
Scheduling Algorithmic Research

Rami Abielmona
#1029817

94.571 (ELG 6171)
Wednesday April 5, 2000

Prof. T. W. Pearce

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

TABLE OF CONTENTS

List of Figures

List of Tables

List Of Acronyms

Executive Summary...…………... 1

1.0 Introduction...…...….. 2

2.0 Project Scope…………………………......….........................……………… 7

3.0 Scheduling Algorithmic Analysis Overview..…. 9

3.1 Process State Transitions……..….. 9
3.2 Priority Systems……...........…..… 10
3.3 Scheduling Algorithm Contestants... 12

 3.3.1 First-Come First-Served (FCFS)……….………………………… 12
 3.3.2 Round-Robin (RR)…………….……….………………………… 13
 3.3.3 Shortest Time to Completion First (STCF).……………………… 14
 3.3.4 Multi-Level Feedback Queue (MLFQ)...………………………… 15
 3.3.5 Highest Response Ratio Next (HRRN)...………………………… 16

3.4 Evaluation Characteristics……….. 16

4.0 Implementation Analysis and Overview.....................................…….………. 18

4.1 Implementation Assumptions...…………. 18
4.2 Queue Implementation Discussion...……...…. 19
4.3 Time Simulation/Interruption..……….. 21
4.4 Process Simulation…..…… 21
4.5 Scheduler Implementation..…… 22
4.6 FCFS-specific Implementation Discussion...…… 23
4.7 RR-specific Implementation Discussion…...…… 23
4.8 STCF-specific Implementation Discussion...…… 24
4.9 Implementation Issues……………………...…… 24

5.0 Simulation Results………………………...…………. 26

5.1 Results and Observations.. 26

6.0 Other Scheduling Algorithms…..…. 29

6.1 Multi-Level Feedback Queues (MLFQ)…...…… 29
6.2 Lottery Scheduling…………………………..…… 29

7.0 Open Research Topics..…................ 30

8.0 Bibliography............…..….................. 31

April 5, 2000 2/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

List of Figures

Figure 1.1 Embedded OS Architecture...…....…... 5
Figure 3.1 Process State Transition Representations............................….….... 10
Figure 3.2 Diagram Representing FCFS Scheduling..............................….…. 12
Figure 3.3 Diagram Representing RR Scheduling....................................….… 13
Figure 3.4 Diagram Representing STCF Scheduling..............................…...… 14
Figure 3.5 Diagram Representing MLFQ Scheduling...............................…… 15
Figure 4.1 CPU-bound vs. I/O-bound processes......................................……. 19

April 5, 2000 3/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

List of Tables

Table 1.1 Types of scheduling….. 3
Table 3.1 Brief description of FCFS variants... 12
Table 3.2 Evaluation characteristic descriptions... 16
Table 5.1 Tabulated characteristics for "cpumin.dat" input............................ 26
Table 5.2 Tabulated characteristics for "cpumed.dat" input............................ 26
Table 5.3 Tabulated characteristics for "cpumax.dat" input............................ 27
Table 5.4 Tabulated characteristics for "cpumaxed.dat" input........................ 27
Table 5.5 Tabulated characteristics averages for all input set tests................. 27
Table 5.6 Winner's circle…………………………………………................. 28

April 5, 2000 4/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

List of Acronyms

CPU Control Processing Unit
FB Foreground-Background
FCFS First-Come First-Served
FIFO First-In First-Out
HRRN Highest Response Ratio Next
I/O Input/Output
ISR Interrupt Service Routine
LTS Long-Term Scheduler
MLFQ Multi-Level Feedback Queues
MTS Medium-Term Scheduler
NPNP Non-Priority Non-Preemptive
PCB Process Control Block
PNP Priority Non-Preemptive
PP Priority Preemptive
OS Operating System
RR Round-Robin
SPN Shortest Process Next
SRT Shortest Remaining Time
STCF Shortest Time to Completion First
STS Short-Term Scheduler

April 5, 2000 5/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

Executive Summary

This paper provides an analytical overview of a myriad of scheduling algorithms. Three

of these algorithms were designed and implemented in an object-oriented language (C++)

and they are the First-Come First-Served (FCFS), the Round-Robin (RR), and the

Shortest Time to Completion First (STCF) scheduling policies. According to various

testing criteria, the most efficient algorithms turned out to be the FCFS and the RR

algorithms, although the latter has to be utilized with quite a small time slice. The

longest and most time-consuming implementation was that of the FCFS algorithm,

because all the data structures and associated functionality had to be set up from scratch.

The scheduler and time tick simulators also had to be correctly designed. This allowed

for a rather easy and straightforward design of the remaining two algorithms. Research

was also done on a couple of other scheduling algorithms, but their implementations

never materialized because of their complexity. This analysis is directly related to CPU

scheduling, embedded system operating system design and priority systems.

Index Terms -- scheduling algorithms, embedded systems, dynamic priority systems,
preemptive scheduling, short-term scheduler, process queues.

April 5, 2000 6/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

1.0. Introduction

 In a multiprogramming system, multiple processes are stored and maintained in

main memory. Each process is defined by the portion of memory that contains the

program that is being executed by the process (along with its associated data), and by the

contents of the Central Processing Unit (CPU) registers used by the process. Each

process also alternates between processor usage and input/output (I/O) event

occurrences. The latter could be a wait for an I/O to be performed or for some other

external event to occur. The processor will be executing one process at a time, but will

switch to another process, if the latter is waiting for an event. The processor will thus be

kept busy by executing a specific process, while all other system processes are waiting

(either for the processor or for an event). The previous discussion briefly introduces the

key to multiprogramming: scheduling. The scheduling problem and this project’s scope

can be efficiently summarized by the following question:
“One CPU with a number of processes. Only one process can use the CPU at a
time, and each process is specialized in one, and only one task. What’s the best
way to organized the processes (schedule them)?” [1]

 The scheduling problem is a major task that is usually handled by the operating

system. There are four types of scheduling involved (refer to Table 1.1) in a multitasking

system, with each solving the scheduling problem for each area of operating system

functionality. The long-term scheduler (LTS) sets global limits on the system. If the

latter is timeshared, then the LTS sets a limit on the number of users on the system at any

time. If the system is a batch one, then the LTS sets a limit on the number of

(I/O)/(CPU)-bound processes on the system at any time. The medium-term scheduler

(MTS) is used to swap out processes, when the LTS admits more users/processes than the

system is built to handle. The short-term scheduler (STS) is used to decide which

available process will be executed next by the processor. As we can see, the STS is the

scheduler (disk (I/O) scheduling is beyond the scope of this project) that is of most

concern in this research area [1,2].

 From this point on, the reference to a “scheduler” will imply that it is a STS. If

not, then the type of scheduler will be specifically named. The scheduler is the module of

the operating system that decides the priorities of processes and their time on the

April 5, 2000 7/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

processor. The dispatcher, on the other hand, is the module that defines the execution

mechanism. A scheduler works in co-operation with the interrupt system to perform its

task:

• The scheduler assigns the CPU to perform computation on behalf of a particular
process

• The CPU can be "borrowed" from its current process by an interrupt. This is under

the control of the external devices, not the scheduler - although interrupts can be
disabled for a short time if need be

• When a process requests an I/O transfer, it normally becomes ineligible to use the

CPU until the transfer is complete

Long-term scheduling The decision to admit new processes to the
system
Required because each process needs a portion
of the available memory for its code and data
Executed infrequently, only when a new job
arrives

Medium-term scheduling The decision to control the number of processes
that are in main memory
Required to control the temporary removal of a
process from memory
Executed more frequently than the long-term
scheduler

Short-term scheduling The decision of ready process assignment to the
CPU
Required because of I/O requests
Executed every time an IO request is made, or
an IO request completion is detected, thus has to
be very simple, and with a minimum overhead

I/O scheduling The decision to handle a process’ I/O request
by the I/O device
Required because of I/O requests
Executed on I/O device availability

Table 1.1. Types of scheduling

The scheduler is an integral component of any system. The systems being

discussed fall into various categories. The eldest system is the foreground-background

(FB) system, where a single task runs continuously in the background, while real-time

events cause interrupts which are serviced in the foreground, and then control is given

back to the background. This type of system is known as an interrupt-based or event-

April 5, 2000 8/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

driven system. Uniprocessing systems, on the other hand, consist of a single process

(usually a simple loop that periodically performs a set of functions), which polls its inputs

to see if there are any events waiting to be serviced. Multitasking systems are single

computers that switch their attention between several sequential tasks. Finally, a

timesharing system is one that is designed to support multiple, interactive users or

terminals. The schedulers discussed in this project are designed for either multitasking or

timesharing systems [3].

 Each of the previously mentioned systems benefits from the presence of an

operating system, in terms of reduced costs and increase reliability. An operating system

has three distinct functions:

1. Convenience: Allows for a more convenient system
2. Efficiency: Allows for efficient allocation of system resources
3. Evolution: Allows for easy integration of new functionality

A real-time operating system, on the other hand, has the same basic functions as a
mainframe operating system, but with additional requirements:

• Determinism: The characteristic of performing operations at a predetermined

time or within a predetermined time interval

• Responsiveness: The characteristic of the delay between submission of process

requests and first response to the request

• User Control: The characteristic of allowing the user more control than in typical

non-real-time operation systems, such as priority classes and
paging or process swapping

• Reliability: The characteristic at with which the system responds to a fault,

considering that real events are being controlled [2]

The aforementioned functions and requirements all apply to embedded real-time

operating systems. An embedded operating system is smaller and simpler than typical

mainframe operating systems. The major building blocks of an embedded OS are the

kernel, the executive, the real world interface and the application programs (refer to

figure 1.1). The kernel provides the most important facilities and most frequently used

operations in the operating system. The executive provides the system resources to the

processes that require them. It controls all scheduling, mutual exclusion and

April 5, 2000 9/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

synchronization activities. The application programs are the tasks written by the

programmer. And, finally, the real world interfacing is mainly the software which

handles the hardware of the system [1].

Figure 1.1. Embedded operating system architecture

 Certain assumptions have been undertaken throughout the project. These will be

expanded as the body of the report and simulation results are presented.

• A pool of runnable processes are contending for one CPU;

• The processes are independent and compete for resources;

• The job of the scheduler is to distribute the scarce resource of the CPU to the different

processes “fairly” and in an optimal way;

• The OS is a multitasking, but not a multiprocessor, one;

• Only CPU scheduling is considered (the lowest level of scheduling);

• There are three scheduling states for each process (ready, running and blocked);

• There are two types of resources (preemptible and non-preemptible); and two types of

processes (I/O-bound and CPU-bound).

April 5, 2000 10/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 A brief discussion about nomenclature is in order at this point of the introduction.

The following terms have been used to represent a semi-independent program sub-

division in execution: task, process and thread. A task is very similar to a process, in that

it is a collection of one or more threads, and their associated system resources. A thread,

on the other hand, is a dispatchable unit of work. The term process will be utilized in the

remainder of the report to represent a program in execution, and encompasses a task, a

thread, or even a “job”. Also, it is quite worthwhile mentioning that the processes do

exhibit true concurrent behaviour, since, after all, only one processor is present on the

system, thus only one process can run at any one time. The processes do provide

transparent concurrency, and thus are called “quasi-concurrent”.

April 5, 2000 11/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

2.0. Project Scope

 Scheduling topic discussions and related project area research are very integral

design topics, when talking about real-time applications. The CPU scheduling algorithm

that is used in the real-time system weighs heavily on the maximization of utilization and

throughput, and on the minimization of waiting and turnaround times. The algorithms

that are currently being used have been present for quite a long period of time. New

algorithms have been recently developed and implemented. For that matter, it is quite an

interesting research topic to analyze the progress that these algorithms have permitted the

real-time computing world to enjoy.

