Take home exam in MAT 5187 Due Wednesday on the 25th of July 2007

Rémi Vaillancourt

July 10, 2007

Question 1: Show that convergence implies consistency of numerical methods for totally stable ode's.

Question 2: Lambert's 1991, p. 51, exercise $3.2.5^*$. Suppose that the order of y_{n+r} is sufficiently high.

Question 3: Prove that Matlab's ode23 is made of a method of exact order 3 to advance the step with y_{n+1} and a method of exact order 2 to monitor the local truncation error with \hat{y}_{n+1} , by verifying that these methods satisfy the appropriate order conditions. The Butcher tableau is:

	С		A		
k_1	0	0			
k_2	$\frac{1}{2}$	$\frac{1}{2}$			
k_3	$\frac{3}{4}$	0	$\frac{3}{4}$		
k_4	1	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{4}{9}$	
	\mathbf{b}^T	2	1	4	0
y_{n+1}	D	9	3	9	0
\widehat{y}_{n+1}	$\widehat{\mathbf{b}}^{T}$	$\frac{7}{24}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{8}$
EE	$\mathbf{b}^T - \widehat{\mathbf{b}}^T$	$-\frac{5}{72}$	$\frac{1}{12}$	$\frac{1}{9}$	$-\frac{1}{8}$

Description of the method. The code ode23 consists of a four-stage pair of embedded explicit Runge–Kutta methods of orders 2 and 3 with error control. It advances the solution from y_n to y_{n+1} with the third-order method (so called local extrapolation) and controls the local error by taking the difference between the third-order and the second-order numerical solutions. The four stages are:

$$k_{1} = h f(x_{n}, y_{n}),$$

$$k_{2} = h f(x_{n} + (1/2)h, y_{n} + (1/2)k_{1}),$$

$$k_{3} = h f(x_{n} + (3/4)h, y_{n} + (3/4)k_{2}),$$

$$k_{4} = h f(x_{n} + h, y_{n} + (2/9)k_{1} + (1/3)k_{2} + (4/9)k_{3}),$$

The first three stages produce the order-3 solution, at the next time step:

$$y_{n+1} = y_n + \frac{2}{9}k_1 + \frac{1}{3}k_2 + \frac{4}{9}k_3,$$

and all four stages give the local error estimate:

$$E = -\frac{5}{72}k_1 + \frac{1}{12}k_2 + \frac{1}{9}k_3 - \frac{1}{8}k_4.$$

However, this is really a three-stage method since the first step at x_{n+1} is the same as the last step at x_n , that is $k_1^{[n+1]} = k_4^{[n]}$. Such methods are called FSAL methods.

The natural interpolant used in ode23 is the two-point Hermite polynomial of degree 3 which interpolates y_n and $f(x_n, y_n)$ at $x = x_n$, and y_{n+1} and $f(x_{n+1}, x_{n+1})$ at $t = x_{n+1}$.

Question 4: Prove that k-step BDF methods of order k are unstable for $k \ge 7$.

A short proof is found in E. Hairer and G. Wanner, On the instability of the BDF formulae, SIAM J. Numer. Anal., **20**(6) (1983), 1206– 1209. Can be downloaded from the course description in my home page: http://www.site.uottawa.ca/~remi