Test mi-session 2
Durée: 80 min
Place: MRT219
17 mars 2006
10:00-11:20

MAT 3380

Prof.: Rémi Vaillancourt

Instructions:

(a) Test à livre fermé. Tout genre de calculatrices autorisé.

Closed book mid-term. All types of calculators are allowed.
(b) Répondre sur le questionnaire.

Answer on the question sheets.
(c) Les 6 questions ont toutes la même valeur.

All six questions have the same value.
(d) Une réponse sans calcul à l'appui ne sera pas corrigée.

Show all computation. Bare answers will not be graded.
(e) Tous les angles sont en RADIANS.

Prière de tester et d'ajuster votre calculatrice.
All angles are in RADIAN measures.
Test and adjust your calculators.

$$
\sin 1.123456789=0.90160112364453
$$

"The purpose of computing is insight, not numbers", Hamming

Qu. 1. Solve the linear system $A x=b$ by forward and backward substitutions given that $A=L U$ and

$$
L=\left[\begin{array}{lll}
2 & 1 & 0 \\
3 & 0 & 1 \\
1 & 0 & 0
\end{array}\right], \quad U=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 3 & 1 \\
0 & 0 & 5
\end{array}\right], \quad b=\left[\begin{array}{r}
1 \\
13 \\
1
\end{array}\right],
$$

Qu. 2. Find the Cholesky decomposition and compute the determinant of the matrix :

$$
A=\left[\begin{array}{rrr}
4 & -2 & -2 \\
-2 & 10 & 1 \\
-2 & 1 & 21
\end{array}\right]
$$

Give the detail of your computation.
Qu. 3. Permute the equations of the system :

$$
\begin{array}{rrl}
6 x_{1}+x_{2}-x_{3}= & 3 \\
-x_{1}+x_{2}+7 x_{3}=-17 \\
x_{1}+5 x_{2}+x_{3}= & \text { with } & x_{1}^{(0)}=1 \\
x_{2}^{(0)}=1 \\
& x_{3}^{(0)}=1
\end{array}
$$

to insure convergence of the Gauss-Seidel scheme and iterate this scheme once.
Qu. 4. Draw Gershgorin's disk for the matrix :

$$
\left[\begin{array}{ccc}
1-i & 0.3+0.4 i & 0.5 i \\
0.3 i & -1+i & 0.3 \\
0 & 0.6+0.8 i & 1+i
\end{array}\right]
$$

Qu. 5. Prove the uniqueness of one of the following three matrix decompositions :
(a) $A=L U$ where A is nonsingular, L lower triangular with $l_{i i}=1$ and U is upper triangular.
(b) $A=G G^{T}$ where A is positive definite, G lower triangular with $g_{i i}>0$.
(c) $A=Q R$ wher A is nonsingular, Q orthogonal and R upper triangularwith $r_{i i}>0$.

One may assume that $A \in \mathbb{R}^{3 \times 3}$.
Qu. 6. Consider the Householder reflection:

$$
P=I-2 \frac{v v^{T}}{v^{T} v}
$$

Qu. 6(a). Show that P is symmetric : $P^{T}=P$.
Qu. 6(b). Show that P is orthogonal : $P^{-1}=P^{T}$.
Qu. 6(c). Find the eigenvalues of P. (Show your work. Just guessing is insufficient.)
Qu. 6(d). Calculer le déterminant de P.
One may assume that $A \in \mathbb{R}^{3 \times 3}$.