 This research project’s goals are to analyze independent CPU scheduling

algorithms, to compare them, to extrapolate the results to include hybrid models, as well

as innovative CPU scheduling design techniques, and to conclude by attempting to

expose the algorithms better-suited for certain applications. At the project proposal level

of this research, it was stated that a major achievement would be the definition of a CPU

scheduling algorithm after analysis of the already existing ones. This sub-goal has not

materialized mainly due to time constraints and erroneous mathematical analysis. The

algorithm that this designer had in mind did not tailor for a real-time application. It also

could not be mathematically proven, and thus it is with great disappointment that it was

decided to be left as an open research area.

 The analysis of the various scheduling algorithms will be undertaken by

implementation, simulation, characterization or simple algorithmic analysis techniques.

Three crucial factors must be considered in the analysis of any scheduling policy:

fairness, class distinction and efficiency. Fairness is present to allow all processes

competing for the CPU to have an equal and fair chance of gaining the resource. Class

distinction is present to allow the operating system to differentiate between the different

classes of jobs vying for the CPU. Efficiency is present in order to maximize throughput

and minimize response time, while staying within the fairness and class distinction

boundaries. Along with these three factors, a scheduling policy can be analyzed by

observing certain characteristics, which will be mentioned in the body of the report.

April 5, 2000 12/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 This project will be a means to a better understanding of the processor scheduling

algorithms, as well as exposing all their fundamental concepts and theories. It will

provide the designer/author with quite an extensive research area, in that the algorithms

will have to be selectively chosen, because of time, effort and software constraints. The

remainder of this paper is organized as follows. Section 3.0 introduces the scheduling

algorithmic analysis by providing the reader with a brief background on related topics.

Section 4.0 presents the implementation details associated with the design of the

scheduling schemes. Section 5.0 presents the simulation results and observations.

Section 6.0 provides a brief overview of two scheduling algorithms not implemented in

this project. Section 7.0 discusses possible extensions and future research areas left open.

April 5, 2000 13/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

3.0. Scheduling Algorithmic Analysis Overview

 The scheduling algorithms being discussed in this project were selected because

of their affinity to short-term scheduling, as well as their application to real-time systems.

Even though some are applicable for long-term scheduling, and some are not truly

tailored for real-time systems, none the matter, they will be discussed because they help

to provide us with a fair “playground”. The policies being mentioned are: { First-Come

First-Served (FCFS), Round-Robin (RR), Shortest Time to Completion First

(STCF), Multi-Level Feedback Queue (MLFQ), and Highest Response Ratio Next

(HRRN) }. The first three algorithms were chosen to be implemented, while the last

three were picked to be theoretically analyzed. Along with these algorithms, a recent,

innovative and specialized algorithm will be discussed later on in the report. The

algorithm is called “lottery scheduling”. The following sections will present in-depth

looks at each of the “competing” policies, but first brief miscellaneous topic introductions

are presented in order to prepare the reader for the actual descriptions of the algorithms.

3.1. Process State Transitions

 The state of a process at any given time is comprised of the following minimal

set: [Ready, Running, Blocked] (refer to figure 3.1).

• Ready: The process could be running, but another process has the CPU;
• Running: The CPU is currently executing the code belonging to this process;
• Blocked: Before the process can run, some external event must occur.

The external event could be a time-out (discussion of time slicing is saved for later on in

the report), an interrupt or the I/O completion signal. As a process runs (eventually to

completion), it goes through a series of state transitions, as shown in the figure 3.1. One

other transition that was purposefully omitted is the “preemption” transition, which

would be a line going from the ‘Running’ state to the ‘Ready’ state. This transition

represents the occurrence of one of two events: either the currently running process used

up its time-slice, or a higher priority process needs the CPU. Preemption allows for

variations on the scheduling policies being discussed. Preemptive schemes suggest that a

April 5, 2000 14/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

running process may be forced to yield the CPU by an external event (higher priority

process arrival, I/O interrupt occurrence placing a blocked process in the Ready state, or a

periodic clock interrupt). Non-preemptive schemes, on the other hand, suggest that once

a process starts executing, allow it to continue until it voluntarily yields the CPU

(termination, I/O request or OS service call).

Figure 3.1. Process State Transition Representation

3.2. Priority Systems

 The introduction of priority into scheduling schemes is of extreme importance. It

provides a basic mechanism for dividing the system processes into high- and low-priority

ones, and thus performs a rudimentary form of class distinction. In priority systems, each

process is assigned a priority and the scheduler will always select the highest priority

ready process. Priority queues replace the ready queue, and processes are dispatched,

starting with the head of the highest priority queue. A problem with such a scenario is

low-priority process starvation, in that if there is a steady stream of high-priority ready

processes, the low-priority processes may not get any time on the processor. This

situation is resolved by dynamically changing the priority of a process according to its

age or execution history. Speaking of dynamics, there are three possible ways of

assigning priorities to processes [1,2]:

April 5, 2000 15/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

1. Statically or externally: Priority is assigned by some external system

manager before process is scheduled
2. Dynamically or internally: Priority is assigned according to an algorithm
3. Hybrid: Priority is assigned by some combination of

external and internal schemes

Along with priority comes a closely related topic called timer interruption. As soon as

a process gets a hold of the CPU, a time interval begins to tick down. Once the interval

expires, the process is forced to yield the CPU (if it has not already done so), before its

CPU burst is complete. Unlike priority preemption, timer interruption is process-

dependent and system-independent, and is used to guard against processes stuck in

infinite loops, which will hang the system. For that matter, timer interruption is seen on

almost all real-time operating systems, while priority preemption (which is a feature after

all) is not.

 Either case of preemption (timer or priority) does not come for free. With each

scheduling decision, a new process may be installed on the processor. The installation

process is called a context switch, referring to the switching of the processor context. As

a running process is made ready, its CPU registers are all saved, while as a ready process

is made running, its CPU registers are all loaded. The overhead of continuously changing

from one process to another could hinder the overall performance of the system, and thus

must be kept at a minimum. It is worth mentioning, that even an I/O request will force

the running process to yield the CPU, but this is a required event, while priority

preemption, for example, is an additional feature.

If you are wondering where the CPU register values could be stored, well, the

answer is in the Process Control Block (PCB). Each process has a PCB associated with

it. The PCB is by far, the most important data structure in an operating system. It

contains all of the information about a process that is needed by the OS. Examples of

what is contained in a PCB are: process identification, process priority, process local

stack, process control information and process register values [2].

April 5, 2000 16/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

3.3. Scheduling Algorithm Contestants

 There are a number of variations of the scheduling algorithms mentioned in

section 3.0. They cannot all be discussed but the most intriguing ones will be mentioned

in this section. These algorithms represent the set on which analysis will be performed.

3.3.1. First-Come First-Served (FCFS)

 This algorithm is the simplest, and yet quite effective, policy. Otherwise known

as “First-In First-Out (FIFO) scheduling” or “cyclic scheduling”, this approach consists

of one ready queue -- queues will be discussed later; their introduction here is meant to

allow the reader to make their own deductions about their implementation before

presenting the author’s views and techniques -- where new processes enter at its end.

The head process is given the CPU until it completes its work, or it performs an I/O

transfer. The resource (CPU) is then passed onto the next waiting process in the queue

(refer to figure 3.2). Many variations of this scheme exist, including non-priority non-

preemptive FCFS (NPNP-FCFS), priority non-preemptive FCFS (PNP-FCFS), and

priority preemptive FCFS (PP-FCFS). Refer to table 3.1 for a brief description of each.

NPNP-FCFS Simplest implementation of scheduling algorithms

Mostly used in timeshared systems

PNP-FCFS Next highest priority process is picked when CPU is yielded

Once a process grabs the CPU, it keeps it until completion

Rarely used in real-time systems

PP-FCFS Next highest priority process is picked when CPU is yielded

Currently running process could be forced to yield CPU

Most popular FCFS algorithm implementation

Table 3.1. Brief description of FCFS variants

 Figure 3.2. Diagram representing FCFS scheduling

April 5, 2000 17/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 FCFS scheduling presents a few problems, in that a process with a heavy

computational load can monopolize the CPU, the system halts when a process gets stuck,

and a new process always goes to the end of the ready queue, therefore, could end up

waiting a long time before getting a crack at the CPU. All these issues are solved by the

introduction of timer interruption. By limiting the time a process can run without a

context switch, we effectively solve the major FCFS generated issues. This type of

scheduling is called “Round-robin” scheduling [4].

3.3.2. Round-Robin (RR)

 This algorithm is mostly used on timeshared systems, where the majority of

users/processes have the same priority.

Figure 3.3. Diagram representing RR scheduling

Each process gets an equal share of the CPU time by running for one time slice, and then

moving to the end of the ready queue, in a FIFO manner. The scheme allows multiple

processes to execute on a “round-robin” basis (refer to figure 3.3). This scheme is

basically an FCFS scheduler but with timer interruption priority. Its advantages lie in

improved response time and a better use of shared resources. It does, on the other hand,

leave some issues unresolved. Processes vary in importance, and thus a higher-priority

April 5, 2000 18/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

process needs more CPU time than a lower-priority process. Processes also do no always

run at regular intervals (periodic vs. aperiodic, discussion to follow later), and may only

run when certain real-time events occur. For this matter, RR scheduling is not popular

with dynamic priority systems [4].

3.3.3. Shortest Time to Completion First (STCF)

 This algorithm is used on timeshared systems to minimize response time. It has

two variants: one with preemption and one without preemption. The “without

preemption” variant is usually called the Shortest Process Next (SPN) policy, in which

the process with the shortest expected processing time is selected next. The “with

preemption” variant is usually called the Shortest Remaining Time (SRT) policy, in

which the scheduler always chooses the process that has the shortest expected remaining

processing time. In both variants, priorities are assigned in inverse order of time needed

for completion of the entire process (refer to figure 3.4). They both also must predict the

future, in that exponential averaging is used to estimate the processing time of each task.

A process exceeding the resource estimation is aborted, while a process exceeding the

time estimation is preempted (in SRT).

Figure 3.4. Diagram representing STCF scheduling

STCF is not biased in favor of long computational processes, as in FCFS scheduling, and

does not require timer interruption, as in RR scheduling. It does on the other hand, need

to store the actual value for elapsed service times in the PCB, thus greatly contributing to

the malignant overhead. The SRT policy outputs better results than the SPN policy,

because the former allows a short process to preempt a running long process [2,4].

April 5, 2000 19/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

3.3.4. Multi-Level Feedback Queue (MLFQ)

 This algorithm is very popular in interactive systems. It resolves both efficiency

and response time problems. It is also known as an “adaptive” algorithm, in that

processes are always adapting to their previous execution history. This policy is mainly

used if the remaining time of a process cannot be calculated for some reason, and thus

turning its attention to the time spent executing. Its basic operation follows:

• A single queue is maintained for each priority level

• A new process is added at the end of the highest priority level

• It is allotted a single time quantum when it reaches the front

• If the process uses up the time slice without blocking, then decrease its priority by

one, and double its time slice for its next CPU burst

• If the process does not use up the time slice, then increase its priority by one, and half

its time slice for its next CPU burst (refer to figure 3.5)

Figure 3.5. Diagram representing MLFQ scheduling

April 5, 2000 20/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

This policy may induce starvation of long processes. A solution to that problem is to

move the process to a higher-priority queue after it spends a certain amount of time

waiting for service in its current queue [1,4]. The UNIX scheduler is a derivation of the

MLFQ scheduling algorithm. Basically, processes that have not recently used the CPU

are given high-priorities, while processes that have are assigned lower-priorities. UNIX

also allows its users to provide a “nice” value for each process in order to modify its

priority.

