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OVERVIEW -

e Pipe system diagnosis and leak detection

e Fourier analysis
- Global regularity and decay
- Windowed Fourier transform

- Uncertainty principle

e Wavelet analysis
Continuous wavelet transform
Lipschitz regularity
Wayvelet vanishing moments
Wavelet transform modulus maxima,

Detection of singularities

e Application to leak detection
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PIPE SYSTEM DIAGNOSIS AND LEAK DETECTION

Single pipe system diagnosis and leak detection by unsteady-leak tests.

e Harmonic analysis

— The governing equation for transient flow in pressurized pipes are solved

directly in the frequency domain by means of the impulse response method.

— Information about arrival time of pressure waves are lost.

e Wavelet analysis
— Retains information coming from the time domain analysis.

— Detects local singularities in the pressure history due to a leak
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BASIC EQUATION IN THE TIME DOMAIN

The simplified one-dimensional momentum and continuity equations for

unsteady-state pipe flow:

oh dq g g
oo tLo TR =0, oo 4+Co =

where h is the piezometric head; ¢ is the flow rate; x is the spatial coordinate; and
t is the time.

The inertance, L, the capacitance, C, and the resistance per unit length, R/, are
given by

L= =% -

fe°
gA’ a?’ 29D A2’

where g is the gravitational acceleration; A is the pipe cross-sectional area; a is the

pressure wave speed; and f is the Darcy—Weisbach friction factor.
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PRESSURE SIGNAL

In a single pipe system, when a valve is suddenly closed, an abrupt increase in

pressure occurs and a pressure wave propagates upstream along the pipe.

This positive pressure wave is reflected back by the reservoir, bringing on a

negative pressure wave.

Diameter changes, junctions, or leak give rise to a partial reflection of the

incoming pressure wave.

Through correctly interpreting the pressure time-history at the measurement

section (called pressure signal), it is possible to extract the information carried

by the reflected waves on discontinuity characteristics, such as leak location

and size.
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FOURIER AND INVERSE FOURIER TRANSFORMS

The Fourier transform of f € L'(R) or f € L*(R):

msvnxgmgmggﬁ

It measures “how much” oscillation there is in f at frequency w.
The inverse Fourier transform of f € L'(R) or f € L*(R):

fO =5 [ Fw)etd.

Example 1. The Fourier transform of the indicator function f = 1;_y y:

1 9gi
. sin w
e Whdt = ———,
w

January 16, 2004 6



R. Vaillancourt

(GLOBAL REGULARITY AND DECAY

If f € L'(R), then f is continuous and bounded:

)< = \ e ) dw = 2 [ (@) dw < +o.

2T 27 ) _ oo

Proposition 1. A function f is bounded and p times continuously differentiable

with bounded derivatives if

\8 F(w)|(1 + [w]?) dw < +o0.

o0

The global regularity of a signal f depends on the decay of | f (w)| when the

frequency w increases.

A 2sinw
Example 2. Since f(w) = —— is not in L'(R), its inverse Fourier transform,
w

Jf = 11,15, is discontinuous.
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WINDOWED FOURIER TRANSFORM

A real symmetric window g(¢) = g(—t) translated by u and modulated by the
frequency ¢&:

Gue(t) = gt —u).
Normalized: ||g||2 = 1 so that ||gy¢]|2 = 1 for any (u, &) € R?.
Windowed Fourier transform of f € L%R):

S(u, &) = (f, Guge) = \8 ft)g(t —u)e % dt.
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UNCERTAINTY PRINCIPLE

The state of a one-dimensional particle is described by a wave function f € L?(R).

The average location and average momentum of this particle:

H w H w
o= [ OP €= o [ el

The variances around u and &:

o 1 _u 2
0y = __.\u__w\ @ v _NA v_ &ﬁ

1
2| £1*

JACEG R

Theorem 1 (Heisenberg Uncertainty). The temporal variance and the

frequency variance of f € L*(R) satisfy
qw >

For Heisenberg rectangle for windowed Fourier transform, see Figure 1.1.
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CONTINUOUS WAVELET TRANSFORM

Wavelet function 1) € L?(R) with zero average and norm 1:

\ b)dt=0, [yl =1.

Scaling by s and translating by u:

Yu,s(t) = /ﬂ A

t—u

)o el = e (s,
Wavelet transform of f € L*(R):

W S,9) = (fbus) = [ 10
As a convolution:

Wfu,s) = f * (u),

For wavelet Heisenberg rectangle, see Figure 1.2.
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MEXICAN HAT WAVELET

Normalized Mexican hat wavelet, equal to the second derivative of a Gaussian:

2 —t2
% AM — Hv exp A%v : ||l = 1.

For o = 1, Figure 4.6 plots —% and its Fourier transform

|/\WQ.@\M§.H\\F ) |Q.w€w
= /\w W exp A%v .

