that
(iaves-Seidel converges for symmetric positive definita A.

Theorem 10.1.2 If A £ R ig symmetriz and pasitive definile, e e
Gouss-Seidel iterution (10.1.3) converges Jor any 7).

Proof, Write 4 — L4+ D1 L7 where D = diag(a;;) and L is strictly lover
trienzular. T light of Theorem 10.1.1 our task is to show that Ene mwteix
G = —( + L)1 LT hns cigenvalues that are inside the unit circle. Since
I i positive definile we have Gy = D¥2QD Y = (T +1Ly) Lrds
where In = D-Y2LD"% Since G and G heve the same eigenvalues,
we must verly that p(ts) < 1 IT Gz = Azr with wllz = 1, then we
have —LTa = AL+ Dy)r and thus, —z% £ = A(L 427 Lyix). Letring
e~ bi = ¥ Ly we have

: a® + b

11 %a—+a24i?’

—a b

2 _
_}_ TLem=in

Hewever, since D Y2AD-Y2 = T | Ly + LT is positive definite, it 15 not
hard to show that 0 < 1+x¥ Liz+57 LT = 1420 unplying |A[ < 1.U

T'hig reault is frequently applicabla because many of the matrices that arjc
frome diseretized clliptic PDE%s are syminetrie positive definite. TRt Lol
ather resully of thiz Havaer appear in Lthe literature.

10.1.3  Practical Implementation of Gauss-Seidel

W now forus on some prectical details associated with the Gauss-Seidel
iteration. With overwriling the Gauss-Seidel step (10.1.3) is partionlarly
sitnple to implenenk:

L1,  'I'HE STANDARD ITER~EIONS 5
for 7= lm

j=l " 3
L= .w_.._” MD...G...M....“. - m : G i1y \ﬂ...
=1

F=is1 /
end

+

H..H:,.m ompitation requires eboul bwine as many Hops as there wee nonzero
vokries in tha matrix 4. 1t makes no sense to be mose precise abour the
work :a.&?wﬁ because the actual inplenentation depencls rreatly upon e
structure of the problem an hand. )

In order Lo stress this poind we consider the a i g
. j e e application of (10.1.3
the N AM-by-NM block tridiaponal eystom . e

s ...h.. i ) . B r r 1
it 4 i .4 fi
ol T : v fa
= : (10.1.6)
K . — H .
| 1 —Tp B I T _ | fur
whare
4 -1 T (i [ 1
| : 61,5 | F(1, )
1 4 "= ; G2, 00 iz, 7
HI_H . - " . x
. iy : ; .”_n.m. = :
O e -1 4| LGN _ L ....:_“_n.&

w_..__mm prablem arises wchen the Poisson squation is diserovieed on rectangle
1t is eaxy to show that the malrix A is positive deficite,
With the convention that Gi.5) = 0 whenever | 10N 4 1) or

J €40, M+ L} we sen that with overwriting the Ganse Seide] step tales on
the Form: 3

for j = LM
for i=LN
Q) = (FlL 3 + Ol - La) + G0+ 1,704
Gl 7= 1)+ G+ 1)1/
end . h
o]

Mote that in this problem no storape is requied for the malrix A.
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10.1.4 Successive Over-Helaxalion

The Crauss-Seidel iteration is very attractive hecanse of its simplicity. 1n-
forbunabely, if the spectral radius of Em:._qn.. ig close Lo unity, then it may
be prohibitively slow because the crror tends to zero like Mz Ny, To
roetify this, let w & IR aud consider the following modification of the Gauss-
Seidel stap:

feri=1lmn
i—1 . e y
Hm_m._.u.”. = m__.. Mfuﬁu_ﬂ%ﬁ+5 - M .u_.“._.H._“_.“h”. flyi
4=1 Geikl
y (1 —w® (10.1.7)
e

‘This dofines the wethod of succassive sver-relazation (SOR). Using (10.1.4)
we zee thal in moocie terms, the SOR step is glven by

E i S (10.1.5)

whore My, = D+4whand N, = (L—w)P—uill. For o fow structured (but
irmportant) prohlems such as (10.1.6), the value of the relaxation parameler
w0 that minimizes p{M;'MN,) is known. Moreover, o significant reduction
in g(M7) = plMg'Ng) can result. In wore complicater priblens,
however, it may be necossary to parform o frly sophisticated eigenvoiue
analysis in order Lo determine an ApPIOpriote «.

10.1.5 ‘T'he Chebyshev Semi-Iterative Method

Another way to sccclerate the converpence of an iterative methad wmakes
ugs of Chebyshev polynomials. Suppose z1),. . 2% have been gencrated
via the iteration Mzt — Nz'f 4 b and that we wish Lo determine
coellicicnts #;(%), 7 = 0:k such that
k
y* = % it (10.1.9)

=1

represents sn improvement over o= [F 20 — ... = "% = g, then it is
reasonable to insist that $1) =z Henee, we require

N k) = L. (10.1.10)

=0

Subjéet 4o this constraint, we cousider how to chonse the w (k) so that the
crror in w*®) is minimized.

10.1.  Tur Staxnasn ITERATIONS 515

Recalling from the proof of Theoran 1011 that o™ —x = {8 1 AN
where ¢/ = 20 — v e see thas . )
" .w "
g — N;H...,,.._H__q.v.ﬂ..nh -] = Ht._._”_a...:...w__h. Ivpel®

F=U J=0

Working in the 2-norm we Lherelor: obtain

Io™ —xlz < Npad@) 2 ) & |l (10.1.11)
whore & = M-IN and

i
Peiz) = 3wk

Fall

Nnte that the condition (L0.1.10) impliea pe{l) = 1.
..,__,n this point we assume that & s svmmetric with cigeovalues &, that
sulisly =l <a =A== 0 =d < 1 Infollows thar

leelGh |l = max a2 i |pefal

ApEAAD we i

...3.:5. fi Hm_.._ﬁ the menn of 7, () amall, we nood o poliynamial fhe(z) that
is small on e, ] subject co the conatraint that pe (1) = 1, o

. Consider n:.m Chebysher pelynamials o) z) _n..__..EE.w_.cm_, b Ehe reciirsian
_nu..ﬁh_ = m.nnur:.u.“_ —eialz) wheme gpfz) — T and oy(z) = 2. These un:..:._....
minls sutisfy 'ep(2)] <1 on [-1, 1] bur grow rapidly of this inlervel. As a
consequence, Lhe polynomial o

o
C h =1 +.rp.l_.hw
2} = 5 ) ..w -,
(gl

when

b= L+Mwl.|: S Sl
g P R

satisfies pp{1) = 1 and lends to be amall on [0, 9, F ind
' ; RGE &) o, 0 From the definiti
prlz) and squaticon (10.1.11) wa e ) wition of
Iz — = |
exip)|

Thus, the larger p is, the greater ke accelerution of sanversence
RN,

I order .-.2 the above Lo be a practical accelertion procedure, we newd

2 more cffivient method for coleulating 4™ than (10.1.5). We ?{m been

Nyt — 2y =