3.3.5. Highest Response Ratio Next (HRRN)

 This algorithm implements the “aging priority” scheme, in that as a process waits,

its priority is boosted until it eventually gets to run. The priority is calculated as follows:

Priority = (w + s) / s

Where :
 w = time spent waiting for the processor
 s = expected service time [2]

This policy is quite beneficial in that long processes will age, and thus will eventually be

assigned a higher-priority than the shorter jobs (which already have a high-priority

because of the small denominator value).

3.4. Evaluation Characteristics

 The following table illustrates scheduling algorithm evaluation characteristics.

Characteristic Description
CPU utilization Keep it as high as possible
Throughput Number of processes completed per unit

time
Waiting time Amount of time spent ready to run but not

running
Response time Amount of time between submission of

request and first response to the request
Scheduler efficiency Minimize the overhead
Turnaround time Mean time from submission to completion

of process
Table 3.2. Evaluation characteristic descriptions

April 5, 2000 21/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

Each scheduling policy produces different results when speaking of the aforementioned

characteristics. These discussions will ultimately help us judge between the contestants

in order to attempt to notice any clear-cut patterns. As well as providing us with a

common testing base, table 3.2 provides us with some of the CPU scheduling goals.

Another unmentioned goal is to better resource utilization. By designing and/or

implementing an efficient (according to table 3.2) scheduling algorithm, the I/O

requesting processes will be better served, thus increasing the resource utilization

efficiency.

April 5, 2000 22/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

4.0. Implementation Analysis and Overview

 As previously mentioned, only the FCFS, RR and STCF algorithms were chosen

for implementation. These three policies span quite a variety of scheduling scheme

research. First, the FCFS algorithm provides the designer with the challenge of setting up

the data structures, as well as an object-oriented basis for the next two algorithms. The

RR policy adds a timing constraint to the whole equation, while the STCF scheme inserts

priority into the system. The only remaining major aspect not implemented would be any

estimates used, for example, by the SPN algorithm (see open research area section). This

section will discuss the implementation issues faced during this phase of the project.

4.1. Implementation Assumptions

 The following assumptions were undertaken during the implementation phase.

These assumptions not only simplified the design, but also hid the details that come with

a real-time operating system design. They allowed the designer to concentrate on the

major aspects of the scheduling algorithm, and left the extrapolations for future research

work. Firstly, it was assumed that there are only two types of processes (in terms of

resource usage): CPU-bound and I/O-bound processes. CPU-bound processes perform

lots of computation and request a small amount of I/O transfers, while I/O-bound

processes request a major amount of I/O transfers, while processing the I/O results in

short CPU bursts (refer to figure 4.1). Secondly, it was assumed that there are also only

two types of resources: preemptible and non-preemptible resources. Preemptible

resources are obtained by the process, which use the resource and return it back to the

resource pool (e.g. processor or I/O channel), while non-preemptible resources, once

obtained by the process, are not returned until the latter is done with its use (e.g. file

space). Thirdly, the processes that are simulated (more on this later) in the system are

aperiodic tasks, in that they have deadlines (constraints) by which the task must finish or

start, or they may have constraints on both start and finish time. Periodic tasks were

considered at the beginning of the project implementation, but after further review, the

design was switched to better simulate a real-time environment where tasks are mostly

April 5, 2000 23/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

aperiodic ones. Fourthly, the simulated processes were assigned priorities by the

designer (thus, simulating a system manager which statically assigns priorities to

processes on system entry). These priorities were effectively not used during the FCFS

and RR simulations, but were utilized in the STCF simulations. Basically, the priorities

were assigned with the inverse remaining time theory in mind. A hybrid of external and

internal priority allocation was used, in that after the system manager was done, the

internal dynamic priority-assignment algorithm took over. Fifthly, as the I/O “blocked”

queue is concerned, only one was simulated. The decision to not allot a queue for each

I/O device was made to simplify the design and worry more about scheduler/dispatcher

functionality rather than cumbersome I/O queues. The basic structure is one I/O queue

that stores PCB’s of processes blocked on I/O calls. The processes in the blocked queue

do not have to be accessing the same I/O device, although they may be, and any

synchronization issues are left at/for the I/O scheduling level. Lastly, the following

constraints were placed on the system:

• Only 10 processes can enter the system at the STS level;

• A process can block at most 10 times;

• A queue can hold at most 10 PCB’s;

• The highest priority level is 10;

• The maximum amount of time a process can be in the system for is 255 time ticks.

I/O I/O
CPU-bound

4.2. Queu

 Th

template c

April 5, 200
CPU

Figure

e Implementation

e queue structure wa

lass definition was us

0
CPU
4.1 CPU-bound vs. I/O b

 Discussion

s implemented as a li

ed, and instantiated f

CPU
I/O-bound

I/O
 CPU
 I/O
ound processes

nked list of node structures. A

our times, using PCB structures as

24/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

the queue element types. Four queues were utilized in the entire system to simulate the

actual real-time environment. A “poolQ” represented the queue holding the pool of

processes provided to the STS scope by the LTS. This queue, when called upon, fills up

the “readyQ” in the STS scope. The two other queues are the “blockedQ” and the

“runningQ”. The former is used to hold all PCB’s currently blocked on I/O requests,

while the latter holds the PCB of the currently running process. Each queue element

contained a pointer to a PCB and a pointer to the next node in the linked list.

/* Declaration of the template for the queue class */
template<class queue_element_type, int max_size=30>
class queue
 .
 .
 .
private:
 /* Data members */

 /* Declaration of the structure for each queue element (node) */
 struct q_node {
 queue_element_type *item; /* pointer to queue item */

 q_node *next; /* pointer to next item */
 };

q_node *front;
q_node *rear;
q_node *current;
int num_items;

It is quite interesting to note that because of the template declaration of the queue, it was

made easy to use this structure to hold any necessary linked list representation of a data

structure. The “front” and “rear” pointers are used to easily add new processes to the end

of the queue, and to easily dispatch a process from the front of the queue. The queue

class has the typical public methods associated with a linked list: queue::queue;

queue::~queue; queue::insert; queue::remove; queue::is_fifoQ_empty;

queue::is_fifoQ_full; queue::getnumcount. Two additional methods were implemented

and proved to be very useful during the implementation and debugging stages:

queue::retrieve and queue:print. The former basically retrieves the pointer to the PCB at

the head of the queue without removing it from the queue, and the latter prints out the

process identification field of all the PCBs present in the queue (refer to Appendix A for

April 5, 2000 25/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

the complete source code). The queue data structure design was quite successful from the

beginning, as a template declaration helped in numerous ways at the implementation

stage, fortunately, previously foreseen at the design stage.

4.3. Time Simulation/Interruption

 The time simulation and timer interruption mechanisms were implemented as a

signal sent from the appropriate scheduler (FCFS, RR, or STCF). On reception of that

signal, the “time_simulator()” function performed the following tasks:

• Updated in the PCB the remaining execution/blocking times of the running process;
• Updated in the PCB the blocking lengths of the blocked processes;
• Updated the process cycle graphs (more on this in the simulation section);
• Updated the priorities of the processes in the system (for STCF use only); and
• Updated the time slice global variable (for RR use only)

A time tick was picked to be about two seconds (the accuracy depends on the precision

used in the sleep() function defined in “dos.h”). Thus, as a result, a time tick occurred

every two seconds, and the time simulation mechanism was in place. As for the timer

interruption, well, the update of the “time_ticks” global variables made sure that at each

time tick, a timestamp is recorded (later to be used by the RR policy for time slicing).

The time simulator functionality was picked so as to be generic, that is, the time simulator

will service all implemented algorithms in the same way, as mentioned above. This

design decision guarantees that all algorithms are serviced in exactly the same manner,

just as in a real real-time operating system.

4.4. Process Simulation

 The processes entering the system were input from a file (“cpu.dat”). They are

read into the poolQ by the “fill_poolQ” function. Each declared process is assigned a

PCB and is initialized using the inputs from the file. The priority field, as previously

mentioned, is assigned according to the initial remaining processing time. The file

structure is best defined by the introduction of an example process:

April 5, 2000 26/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

p1 defines a process with process id of 1
a3 defines a priority of 3
t20 defines the initial remaining execution time of 20
b5 defines a block at time 5 away from start of execution
c8 defines a block length of 8 for the previous block time
b18 defines a block at time 18 away from start of execution
c6 defines a block length of 6 for the previous block time
e defines the end of the declaration of the process

The use of this format allows for ease of simulation of I/O-bound processes or CPU-

bound processes, as will be seen in the next section. Just as a reminder that the most

processes that could be defined, according to the project constraints, are ten.

4.5. Scheduler Implementation

 The scheduler was implemented as a decoder block. The following pseudo-code

briefly describes its functionality:

• If no process running
• Pick a ready process to run;

• Else
• If current running process is done

• Remove running process from system
• Pick a ready process to run

• Else if current running process requests I/O
• Suspend running process and pick a ready process to run

Also,
• If any blocked processes have completed their I/O

• Unblock them by making them ready (and maybe even running)

The scheduler makes all scheduling decisions by calling three system functions: run(),

suspend(), and resume(PCB*). The run() function basically performs a context switch,

by readying the running process and running a ready process (if either exists). The

suspend() function blocks the running process by placing it on the blocked queue.

Finally, the resume(PCB*) function resumes the operation of a blocked process by

placing it on the ready queue (or on the running queue if the latter is empty). Refer to

Appendix A – schedule, run, suspend and resume declarations).

April 5, 2000 27/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

4.6. FCFS-specific Implementation Discussion

 The FCFS algorithm follows the scheduler functionality (or maybe it’s the other

way around), because the FCFS policy was the first one implemented. Basically, the

poolQ is filled up with the system processes, and then readied (by calling “get_tasks”

with a source queue of poolQ and a destination queue of readyQ). Then, a while loop is

entered, which only exits upon the successful check that all three queues (running, ready

and blocked) are completely empty, thus guaranteeing that all processes ran to

completion and proceeded to exit the system. The body of this popular while loop is very

simple. The scheduler is called, and then control is given to the time simulator defined

above. The process is repeated until the task set has been completely executed. At the

end of the algorithm execution, the statistical results (evaluation characteristics) are

calculated and output both to the screen and out to a file in memory (“results.dat”). The

statistics include the following: total CPU time, total wait time, total ready time, total

time, throughput, average waiting time, average turnaround time and CPU utilization.

4.7. RR-specific Implementation Discussion

 The RR algorithm performs the same calls and has the same structure as the FCFS

algorithm. That is, the same while loop functionality was implemented for this policy.

The only difference is that the scheduler is now called with a ‘R’ flag, and is given a time

slice period. This specific policy follows the same algorithmic procedure as the FCFS

policy, but if it was found that the runningQ is not empty, and the current running

process is neither done or blocking, then the time slice of the current running process is

checked. If the process has exceeded its given time slice, and still is attempting to run,

while there are other ready to run processes, then it is preempted, and a new process is

installed onto the processor. To accomplish this successfully, it was needed to reset the

“time_ticks” global variable every time a new ready to run process was about to be

installed on the processor. Again, at the end of the execution of the last remaining

process, the statistical outputs are printed to the screen and to the same file.

April 5, 2000 28/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

4.8. STCF-specific Implementation Discussion

 The STCF algorithm has the same basic structure as do the previous two

implemented algorithms. The difference comes into the scheduler code itself. The

scheduler, once it detects that the STCF algorithm is being utilized, performs one extra

functionality, which effectively simulates the priority queue: it sorts the ready queue in

ascending priority (low numbers = high priorities) every time a scheduling decision is

about to be made. The only time that it does not perform the priority sorting is when the

RR scheduling decision is made, since the latter involves time slices, which are of no

concern here. There are two variants to the STCF algorithm: one without preemption,

and one with preemption. The former basically schedules a process, according to its

remaining time, every time tick, but does not worry about preempting a process, once it

has been handed the CPU, while the latter performs the same functionality as the former,

but does preempt a process, if it finds that there is a ready process with a higher priority

than the currently running one. Careful design had to be made in order to ensure that

preemption occurred when it should (refer to Appendix A for the scheduler declaration).