Figure 4.7 shows the wavelet transform of a signal that is piecewise regular on the

()

left and almost everywhere singular on the right.
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INVERSE CONTINUOUS WAVELET TRANSFORM

Theorem 2 (Calderén, Grossmann, Morlet). Let ¢ € L?(R) be a real

function such that

Cy = \WE% < 400, Aza@ 3(0) = \HE@ do = o.v

W

Then, any f € L*(R) satisfies

[ e

oo L0
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LipsCHITZ (OR HOLDER) REGULARITY

Definition 1.

e A function f is pointwise Lipschitz o > 0 at v it there exists K > 0 and a
polynomial p, of degree m = |a] such that

ViER,  [f(t) — polt)] < K|t — o]
e f is uniformly Lipschitz a > 0 over [a, b] if it satisfies the above inequality for
all v € [a,b] with a constant K independent of v.

e The Lipschitz regularity of f at v or over [a, b] is the sup of the « such that f
is Lipschitz a.

Theorem 4. A function f is bounded and uniformly Lipschitz « if

[Nt el < voo. (Noter @)= [ i) )
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WAVELET VANISHING MOMENTS

To measure the local regularity of a signal, it is not so important to use a wavelet
with narrow frequency support, but vanishing moments are crucial.

Definition 2. The function ¢ has n vanishing moments if

\ thp(t)dt =0 for 0<k<n.

It has fast decay if, for any m € R, there exist (), such that

C
vVt € R, ] < —2 .
Ol < T
Theorem 5. A wavelet ¢ with a fast decay has n vanishing moments if and only
if there exists 8 with a fast decay such that

d"0(t)
t)=(—1)"————=.

Thus

J)(u), where 6,(t) = s720(—t/s).
t)dt # 0.

Moreover, ¢ has no more than n vanishing moments if and only if [ > 6(

— 00
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REGULARITY MEASUREMENTS WITH WAVELETS

e The decay of the wavelet transform amplitude across scales is related to the

uniform and pointwise Lipschitz regularity of the signal.

e Measuring this asymptotic decay is equivalent to zooming into signal
structures with a scale that goes to zero.

e We suppose that the wavelet ¢ has n vanishing moments and is C" with

derivatives that have fast decay:

Cm 0<k<n.

vVt € R, ®) ) < —2—,
OIS T 0<hs

Theorem 6. If f € L*(R) is uniformly Lipschitz o < n over [a, b], then there
exists A > 0 such that

V(u,s) € [a,b] x RY, |Wf(u,s)| < As*F1/2 (1)

Conversely, suppose that f is bounded and that W f(u, s) satisfies the above
inequality for an a < n that is not an integer. Then f is uniformly Lipschitz o on

la + €, — €] for any e.

January 16, 2004 15



R. Vaillancourt

POINTWISE LIPSCHITZ REGULARITY

A difficult subject that has been made simpler by Jaffard. Remember that the
wavelet ¢ has n vanishing moments and n derivatives having a fast decay.
Theorem 7 (Jaffard). If f € L?(R) is Lipschitz a < n at v, then there exists
A > 0 such that

S

V(u,s) € R xRY, |Wf(u,s)| < As*T1/? AH.T il v

Conversely, if @ < n is not an integer and there exist A and o’ < « such that

O\

V(u,s) e R xR, |Wf(u,s)| < AsetH2 1+ e
s

then f is Lipschitz «a at v.
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CONE OF INFLUENCE

To interpret the necessary and sufficient conditions (2)—(3) in Jaffard’s

Theorem 7, we suppose that ¢ has compact support equal to [—C, C].

The cone of influence of v in the scale-space plane is the set of points (u, s) in

@Fm@v — mIH\w\% Aﬂ — Qv .

the support of

S

Thus the cone of influence of v, shown in Figure 6.2, is
lu —v| < Cs.

Conditions (2)—(3) can be written as (1) of Theorem 6:

W f(u,s)| < A'seF1/2,

In Figure 4.7, the high amplitude wavelet coefficients are in the cone of

influence of each singularity:.
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OSCILLATING SINGULARITIES

Surprisingly, conditions (2)—(3) in Jaffard’s Theorem 7 imposes a condition on

the wavelet transform outside the cone of influence of v.

To control the oscillations of f that might generate singularities at v it is

necesary to impose the decay condition

W f(u,s)| < Also=@ T2y — ]2

for u outside the cone of influence, that is, for
lu —v| > Cs.

For the highly oscillatory function

1

f(t) = sin 7

high amplitude coefficients are along a parabola below the cone of influence of
t=0.

See Figure 6.3.
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WAVELET TRANSFORM MODULUS MAXIMA

e Theorems 6 and 7 prove that the local Lipschitz regularity of f at v depends
on the decay at fine scales of |W f(u, s)| in the neighborhood of v.

e Measuring this decay in the scale-space plane (u, s) is not necessary.

e The decay of |W f(u, s)| can indeed be controlled from its local maxima values.

Definition 3. The term modulus mazima describes any point (ug, sg) such that

(W f(u, so)| (# const) is locally maximum at u = ug. A mazima line is any
connected curve s(u) in the time-scale plane (u, s) along which all points are

modulus maxima.