4.9. Implementation Issues

 The following sub-section describes various implementation issues encountered

during the project. The major obstacle that was overcome was in the declaration of the

PCB struct (refer to Appendix A, cpu.h). As we can see, the structure is filled with

various control fields used by the scheduler. One of those fields, the process_cycle field

was originally defined as a “char *process_cycle”. Every time, the update_graphs()

function would execute, the process_cycle field of every PCB on every queue received

the same value. The update_graphs() function fills up process_cycle with an execution

summary of the whole process, using a "-" to represent a time tick spent running, a "/" to

represent a time tick spent ready to run but not running, and a "|" to represent a time tick

spent blocked for I/O. The problem was debugged and was found to be a stray pointer

issue. The problem was temporarily fixed by including a physical array in every PCB

struct. It took 4 man-hours for this fix alone. Although the process cycle graphs are not a

April 5, 2000 29/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

necessity in this project, it was thought to be a great feature for the future ease of

readability of resulting outputs of simulations.

 Other implementation issues were resolved by normal bug fixes or logical thought

(and “re-thought”). The other major obstacles were mainly in the design phase, and not

in the implementation phase. The design phase consisted of correctly running each

scheduling algorithm, using the same base scheduler, and the exact same time simulator.

 It is quite interesting to note the following for future discussions. There are

certain times (e.g. system exceptions), when the scheduler needs to be completely by-

passed. The reason being that a delay is incurred between the time that the interrupt

mechanism readies a task for a process switch, and the actual time the scheduler performs

the switch. This delay cannot be tolerated in certain situations, and thus the scheduler is

directly by-passed, and execution control is passed to a special Interrupt Service

Routine (ISR) [1].

April 5, 2000 30/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

5.0. Simulation Results

 The simulation phase of the project was performed on four separate input files:

“cpumin.dat”, “cpumed.dat”, “cpumax.dat”, and “cpumaxed.dat” Their results are stored

in the corresponding files: “resultsmin.dat”, resultsmed.dat”, “resultsmax.dat” and

“resultsmaxed.dat”. The different input files represent different task sets. The first one

(cpumin.dat) consists of two CPU-only processes. The second one (cpumed.dat) consists

of four processes: one CPU-only (p3), one CPU-bound (p2), one I/O bound (p4) and one

in between (p1). The third input set (cpumax.dat) consists of five processes: two CPU-

only (p3 and p4), one CPU-bound (p2), and two I/O bound (p1 and p5). Notice also that

p4 is a long job while p3 is quite a short one. The last input set (cpumaxed.dat) consists

of seven processes: two CPU-only (p3 and p4), two I/O bound (p6 and p7), and three in

between (p1, p2 and p5).

5.1. Results and Observations

 Simulations were run for all four files and the outputs were recorded in the

aforementioned four resultant files. The results are tabulated below (refer to Appendix B

for a complete listing of each input and its corresponding output file):

cpumin.dat FCFS() RR(3) RR(6) STCF(NO) STCF(YES)

Throughput 0.2 0.2 0.2 0.2 0.2

Avg. Waiting Time 0 0 0 0 0

Avg. Turnaround Time 7 8.5 7 8 7.5

CPU Utilization 100 100 100 100 100

Table 5.1. Tabulated characteristics for "cpumin.dat" input

cpumed.dat FCFS() RR(3) RR(6) STCF(NO) STCF(YES)

Throughput 0.056 0.056 0.056 0.055 0.055

Avg. Waiting Time 9.75 9.75 9.75 9.75 9.75

Avg. Turnaround Time 41.25 43 42.25 37.5 37

CPU Utilization 83.33 83.33 83.33 82.19 82.19

Table 5.2. Tabulated characteristics for "cpumed.dat" input

April 5, 2000 31/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

cpumax.dat FCFS() RR(3) RR(6) STCF(NO) STCF(YES)

Throughput 0.060 0.067 0.065 0.065 0.067

Avg. Waiting Time 7.2 7.2 7.2 7.2 7.2

Avg. Turnaround Time 48.6 51 50.4 43 39.8

CPU Utilization 90.36 100 97.40 97.40 100

Table 5.3. Tabulated characteristics for "cpumax.dat" input

cpumaxed.dat FCFS() RR(3) RR(6) STCF(NO) STCF(YES)

Throughput 0.051 0.052 0.050 0.050 0.050

Avg. Waiting Time 8.14 8.14 8.14 8.14 8.14

Avg. Turnaround Time 82.29 94 92.14 69.71 65.86

CPU Utilization 97.83 100 97.12 97.12 96.43

Table 5.4. Tabulated characteristics for "cpumaxed.dat" input

Averages FCFS() RR(3) RR(6) STCF(NO) STCF(YES)

Throughput 0.092 0.094 0.093 0.093 0.093

Avg. Waiting Time 6.27 6.27 6.27 6.27 6.27

Avg. Turnaround Time 44.79 49.13 47.95 39.55 37.54

CPU Utilization 92.88 95.83 94.46 94.18 94.66

Table 5.5. Tabulated characteristics averages for all input set tests

We may conclude from the previous tabulations that the algorithm with the best

throughput is RR(3), the round-robin algorithm with a time slice of 3 time units. All the

algorithms had the exact same average waiting time. The contestant with the best

(minimum) average turnaround time is STCF(YES), the shortest time to completion first

with preemption algorithm. And finally, the policy with the maximum CPU utilization is

RR(3), the round-robin algorithm with a time slice of 3 time units. The following table

ranks each algorithm according to the evaluation characteristics, and assigns it a winning

value (5 for best down to 1 for worst). As we can see, there is a tie between the FCFS

and the RR(3) algorithm, so to the winners go the riches: their values are bolded!

April 5, 2000 32/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

Winner FCFS() RR(3) RR(6) STCF(NO) STCF(YES)

Throughput 4 5 3 3 3

Avg. Waiting Time 5 5 5 5 5

Avg. Turnaround Time 3 1 2 4 5

CPU Utilization 4 5 3 3 2

Totals 16 16 13 15 15

Table 5.6. Winner's circle

The previous winning declaration is only made to add a bit of spice to this report. It does

not, by any means, prove that the FCFS and RR(3) algorithms are better than the rest, but

it does provide some feedback as to which algorithm gives better results for certain

applications. For example, this designer would be inclined to use the round-robin

algorithm with a small time slice the next time a scheduling algorithm decision has to be

made, knowing that the number of tasks in the task set is quite short.

 It is also quite interesting to observe the task order by which the processes

completed for each algorithm. For example, let us take "cpumaxed.dat" as our input, and

check out its corresponding output "resultsmaxed.dat" (refer to Appendix B). During the

FCFS algorithm, the task order was 3-4-2-1-7-5-6, which is understandable because

processes 3 and 4 do not block, and thus run to completion as soon as they have a hold of

the CPU (and p3 came in before p4, thus completes first). Now, process 2 only blocks

once, and is very short, and thus is expected to come out next. Between processes 1, 7

and 5, the one with the least I/O calls is 1 (thus is expected to come out first), and the one

with the most I/O calls is 5 (so is expected to come out last). Finally, process 6 is the last

one to complete because it blocks the most. Similar analysis were carried out for the

remaining algorithms (the cycle graphs do provide a great insight in terms of why a

process got blocked and for that long, for example). The following was deduced by

looking at the results:

• FCFS: simple, but short jobs get stuck behind long jobs;

• RR: better for short jobs, and poor when jobs are about same length;

• STCF: optimal for both short jobs, and jobs with about the same length.

April 5, 2000 33/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

6.0. Other Scheduling Algorithms

 The analysis of the remaining scheduling algorithms will be briefly be done

theoretically, and will not involve any implementation or simulation details. These

algorithms require quite a lot of design and implementation work, and thus are just

presented here to complete the project research area, and to set up the open research topic

discussion.

6.1. Multi-Level Feedback Queues (MLFQ)

 The idea of using the past to predict the future is quite central in computer

science: if a process was I/O bound in the past, it is most likely to also be in the future.

These are called adaptive policies, because the policy is modified based on its past

behaviour (as previously mentioned in this report). The result of an MLFQ-based system

is that it approximates an STCF-based system: CPU-bound processes drop to the bottom

of the queues, while the I/O-bound processes remain near the top. The only remaining

drawback is that processes with long execution times may get starved [4].

6.2. Lottery Scheduling

 In this algorithm, each process in the set receives a number of "lottery tickets",

and on each time slice, a winner is randomly picked to run. The tickets are assigned by

giving a big number of them to short running jobs, and a small number of them to long

running jobs. To avoid starvation, every process at least gets one ticket. This type of

scheduling is quite effective in terms of graceful behaviour with a dynamic load. The

addition or deletion of a process effects the rest of the processes proportionally,

independent of the number of tickets that a particular process has in its possession [6].

April 5, 2000 34/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

7.0. Open Research Topics

 The major research topic that can greatly supplement this project deals with an

innovative approach to CPU scheduling. By analyzing existing algorithms, the author

has developed quite a deep understanding for the design methodologies, and

implementation techniques that would provide fairness, class distinction and efficiency to

the real-time application in question. This research will extend the author's knowledge,

by allowing for a deeper understanding of scheduling algorithmic research. It is one

thing to implement already existing algorithms, but it is a totally different matter when

we speak of a newly formed scheduling policy. It is a great disappointment to the author,

that the algorithm in mind did not pan out, but it is left as an open research question for

future (not necessarily real-time related) design work.

 Another major research question left open by this project is the design of the true

SPN or SRT algorithms, in terms of future predictions and estimations. These

estimations will be stored in the PCB, and compared to the actual values calculated at

each CPU burst. The next prediction will be a better one because of the previous error

calculations. In certain compilers, the user is asked to submit an estimate for the

execution time of the process. All these methods could be used in the future design of

SRN or SRT-based scheduler implementations.

 Other research questions left open include the theoretical analysis (queuing

theory) of the MLFQ, HRRN and lottery scheduling algorithms. It would be interesting

to find out which one would have the best CPU utilization and compare it to the ones

discussed in this project. Also, it would be worthy to note that extensions to this project

should be done, by the simple relaxation of certain project constraints. For example, an

implementation with multiple I/O blocked queues should follow, as well as, an

implementation that would encompass the scheduling of both periodic as well as

aperiodic processes. Finally, it would be a great challenge to research the scheduling

design approaches of trying to schedule soft and hard real-time tasks in the same system,

where a soft task is one that has an associated deadline that is desirable but not

mandatory to fulfill, while a hard task is one that must meet its deadline, or undesirable

damage will have to be sustained by the system.

April 5, 2000 35/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

8.0. Bibliography

1) Cooling, J.E. Software Design for Real-Time Systems. Chapman & Hall, London,

UK: 1995.

2) Stallings, William. Operating Systems: Internals and Design Principles. Upper Saddle

River, NJ: Prentice Hall, 1998.

3) Savitzky, Stephen. Real-Time Microprocessor Systems. Van Nostrand Reinhold

Company, N.Y.: 1985.

4) http://www.cs.wisc.edu/~bart/537/lecturenotes/s11.html - viewed on 03/24/2000

5) Undergraduate Operating System Course Notes (Ottawa University, 1998)

6) Personal Knowledge or Previous Reading

April 5, 2000 36/36

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

Appendix A-
Source Code

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

// FILE: Queue.h

#define QUIT_SIGNAL -1
#define SUCCESS 1
#define FAILURE 0

/* Declaration of the template for the queue class */
template<class queue_element_type, int max_size=30>
class queue
{
 public:
 /* Member functions */
 /* Constructor to create an empty queue */
 queue()
 {
 num_items = 0;
 front = NULL;
 rear = NULL;
 }

 /* Destructor */
 ~queue()
 {
 cout << "Your wish is my command! Cleaning up..." << endl;

 if (num_items == 0)
 {
 cout << "Nothing to delete..." << endl;
 }
 else
 {
 current = front;
 while (current != NULL)
 {
 front = front->next;
 cout << "Deleting " << current->item->process_id << endl;
 current = NULL;
 delete current;
 current = front;
 } /* end of while */
 } /* end of else */
 cout << "Done....CYA!" << endl;
 }

 /* Node insertion into queue */
 int insert(const queue_element_type *pcb)
 {
 if (is_fifoQ_full() == SUCCESS)
 {
 cout << "fifoQ is full!" << endl;
 return FAILURE;
 }

 if (num_items == 0)
 {
 rear = new q_node;
 if (rear == NULL)
 return FAILURE;
 else
 {
 rear->next = NULL;
 front = rear;
 }
 }
 else
 {
 rear->next = new q_node;
 if (rear->next == NULL)

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 return FAILURE;
 else
 {
 rear = rear->next;
 rear->next = NULL;
 }
 }

 rear->item = (queue_element_type*)pcb;
// cout << "Inserted " << rear->item->process_id << endl;
 num_items++;
 return SUCCESS;
 } /* end of insert */

 /* Node removal from queue */
 int remove(queue_element_type *&x)
 {
 if (is_fifoQ_empty() == SUCCESS)
 {
 cout << "fifoQ is empty!" << endl;
 return FAILURE;
 }

// cout << "Deleting first element of fifoQ...." << endl;
 current = front;
 if (num_items > 1)
 front = front->next;
 x = current->item;
// cout << "Returned " << x->process_id << endl;
// cout << "Deleting node..." << endl;
 current = NULL;
 delete current;
 num_items--;

 return SUCCESS;
 } /* end of remove */

 /* Header node retrieval without removal */
 int retrieve(queue_element_type *&x)
 {
 if (is_fifoQ_empty() == SUCCESS)
 {
 cout << "fifoQ is empty!" << endl;
 return FAILURE;
 }

 cout << "Retrieving first element of fifoQ...." << endl;
 x = front->item;
 cout << "Returned " << x->process_id << endl;

 return SUCCESS;
 } /* end of retrieve */

 /* Print out the FIFO Q */
 int print()
 {
 if (num_items == 0)
 {
 cout << "Nothing to print in the fifoQ!" << endl;
 return FAILURE;
 }
 cout << "The data element(s) are:" << endl;

 if (front == rear)
 {
 cout << front->item->process_id << endl;
 return SUCCESS;
 }

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 else
 {
 for(current = front ;
 current != NULL;
 current = current->next)
 cout << current->item->process_id << endl;
 return SUCCESS;
 }
 } /* end of print */

 /* Empty queue test */
 int is_fifoQ_empty()
 {
 if (num_items != 0)
 return FAILURE;
 else return SUCCESS;
 }

 /* Full queue test */
 int is_fifoQ_full()
 {
 if (num_items < max_size)
 return FAILURE;
 else return SUCCESS;
 }

 /* Retrieve number of nodes in queue */
 int getnumcount()
 {
 return num_items;
 }

 private:
 /* Data members */

 /* Declaration of the structure for each queue element (node) */
 struct q_node {
 queue_element_type *item; /* pointer to queue item */
 q_node *next; /* pointer to next item */
 };

 q_node *front;
 q_node *rear;
 q_node *current;
 int num_items;

};

// FILE: Queue.cpp

#include <iostream.h>
#include <stddef.h>
#include "queue.h"

void main()
{
 void print_menu();

 queue<int, 5> fifoQ;
 char selection;
 int data_element,x;

 print_menu();
 cin >> selection;
 while (selection != 'Q' && selection != 'q')
 {
 switch(selection)
 {
 case 'P': case 'p':

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 cout << "Printing fifoQ...." << endl;
 fifoQ.print();
 break;
 case 'I': case 'i':
 cout << "The data element is:" << endl;
 cin >> data_element;
 cout << "Inserting at head of fifoQ..." << endl;
 if (fifoQ.insert(data_element) == FAILURE)
 cout << "Error inserting node " << data_element << endl;
 break;
 case 'D': case 'd':
 if (fifoQ.remove(x) == FAILURE)
 cout << "Error deleting node" << endl;
 break;
 case 'R': case 'r':
 if (fifoQ.retrieve(x) == FAILURE)
 cout << "Error retrieving node" << endl;
 break;
 case 'O': case 'o':
 cout << "The number of items in the fifoQ is:" << endl;
 cout << fifoQ.getnumcount() << endl;
 break;
 case 'F': case 'f':
 if (fifoQ.is_fifoQ_full() == 1)
 cout << "Yes." << endl;
 else cout << "No." << endl;
 break;
 case 'E': case 'e':
 if (fifoQ.is_fifoQ_empty() == 1)
 cout << "Yes." << endl;
 else cout << "No." << endl;
 break;
 default:
 cout << "Unknown selection! Try again..." << endl;
 } /* end of switch */
 print_menu();
 cin >> selection;
 } /* end of while */
 /* destructor execution here */
 return;
}

void print_menu()
{
 cout << endl;
 cout << "Select one of these options:" << endl;
 cout << "P) Print the fifoQ" << endl;
 cout << "I) Insert an element into the fifoQ" << endl;
 cout << "D) Delete the first element of the fifoQ" << endl;
 cout << "R) Retrieve the first element of the fifoQ without deleting it" << endl;
 cout << "O) Get number of items in the fifoQ" << endl;
 cout << "F) Is the fifoQ full?" << endl;
 cout << "E) Is the fifoQ empty?" << endl;
 cout << "Q) Quit" << endl;
 return;
}

// FILE: Cpu.h

#define MAXBLOCKS 10
#define MAXPOWER 5
#define MAXPROCESS 10
#define YES 1
#define NO 0

enum state { Running, Ready, Waiting };

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

struct PCB {
 int process_id;
 int priority;
 char process_cycle[255];
 int timeleft;
 int waiting_time;
 int cpu_time;
 int ready_time;
 int num_of_block;
 int cur_block;
 int blocking_times[MAXBLOCKS];
 int blocking_lengths[MAXBLOCKS];
 state status;
 };

void fill_poolQ();
void FCFS();
void RR(int timeslice);
void STCF(int preemption);

// FILE: Cpu.cpp

#include <fstream.h> /* cout, file output operations */
#include <stdio.h> /* file input operations */
#include <stdlib.h> /* atoi() */
#include <ctype.h> /* isdigit() */
#include <string.h> /* strcat(), strlen() */
#include <dos.h> /* sleep() */
#include <signal.h> /* raise(), signal() */
#include "queue.h" /* template queue class definition */
#include "cpu.h" /* PCB struct */

/* Typedefs */
typedef void (*fptr)(int);
typedef queue<PCB, MAXPROCESS> fifoQ;

/* Global variables */
fifoQ poolQ, readyQ, runningQ, blockedQ;
int total_cpu_time = 0, total_waiting_time = 0, total_ready_time = 0;
int total_ticks = 0;

/* Function prototypes */
void schedule(char, int);
void run();
void suspend();
void resume(PCB *);
void print_process_info(PCB *);
void update_graphs();
void update_priorities();
void print_results();
void fprint_cycle(PCB *);
void get_tasks(fifoQ&, fifoQ&);
void pri_get_tasks(fifoQ&, fifoQ&, int);
void priority_sort(fifoQ&);
int get_input(char buffer[MAXPOWER]);

void main()
{
 /* Fill the poolQ with the task set */
 fill_poolQ();

 /* Clear out results.dat */
 ofstream fout("results.dat");
 if (!fout)
 cout << "Cannot open results.dat for truncation!" << endl;
 fout.close();

 cout << "Testing FCFS..." << endl;

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 /* Open results.dat in append mode */
 ofstream foutapp("results.dat",ios::app);
 if (!foutapp)
 cout << "Cannot open results.dat for appending!" << endl;
 foutapp << "Testing FCFS..." << endl << endl;
 foutapp.close();

 FCFS();

 cout << "Testing RR(3)..." << endl;
 /* Open results.dat in append mode */
 foutapp.open("results.dat",ios::app);
 foutapp << endl << "Testing RR(3)..." << endl << endl;
 foutapp.close();

 RR(3);

 cout << "Testing RR(6)..." << endl;
 /* Open results.dat in append mode */
 foutapp.open("results.dat",ios::app);
 foutapp << endl << "Testing RR(6)..." << endl << endl;
 foutapp.close();

 RR(6);

 cout << "Testing STCF() without preemption..." << endl;
 /* Open results.dat in append mode */
 foutapp.open("results.dat",ios::app);
 foutapp << endl << "Testing STCF() without preemption..." << endl << endl;
 foutapp.close();

 STCF(NO);

 cout << "Testing STCF() with preemption..." << endl;
 /* Open results.dat in append mode */
 foutapp.open("results.dat",ios::app);
 foutapp << endl << "Testing STCF() with preemption..." << endl << endl;
 foutapp.close();

 STCF(YES);

 cout << "DONE ALL ALGORITHMS!" << endl;
 /* Open results.dat in append mode */
 foutapp.open("results.dat",ios::app);
 foutapp << endl << "DONE ALL ALGORITHMS!" << endl;
 foutapp.close();

 cout << "Cleaning up blockedQ, runningQ, readyQ and poolQ" << endl;
}

void time_simulator()
{
 PCB *cur_process, *blocked_header;
 int i,blocked_count;

 /* reinstall signal handler */
 signal(SIGUSR1, (fptr)time_simulator);

 /* Update running process' timing information */
 /* Decrement computation time as well as */
 /* any blocking times */
 if (runningQ.is_fifoQ_empty() == FAILURE)
 {
 runningQ.retrieve(cur_process);
 if (cur_process->timeleft > 0)
 cur_process->timeleft--;
 for(i=0; i < cur_process->num_of_block; i++)
 {
 if (cur_process->blocking_times[i] > 0)

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 cur_process->blocking_times[i]--;
 } /* end of for loop (updated blocking times) */
 cout << "Running " << cur_process->process_id << endl;
 print_process_info(cur_process);
 } /* end of if statement (updated running process info) */

 /* Update timing infomation on all blocked processes */
 /* Basically, decrement the lengths field */
 if (blockedQ.is_fifoQ_empty() == FAILURE)
 {
 blocked_count = blockedQ.getnumcount();
 for(i=0; i < blocked_count; i++)
 {
 blockedQ.remove(blocked_header);
 if (blocked_header->blocking_lengths[blocked_header->cur_block] > 0)
 blocked_header->blocking_lengths[blocked_header->cur_block]--;
 blockedQ.insert(blocked_header);
 } /* end of for loop (updated blocking lengths) */
 }

 cout << "In readyQ" << endl;
 readyQ.print();
 cout << "In runningQ" << endl;
 runningQ.print();
 cout << "In blockedQ" << endl;
 blockedQ.print();

 /* Update the process cycle graphs for all processes in the system */
 update_graphs();

 /* Update the process' priorities */
 update_priorities();

 /* Increment total_ticks because a time tick occured */
 total_ticks++;
 cout << "TIME TICK!" << endl;
}

void STCF(int preemption)
{
 cout << "In STCF()..." << endl;

 /* Drain poolQ and re-queue input task set into it */
 fill_poolQ();

 /* Retrieve the tasks from the pool Q into the ready Q */
 get_tasks(poolQ,readyQ);