See Figure 6.5.
Definition 3 implies that
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DETECTION OF SINGULARITIES

Singularities are detected by finding the abscissa where the wavelet modulus
maxima converge at fine scales. To better understand the properties of these
maxima the wavelet transform is written as a multiscale differential operator from

Theorem 5:
d" _

Wf(u,s)=s" e (f *0,)(u), where 0,(t)=s"1%0(—t/s).

e If the wavelet has only one vanishing moment, wavelet modulus maxima are

the maxima of f’ smoothed by 6; (see Fig. 6.4.) thus locating discontinuities

and edges in images.

e If the wavelet has two vanishing moment, the modulus maxima correspond to

high curvature (see Fig. 6.4).
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SOME CASES IN THE DETECTION OF SINGULARITIES

A list of possibile cases:
Oscillating singularities, previously mentioned
No modulus maxima at fine scale = f regular
Maxima propagation traced with a Gaussian wavelet
Isolated singularities
Smoothed singularities
Noisy signal in leak detection

Multiscale edge detection (not covered in this talk)

Multifractals (not covered in this talk)
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NO MODULUS MAXIMA AT FINE SCALE = f REGULAR

Under the hypotheses of Theorem 5 the following theorem proves that if W f(u, s)
has no modulus maxima at fine scale, then f is locally regular.

Theorem 8 (Hwang, Mallat). Suppose that ¢ is C™ with a compact support
and ¢ = (—1)"0™ with [*_6(t)dt # 0. Let f € L'[a,b]. If there exists sy > 0

such that |W f(u, s)| has no local maximum for u € [a,b] and s < sg, then f is

uniformly Lipschitz n on [a — €,b — €] for any € > 0.
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MAXIMA PROPAGATION

For arbitray ¢ = (—1)"6(), there is no guarantee that a modulus maximum

located at (ug, Sg) belongs to a maxima line that propagates towards finer scales.

But this is never the case if € is a Gaussian.

Theorem 9 (Hummel, Poggio, Yuille). Let 1) = (—1)"0™ where 6§ is a
Gaussian. For any f € L*(R), the modulus maxima of W f(u, s) belong to
connected curves that are never interrupted when the scale decreases.

Idea of proof. The wavelet transform W f(u, s) is written as the solution of the
heat diffusion equation, where s is proportional to the diffusion time. The
maximum principle applied to the heat diffusion equation proves that maxima may

not disappear when s decreases.

e Derivatives of Gaussians are most often used to guarantee that all maxima

lines propagate up to the finest scales.

e Chaining together maxima into maxima lines is also a procedure for removing
spurious modulus maxima created by numerical errors in regions where the

wavelet transform is close to zero.
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ISOLATED SINGULARITIES

e A sequence of local maxima may converge to an abscissa v of f even though f

is regular at v. See Figure 6.5: maxima line converging to v = 0.23.

The Lipschitz regularity is calculated from the decay of the modulus maxima

amplitude.

By Theorem 6, f is uniformly Lipschitz « in a neighborhood of v if and only

if, in the cone |u —v| < Cs,

W f(u,s)| < Asot!/?

which is equivalent to

1
g W f(1,5)| < logy 4-+ (a4 3 ) oy

The Lipschits regularity at v is thus the maximum slope of log, |W f(u, s)| as a
function of log, s.
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SMOOTHED SINGULARITIES

In the neighborhoot of a sharp transition at v, we suppose that

o\ 2m

1 —t°
F(0) = fox ,1), e ().

where ¢, is a Gaussian of variance o2.

Theorem 10 Let ¢ = (—1)"0™ with 0(t) = X exp(—t2/(28?)). If f = f, * g, and
fo is uniformly Lipschitz o on [v — h, v 4+ h] then there exists A such that

Qw |§|g<w
QM%V :

V(u,s) € [v—h,v+h] xR, |Wf(u,s)| < As*T1/? Aw -

o At large scales s > o/f, the Gaussian averaging is not felt by the wavelet

transform which decays like s®+1/2,

e For s < o/f, the variation of f at v is not sharp because of the Gaussian

averaging. At fine scales, the wavelet transform decays like s"t1/2 because f is
C*. See Fig. 6.6.
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LEAK DETECTION IN LABORATORY SINGLE PIPE SYSTEM

An upstream air vessel in which the pressure can be held nearly constant.

Polyethylene pipe, 350.5 m in length of nominal diameter DN110 and wall
thickness 8.1 mm, in concentric circles of minimum radius equal to 1.5 m,

almost horizontal except for the last short part.

The hand operated ball valve at the end section discharges into a free surface
thank.

To simulate the leak, a device with an orifice at its wall has been used at

distance [, = 128.3 m from the end section of the pipe.

Test no. 1: intact pipe with leak area 0 cm?.

Test no. 2: pipe with leak area 0.77 cm?.

Test no. 3: pipe with leak area 1.99 cm?.
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