 /* While at least one queue is not empty, schedule the task set */
 while ((readyQ.is_fifoQ_empty() == FAILURE) ||
 (blockedQ.is_fifoQ_empty() == FAILURE) ||
 (runningQ.is_fifoQ_empty() == FAILURE))
 {
 /* Call the scheduler for STCF scheduling */
 if (preemption == YES)
 schedule('S',0);
 else if (preemption == NO)
 schedule('N',0);

 /* cast to appropriate type */
 signal(SIGUSR1, (fptr)time_simulator);
 /* Call the time_simulator which will update PCB timings */
 raise(SIGUSR1);
 /* Simulate a time tick (currently 2 sec) */
 sleep(2);
 } /* end of while loop */

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 /* Output statistics of algorithm to screen */
 print_results();

 cout << "Leaving STCF" << endl;
} /* end of STCF() */

void FCFS()
{
 cout << "In FCFS()..." << endl;

 /* Retrieve the tasks from the pool Q into the ready Q */
 get_tasks(poolQ, readyQ);

 /* While at least one queue is not empty, schedule the task set */
 while ((readyQ.is_fifoQ_empty() == FAILURE) ||
 (blockedQ.is_fifoQ_empty() == FAILURE) ||
 (runningQ.is_fifoQ_empty() == FAILURE))
 {
 /* Call the scheduler for FCFS scheduling (0 timeslice) */
 schedule('F',0);

 /* cast to appropriate type */
 signal(SIGUSR1, (fptr)time_simulator);
 /* Call the time_simulator which will update PCB timings */
 raise(SIGUSR1);
 /* Simulate a time tick (currently 2 sec) */
 sleep(2);
 } /* end of while loop */

 /* Output statistics of algorithm to screen */
 print_results();

 cout << "Leaving FCFS()..." << endl;
} /* end of FCFS() */

void RR(int timeslice)
{
 cout << "In RR(int)..." << "with a time slice of " << timeslice << endl;

 /* Drain poolQ and re-queue input task set into it */
 fill_poolQ();

 /* Retrieve the tasks from the pool Q into the ready Q */
 get_tasks(poolQ, readyQ);

 /* While at least one queue is not empty, schedule the task set */
 while ((readyQ.is_fifoQ_empty() == FAILURE) ||
 (blockedQ.is_fifoQ_empty() == FAILURE) ||
 (runningQ.is_fifoQ_empty() == FAILURE))
 {
 /* Call the scheduler for RR scheduling (with timeslice) */
 schedule('R',timeslice);

 /* cast to appropriate type */
 signal(SIGUSR1, (fptr)time_simulator);
 /* Call the time_simulator which will update PCB timings */
 raise(SIGUSR1);
 /* Simulate a time tick (currently 2 sec) */
 sleep(2);
 } /* end of while loop */

 /* Output statistics of algorithm to screen */
 print_results();

 cout << "Leaving RR(" << timeslice << ")..." << endl;
} /* end of RR(int) */

void schedule(char algorithm, int timeslice)
{

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 PCB *cur_process, *blocked_header, *ready_process;
 int i, blocked_count, string_length;

 cout << "SCHEDULING.................................." << endl;

 if (runningQ.is_fifoQ_empty() == SUCCESS)
 {
 total_ticks = 0;
 /* If using STCF, then sort readyQ before pick the highest */
 /* priority process in the ready Q to run */
 if ((algorithm == 'S') || (algorithm == 'N'))
 priority_sort(readyQ);
 run(); /* If no process running, run the next one */
 }
 else
 {
 runningQ.retrieve(cur_process);
 if (cur_process->timeleft == 0)
 {
 runningQ.remove(cur_process); /* Process is done executing */
 cout << "Removing " << cur_process->process_id << " from the system" << endl;

 /* Print out process cycle graph */
 string_length = strlen(cur_process->process_cycle);
 cout << "The string length is: " << string_length << endl;
 cout << cur_process->process_cycle << endl;

 /* Print out to file process cycle graph */
 fprint_cycle(cur_process);

 /* Update the timing global variables with this process' values */
 total_cpu_time += cur_process->cpu_time;
 total_waiting_time += cur_process->waiting_time;
 total_ready_time += cur_process->ready_time;

 /* Run the next available process in the ready Q */
 /* and reset total_ticks global var for RR */
 total_ticks = 0;
 /* If using STCF, then sort readyQ before pick the highest */
 /* priority process in the ready Q to run */
 if ((algorithm == 'S') || (algorithm == 'N'))
 priority_sort(readyQ);
 run();
 }
 else /* Process is not done executing */
 {
 if ((cur_process->num_of_block > 0) &&
 (cur_process->blocking_times[cur_process->cur_block] == 0) &&
 (cur_process->num_of_block != cur_process->cur_block))
 {
 /* Block the process and run the next available process from */
 /* the ready Q */
 suspend();
 total_ticks = 0;
 /* If using STCF, then sort readyQ before pick the highest */
 /* priority process in the ready Q to run */
 if ((algorithm == 'S') || (algorithm == 'N'))
 priority_sort(readyQ);
 run();
 } /* end of if statement (process block check) */
 else if ((algorithm == 'R') &&
 (total_ticks % timeslice == 0) &&
 (total_ticks > 0))
 {
 cout << "PREEMPT!!! TIME SLICE UP!!" << endl;
 total_ticks = 0; /* Reset global var */
 run(); /* Time slice is up, so process switch! */
 } /* end of else if (RR time slice check) */

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 else if (algorithm == 'S')
 {
 /* Only STCF with preemption gets to preempt a runnning process */
 /* if its priority is lower than the highest priority ready process */
 priority_sort(readyQ);
 readyQ.retrieve(ready_process);
// cout << "Ready process " << ready_process->process_id << endl;
// cout << "has PRIORITY " << ready_process->priority << endl;
// cout << "Running process " << cur_process->process_id << endl;
// cout << "has PRIORITY " << cur_process->priority << endl;
 if (ready_process->priority < cur_process->priority)
 run();
 } /* end of else if statement (Check for STCF) */
 } /* end of if statement (process done check) */
 } /* end of if statement (empty running Q check) */

 if (blockedQ.is_fifoQ_empty() == FAILURE)
 {
 blocked_count = blockedQ.getnumcount();
 /* Check all blocked processes to see if they completed their I/O */
 for(i=0; i < blocked_count; i++)
 {
 blockedQ.remove(blocked_header);
 if ((blocked_header->blocking_times[blocked_header->cur_block] == 0) &&
 (blocked_header->blocking_lengths[blocked_header->cur_block] == 0))
 /* process completed I/O, so resume its execution */
 resume(blocked_header);
 else
 blockedQ.insert(blocked_header);
 } /* end of for loop (went through blocked Q) */
 } /* end of if statement (resumption checks) */

 cout << "Leaving SCHEDULER...." << endl;

} /* end of scheduler */

void run()
{
 PCB *to_be_run_process, *preempted_process;

 /* Preempt running process and make it ready */
 if (runningQ.is_fifoQ_empty() == FAILURE)
 {
 runningQ.remove(preempted_process);
 cout << "Removed " << preempted_process->process_id << " from the runningQ" << endl;
 print_process_info(preempted_process);
 readyQ.insert(preempted_process);
 cout << " on the readyQ" << endl;
 preempted_process->status = Ready;
 }

 /* Make a ready process running */
 if (readyQ.is_fifoQ_empty() == FAILURE)
 {
 readyQ.remove(to_be_run_process);
 cout << "Removed " << to_be_run_process->process_id << " from the readyQ" << endl;
 print_process_info(to_be_run_process);
 runningQ.insert(to_be_run_process);
 cout << " on the runningQ" << endl;
 to_be_run_process->status = Running;
 }
} /* end of run() */

void suspend()
{
 PCB *cur_process;

 /* Make a running process wait for I/O event (block it) */
 runningQ.remove(cur_process);

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 blockedQ.insert(cur_process);
 cur_process->status = Waiting;
} /* end of suspend() */

void resume(PCB *blocked_process)
{
 /* Resume a blocked process (I/O complete) by making it ready */
 /* Unless the runningQ is empty, then just run the process */
 if (runningQ.is_fifoQ_empty() == SUCCESS)
 {
 runningQ.insert(blocked_process);
 blocked_process->status = Running;
 }
 else
 {
 readyQ.insert(blocked_process);
 blocked_process->status = Ready;
 }
 blocked_process->cur_block++;
} /* end of resume(PCB*) */

void fill_poolQ()
{
 FILE *fp;
 char buffer[MAXPOWER];
 int input, queue_count, i;
 PCB *pcb;

 /* Open cpu.dat for reading */
 fp = fopen("cpu.dat", "r");
 if (fp == NULL)
 {
 cout << "Cannot find cpu.dat!" << endl;
 return;
 }

 /* If a poolQ already exists (thus, not empty), then */
 /* empty it */
 if (poolQ.is_fifoQ_empty() == FAILURE)
 {
 queue_count = poolQ.getnumcount();
 for(i=0; i < queue_count; i++)
 poolQ.remove(pcb);
 }

 /* While !NULL, set up each PCB read from cpu.dat */
 while (fgets(buffer, sizeof(buffer), fp))
 {
 /* Convert to integer */
 input = buffer[1] - 48;

 switch (buffer[0])
 {
 case 'p':
 /* Set up a new PCB and initialize its fields */
 pcb = new PCB;
 cout << buffer[0] << endl;
 cout << buffer[1] << endl;
 pcb->process_id = input;
 pcb->status = Ready; /* Processes enter as Ready */
 pcb->num_of_block = 0;
 pcb->cur_block = 0;
 pcb->waiting_time = 0;
 pcb->cpu_time = 0;
 pcb->ready_time = 0;
 for(i=0; i < 255; i++)
 pcb->process_cycle[i] = '\0';
 break;
 /* What is the process' priority? */

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 case 'a':
 pcb->priority = get_input(buffer);
 case 't':
 /* How long does the process execute for? */
 pcb->timeleft = get_input(buffer);
 break;
 case 'b':
 /* When does the process block? */
 pcb->blocking_times[pcb->num_of_block] = get_input(buffer);
 break;
 case 'c':
 /* For each block, how long does the process block for? */
 pcb->blocking_lengths[pcb->num_of_block] = get_input(buffer);
 pcb->num_of_block ++;
 break;
 case 'e':
 /* Insert process into poolQ */
 cout << "Attempting to insert " << pcb->process_id << endl;
 poolQ.insert(pcb);
 break;
 } /* end of switch statement (on buffer[0]) */
 } /* end of while statement */
 fclose(fp);
} /* end of fill_poolQ() */

void get_tasks(fifoQ& sourceQ, fifoQ& destinationQ)
{
 PCB *pcb;
 int count,i;

 /* Copy processes from sourceQ into the destinationQ */
 count = sourceQ.getnumcount();
 for(i=count ; i>0; i--)
 {
 sourceQ.remove(pcb);
 destinationQ.insert(pcb);
 sourceQ.insert(pcb);
 }
 cout << "Finished getting tasks from poolQ" << endl;
} /* end of get_tasks(fifoQ&, fifoQ&) */

void pri_get_tasks(fifoQ& sourceQ, fifoQ& destinationQ, int Qpriority)
{
 PCB *pcb;
 int count,i;

 /* Copy processes from sourceQ into the destinationQ */
 /* only if they have Qpriority as well */
 count = sourceQ.getnumcount();
 for(i=count ; i>0; i--)
 {
 sourceQ.remove(pcb);
 if (pcb->priority == Qpriority)
 destinationQ.insert(pcb);
 sourceQ.insert(pcb);
 }
 cout << "Finished getting tasks from poolQ" << endl;
} /* end of pri_get_tasks(fifoQ&, fifoQ&, int) */

void priority_sort(fifoQ& queue)
{
 PCB* pcb[MAXPROCESS];
 PCB *temp_process;
 int num_processes, i, j;

 /* Dequeue all PCBs on the queue */
 num_processes = queue.getnumcount();
 for(i=0; i < num_processes; i++)
 queue.remove(pcb[i]);

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 /* Swap PCB's in the array if they are misplaced */
 for(i=0; i < num_processes; i++)
 {
 for(j=i+1; j < num_processes; j++)
 {
 if(pcb[i]->priority > pcb[j]->priority)
 {
 temp_process = pcb[i];
 pcb[i] = pcb[j];
 pcb[j] = temp_process;
 } /* end of if statement */
 } /* end of j for loop */
 } /* end of i for loop */

 /* Enqueue all PCBs back on the queue sorted by priority */
 for(i=0; i < num_processes; i++)
 queue.insert(pcb[i]);
} /* end of priority_sort(fifoQ&) */

int get_input(char buffer[MAXPOWER])
{
 const int base = 10;
 const char newline = '\n';
 int integer_value = 0, i = 0, digit;

 /* Get the integer value of the passed-in buffer */
 while (buffer[i] != newline)
 {
 if (isdigit(buffer[i]))
 {
 digit = int (buffer[i]) - int ('0');
 integer_value = base * integer_value + digit;
 }
 i++;
 } /* end of while loop */

 return integer_value;
} /* end of get_input(char[]) */

void print_process_info(PCB *process)
{
 int blocks = process->num_of_block, i;

 cout << "Its computation time left is " << process->timeleft << endl;

 if (blocks == 0)
 cout << "Does not block" << endl;
 else
 {
 for (i=0; i < blocks; i++)
 {
 cout << "It blocks at " << process->blocking_times[i] << " for " <<
 process->blocking_lengths[i] << " time units" << endl;
 } /* end of for loop (goes through number of blocks) */
 } /* end of if statement */
} /* end of print_process_info(PCB*) */

void update_graphs()
{
 PCB *running_process = NULL, *blocked_process = NULL, *ready_process = NULL;
 const char *running = "-", *blocked = "|", *ready = "/";
 int i, queue_count;

 /* Used to update the stats (cpu, waiting and ready) times */
 /* for all processes in the system */

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 if (runningQ.is_fifoQ_empty() == FAILURE)
 {
 runningQ.remove(running_process);
// cout << "Before concatRu: " << running_process->process_cycle << endl;
 strcat(running_process->process_cycle, running);
// cout << "After concatRu: " << running_process->process_cycle << endl;
 running_process->cpu_time++;
 runningQ.insert(running_process);
 } /* end of if statement */

 if (blockedQ.is_fifoQ_empty() == FAILURE)
 {
 queue_count = blockedQ.getnumcount();
 for(i=0; i < queue_count; i++)
 {
 blockedQ.remove(blocked_process);
// cout << "Before concatW: " << blocked_process->process_cycle << endl;
 strcat(blocked_process->process_cycle, blocked);
// cout << "After concatW: " << blocked_process->process_cycle << endl;
 blocked_process->waiting_time++;
 blockedQ.insert(blocked_process);
 } /* end of for loop */
 } /* end of if statement */

 if (readyQ.is_fifoQ_empty() == FAILURE)
 {
 queue_count = readyQ.getnumcount();
 for(i=0; i < queue_count; i++)
 {
 readyQ.remove(ready_process);
// cout << "Before concatRe: " << ready_process->process_cycle << endl;
 strcat(ready_process->process_cycle, ready);
// cout << "After concatRe: " << ready_process->process_cycle << endl;
 ready_process->ready_time++;
 readyQ.insert(ready_process);
 } /* end of for loop */
 } /* end of if statement */

} /* End of update_graphs() */

void update_priorities()
{
 PCB *process = NULL;
 int i, j, queue_count, temp_time;
 int time_buf[MAXPROCESS];

 /* Initialize time buffer to all -1 */
 for(i=0; i < MAXPROCESS; i++)
 time_buf[i] = -1;

 if (poolQ.is_fifoQ_empty() == FAILURE)
 {
 queue_count = poolQ.getnumcount();
 for(i=0; i < queue_count; i++)
 {
 /* Fill up time buffer with actual timeleft values */
 /* of all processes in the system */
 poolQ.remove(process);
 time_buf[i] = process->timeleft;
 poolQ.insert(process);
 } /* end of for loop */
 } /* end of if statemnt */

 /* Sort time buffer according to increasing timeleft values */
 for(i=0; i < queue_count; i++)
 {
 for(j=i+1; j < queue_count; j++)
 {

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 if (time_buf[i] > time_buf[j])
 {
 temp_time = time_buf[i];
 time_buf[i] = time_buf[j];
 time_buf[j] = temp_time;
 } /* end of if statement (swapping condition) */
 } /* end of j for loop */
 } /* end of i for loop */

 /* Update the priority field of each process according to */
 /* the sorted time buffer */
 for(i=0; i < queue_count; i++)
 {
 poolQ.remove(process);
 for(j=0; j < queue_count; j++)
 {
 if (process->timeleft == time_buf[j])
 {
// cout << "For process " << process->process_id << endl;
// cout << "Old priority is: " << process->priority << endl;
// cout << "New priority is: " << j+1 << endl;
 process->priority = j+1;
 } /* end of if statement */
 } /* end of j for loop (goes through time buffer) */
 poolQ.insert(process);
 } /* end of i for loop (goes through processes) */

} /* End of update_priorities() */

void print_results()
{
 int num_of_processes, total_turn_time, total_time, starting_time, i;
 float avg_wait_time, avg_turn_time, throughput, cpu_util;
 PCB *removed_process;

 num_of_processes = poolQ.getnumcount();

 poolQ.remove(removed_process);
 starting_time = strlen(removed_process->process_cycle);
 poolQ.insert(removed_process);

 /* Find out longest process cycle graph */
 for(i=0; i < num_of_processes; i++)
 {
 poolQ.remove(removed_process);
 if (starting_time < strlen(removed_process->process_cycle))
 starting_time = strlen(removed_process->process_cycle);
 poolQ.insert(removed_process);
 }

 cout << "Total cpu time is:\t\t" << total_cpu_time << endl;
 cout << "Total wait time is:\t\t" << total_waiting_time << endl;
 cout << "Total ready time is:\t\t" << total_ready_time << endl;
 cout << "Number of processes:\t\t" << num_of_processes << endl;
 cout << "Total time is:\t\t\t" << starting_time << endl;

 /* Statistical calculations */
 total_time = starting_time;
 throughput = (float)num_of_processes / total_time;
 avg_wait_time = (float)total_waiting_time / num_of_processes;
 total_turn_time = total_waiting_time + total_cpu_time + total_ready_time;
 avg_turn_time = (float)total_turn_time / num_of_processes;
 cpu_util = (float)total_cpu_time / total_time;
 cpu_util *= 100;

 cout << "Throughput Is:\t\t\t" << throughput << endl;
 cout << "Average Waiting Time Is:\t" << avg_wait_time << endl;
 cout << "Average Turnaround Time Is:\t" << avg_turn_time << endl;

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

 cout << "CPU Utilization Is:\t\t" << cpu_util << " percent" << endl;

 ofstream fout("results.dat",ios::app);
 if (!fout)
 cout << "Cannot open results.dat for writing!" << endl;

 fout << endl;
 fout << "Total cpu time is:\t\t" << total_cpu_time << endl;
 fout << "Total wait time is:\t\t" << total_waiting_time << endl;
 fout << "Total ready time is:\t\t" << total_ready_time << endl;
 fout << "Number of processes:\t\t" << num_of_processes << endl;
 fout << "Total time is:\t\t\t" << total_time << endl;
 fout << "Throughput Is:\t\t\t" << throughput << endl;
 fout << "Average Waiting Time Is:\t" << avg_wait_time << endl;
 fout << "Average Turnaround Time Is:\t" << avg_turn_time << endl;
 fout << "CPU Utilization Is:\t\t" << cpu_util << " percent" << endl;

 fout.close();

 /* Reset global variables to initial values */
 total_waiting_time = total_cpu_time = total_ready_time = total_ticks = 0;
} /* End of print_results() */

void fprint_cycle(PCB *process)
{
 /* Open results.dat for appending */
 ofstream fout("results.dat",ios::app);
 if (!fout)
 cout << "Cannot open results.dat for writing!" << endl;

 /* Print out to file process cycle graph */
 fout << "Process cycle graph for process " << process->process_id << endl;
 fout << process->process_cycle << endl;

 fout.close();
} /* End of fprint_cycle(PCB*) */

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

Appendix B-
Task Set Results

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

cpumax.dat:

p1
a2
t20
b5
c8
b10
c3
b18
c6
e
p2
a1
t5
b2
c4
e
p3
a1
t5
e
p4
a3
t25
e
p5
a2
t20
b2
c4
b8
c2
b11
c4
b16
c5
e

resultsmax.dat:

Testing FCFS...

Process cycle graph for process 3
///////-----
Process cycle graph for process 4
////////////-------------------------
Process cycle graph for process 2
/////--||||////////////////////////////---
Process cycle graph for process 1
-----||||||||/////////////////////////////-----|||///--------||||||--
Process cycle graph for process 5
/////////////////////////////////////--||||////------||//////---||||/-----|||||----

Total cpu time is: 75
Total wait time is: 36
Total ready time is: 132
Number of processes: 5
Total time is: 83
Throughput Is: 0.060241
Average Waiting Time Is: 7.2
Average Turnaround Time Is: 48.6
CPU Utilization Is: 90.3614 percent

Testing RR(3)...

Process cycle graph for process 3
/////---///////--
Process cycle graph for process 2
///--||||////////---

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

Process cycle graph for process 4
////////---/////////---///---//////---/////---///---//////---////----
Process cycle graph for process 1
---//////////--||||||||//////---//////--|||///---//////---/////--||||||/--
Process cycle graph for process 5
///////////--||||//////---//////---||///---||||/////---//////--|||||/---//-

Total cpu time is: 75
Total wait time is: 36
Total ready time is: 144
Number of processes: 5
Total time is: 75
Throughput Is: 0.0666667
Average Waiting Time Is: 7.2
Average Turnaround Time Is: 51
CPU Utilization Is: 100 percent

Testing RR(6)...

Process cycle graph for process 3
///////-----
Process cycle graph for process 2
/////--||||/////////---
Process cycle graph for process 4
////////////------//////////------////////////------/////------/////-
Process cycle graph for process 1
-----||||||||//////////-----|||/////////------/////////--||||||//////--
Process cycle graph for process 5
//////////////////--||||//////////------||//////////---||||////-----|||||----

Total cpu time is: 75
Total wait time is: 36
Total ready time is: 141
Number of processes: 5
Total time is: 77
Throughput Is: 0.0649351
Average Waiting Time Is: 7.2
Average Turnaround Time Is: 50.4
CPU Utilization Is: 97.4026 percent

Testing STCF() without preemption...

Process cycle graph for process 3
//-----
Process cycle graph for process 2
--||||/---
Process cycle graph for process 4
///////////////////////-------------------------
Process cycle graph for process 5
//////////--||||/------||///////////////////////---||||/-----|||||///----
Process cycle graph for process 1
////////////-----||||||||//////////////////////////-----|||//--------||||||--

Total cpu time is: 75
Total wait time is: 36
Total ready time is: 104
Number of processes: 5
Total time is: 77
Throughput Is: 0.0649351
Average Waiting Time Is: 7.2
Average Turnaround Time Is: 43
CPU Utilization Is: 97.4026 percent

Testing STCF() with preemption...

Process cycle graph for process 3
//-----
Process cycle graph for process 2
--||||/---
Process cycle graph for process 5

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

//////////--||||/------||/---||||/-----|||||///----
Process cycle graph for process 1
////////////-----||||||||////-----|||//--------||||||/--
Process cycle graph for process 4
///////////////////////---/////////////////////////---//-------------------

Total cpu time is: 75
Total wait time is: 36
Total ready time is: 88
Number of processes: 5
Total time is: 75
Throughput Is: 0.0666667
Average Waiting Time Is: 7.2
Average Turnaround Time Is: 39.8
CPU Utilization Is: 100 percent

DONE ALL ALGORITHMS!

cpumaxed.dat:

p1
a2
t20
b5
c8
b18
c6
e
p2
a1
t5
b2
c4
e
p3
a1
t5
e
p4
a3
t25
e
p5
a2
t20
b2
c4
b8
c2
b11
c4
b16
c5
e
p6
a4
t28
b5
c3
b10
c3
b15
c3
b20
c3
b25
c3
e
p7
a5

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

t32
b2
c5
b27
c4
e

resultsmaxed.dat:

Testing FCFS...

Process cycle graph for process 3
///////-----
Process cycle graph for process 4
////////////-------------------------
Process cycle graph for process 2
/////--||||///////////////////////////////////---
Process cycle graph for process 1
-----||||||||////////////////////////////////////-------------||||||//////////////////////////////--
Process cycle graph for process 7
//--|||||//////////////////////-------------------------||||//////-----
Process cycle graph for process 5
/////////////////////////////////////--||||///////////////////------||//////////////////////////////---||||//////-----|||||----
Process cycle graph for process 6
///////////////////////////////////////-----|||/////////////////////-----|||///////////////////////////-----|||///////-----|||/-----|||---

Total cpu time is: 135
Total wait time is: 57
Total ready time is: 384
Number of processes: 7
Total time is: 138
Throughput Is: 0.0507246
Average Waiting Time Is: 8.14286
Average Turnaround Time Is: 82.2857
CPU Utilization Is: 97.8261 percent

Testing RR(3)...

Process cycle graph for process 3
/////---////////////--
Process cycle graph for process 2
///--||||/////////////---
Process cycle graph for process 5
///////////--||||/////////////---/////////---||//////////---||||///////---////////////--|||||///////---/////////-
Process cycle graph for process 1
---///////////////--||||||||///////////---////////////---///////////---////////////---//////////-||||||//////////--
Process cycle graph for process 4
////////---//////////////---////////---////////////---///////////---////////////---//////////---///////---/////////-
Process cycle graph for process 7
////////////////--|||||//////////---////////////---///////////---/////////---///////////---//////---/////////---//////----||||/-----
Process cycle graph for process 6
/////////////---////////////--|||////////////---////////////--|||////////////---///////////--|||//////////---///////--|||/-----|||//---

Total cpu time is: 135
Total wait time is: 57
Total ready time is: 466
Number of processes: 7
Total time is: 135
Throughput Is: 0.0518519
Average Waiting Time Is: 8.14286
Average Turnaround Time Is: 94
CPU Utilization Is: 100 percent

Testing RR(6)...

Process cycle graph for process 3
///////-----
Process cycle graph for process 2
/////--||||////////////////---
Process cycle graph for process 4

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

////////////------//////////////////------///////////////////////------///////////////------////////////////-
Process cycle graph for process 1
-----||||||||/////////////////------///////////////////////------////////////////////-||||||/////////////////--
Process cycle graph for process 5
//////////////////--||||//////////////////------||/////////////////////---||||//////////////-----|||||/////////----
Process cycle graph for process 6
////////////////////-----|||////////////////////-----|||//////////////////-----|||///////////////-----|||//////////-----|||///---
Process cycle graph for process 7
/////////////////////////--|||||/////////////////////------////////////////////------/////////////////------////////////------///-||||-----

Total cpu time is: 135
Total wait time is: 57
Total ready time is: 453
Number of processes: 7
Total time is: 139
Throughput Is: 0.0503597
Average Waiting Time Is: 8.14286
Average Turnaround Time Is: 92.1429
CPU Utilization Is: 97.1223 percent

Testing STCF() without preemption...

Process cycle graph for process 3
//-----
Process cycle graph for process 2
--||||/---
Process cycle graph for process 4
///////////////////////-------------------------
Process cycle graph for process 1
////////////-----||||||||//////////////////////////-------------||||||////--
Process cycle graph for process 5
//////////--||||/------||///////////////////////---||||/////////-----|||||//----
Process cycle graph for process 7
///--|||||/-------------------------||||/-----
Process cycle graph for process 6
///-----|||///-----|||-----|||//////////////////////-----|||//-----|||---

Total cpu time is: 135
Total wait time is: 57
Total ready time is: 296
Number of processes: 7
Total time is: 139
Throughput Is: 0.0503597
Average Waiting Time Is: 8.14286
Average Turnaround Time Is: 69.7143
CPU Utilization Is: 97.1223 percent

Testing STCF() with preemption...

Process cycle graph for process 3
//-----
Process cycle graph for process 2
--||||/---
Process cycle graph for process 5
//////////--||||/------||/---||||/-----|||||///----
Process cycle graph for process 1
////////////-----||||||||////-----/////--------||||||/--
Process cycle graph for process 4
///////////////////////---/////////////////////////---//-------------------
Process cycle graph for process 6
///-----|||-----|||/-----|||/-----|||/-----|||/---
Process cycle graph for process 7
//--|||||/----/////----/////----/////----///---------||||-----

Total cpu time is: 135
Total wait time is: 57
Total ready time is: 269
Number of processes: 7
Total time is: 140
Throughput Is: 0.05

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

Average Waiting Time Is: 8.14286
Average Turnaround Time Is: 65.8571
CPU Utilization Is: 96.4286 percent

DONE ALL ALGORITHMS!

cpumed.dat:

p1
a3
t20
b5
c8
b18
c6
e
p2
a1
t5
b2
c4
e
p3
a2
t10
e
p4
a4
t25
b7
c7
b14
c7
b21
c7
e

resultsmed.dat:

Testing FCFS...

Process cycle graph for process 3
///////----------
Process cycle graph for process 2
/////--||||/////////////---
Process cycle graph for process 1
-----||||||||//////////////-------------||||||/--
Process cycle graph for process 4
/////////////////-------|||||||/////////-------|||||||-------|||||||----

Total cpu time is: 60
Total wait time is: 39
Total ready time is: 66
Number of processes: 4
Total time is: 72
Throughput Is: 0.0555556
Average Waiting Time Is: 9.75
Average Turnaround Time Is: 41.25
CPU Utilization Is: 83.3333 percent

Testing RR(3)...

Process cycle graph for process 2
///--||||///////---
Process cycle graph for process 3
/////---/////---//////---////-
Process cycle graph for process 1
---////////--||||||||////---//---------///-||||||--
Process cycle graph for process 4
////////---////////---//////-|||||||///---/----|||||||-------|||||||----

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

Total cpu time is: 60
Total wait time is: 39
Total ready time is: 73
Number of processes: 4
Total time is: 72
Throughput Is: 0.0555556
Average Waiting Time Is: 9.75
Average Turnaround Time Is: 43
CPU Utilization Is: 83.3333 percent

Testing RR(6)...

Process cycle graph for process 2
/////--||||////////---
Process cycle graph for process 3
///////------/////////----
Process cycle graph for process 1
-----||||||||/////////////------/-------||||||/--
Process cycle graph for process 4
/////////////------/////////////-|||||||-------|||||||-------|||||||----

Total cpu time is: 60
Total wait time is: 39
Total ready time is: 70
Number of processes: 4
Total time is: 72
Throughput Is: 0.0555556
Average Waiting Time Is: 9.75
Average Turnaround Time Is: 42.25
CPU Utilization Is: 83.3333 percent

Testing STCF() without preemption...

Process cycle graph for process 3
//----------
Process cycle graph for process 2
--||||//////---
Process cycle graph for process 1
///////////////-----||||||||-------------||||||/--
Process cycle graph for process 4
////////////////////-------|||||||///////-------|||||||-------|||||||----

Total cpu time is: 60
Total wait time is: 39
Total ready time is: 51
Number of processes: 4
Total time is: 73
Throughput Is: 0.0547945
Average Waiting Time Is: 9.75
Average Turnaround Time Is: 37.5
CPU Utilization Is: 82.1918 percent

Testing STCF() with preemption...

Process cycle graph for process 2
--||||/---
Process cycle graph for process 3
//-----///-----
Process cycle graph for process 1
///////////////-----||||||||-------------||||||/--
Process cycle graph for process 4
////////////////////-------|||||||///////-------|||||||-------|||||||----

Total cpu time is: 60
Total wait time is: 39
Total ready time is: 49
Number of processes: 4
Total time is: 73
Throughput Is: 0.0547945

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

Average Waiting Time Is: 9.75
Average Turnaround Time Is: 37
CPU Utilization Is: 82.1918 percent

DONE ALL ALGORITHMS!

cpumin.dat:

p1
a2
t4
e
p2
a1
t6
e

resultsmin.dat:

Testing FCFS...

Process cycle graph for process 1

Process cycle graph for process 2
////------

Total cpu time is: 10
Total wait time is: 0
Total ready time is: 4
Number of processes: 2
Total time is: 10
Throughput Is: 0.2
Average Waiting Time Is: 0
Average Turnaround Time Is: 7
CPU Utilization Is: 100 percent

Testing RR(3)...

Process cycle graph for process 1
---///-
Process cycle graph for process 2
///---/---

Total cpu time is: 10
Total wait time is: 0
Total ready time is: 7
Number of processes: 2
Total time is: 10
Throughput Is: 0.2
Average Waiting Time Is: 0
Average Turnaround Time Is: 8.5
CPU Utilization Is: 100 percent

Testing RR(6)...

Process cycle graph for process 1

Process cycle graph for process 2
////------

Total cpu time is: 10
Total wait time is: 0
Total ready time is: 4
Number of processes: 2
Total time is: 10
Throughput Is: 0.2
Average Waiting Time Is: 0
Average Turnaround Time Is: 7
CPU Utilization Is: 100 percent

Ottawa-Carleton Institute Rami Abielmona
Electrical and Computer Engineering #1029817

Testing STCF() without preemption...

Process cycle graph for process 2

Process cycle graph for process 1
//////----

Total cpu time is: 10
Total wait time is: 0
Total ready time is: 6
Number of processes: 2
Total time is: 10
Throughput Is: 0.2
Average Waiting Time Is: 0
Average Turnaround Time Is: 8
CPU Utilization Is: 100 percent

Testing STCF() with preemption...

Process cycle graph for process 1
/----
Process cycle graph for process 2
-////-----

Total cpu time is: 10
Total wait time is: 0
Total ready time is: 5
Number of processes: 2
Total time is: 10
Throughput Is: 0.2
Average Waiting Time Is: 0
Average Turnaround Time Is: 7.5
CPU Utilization Is: 100 percent

DONE ALL ALGORITHMS!

	Executive Summary
	Required because of I/O requests
	2.0. Project Scope
	3.0. Scheduling Algorithmic Analysis Overview

	The scheduling algorithms being discussed in this project were selected because of their affinity to short-term scheduling, as well as their application to real-time systems. Even though some are applicable for long-term scheduling, and some are not tru
	3.1. Process State Transitions
	3.2. Priority Systems
	3.3. Scheduling Algorithm Contestants
	3.3.1. First-Come First-Served (FCFS)
	3.3.2. Round-Robin (RR)
	3.3.3. Shortest Time to Completion First (STCF)
	3.3.4. Multi-Level Feedback Queue (MLFQ)
	3.3.5. Highest Response Ratio Next (HRRN)
	
	Priority = (w + s) / s

	3.4. Evaluation Characteristics
	4.0. Implementation Analysis and Overview
	4.1. Implementation Assumptions
	4.2. Queue Implementation Discussion
	4.3. Time Simulation/Interruption
	4.4. Process Simulation
	4.5. Scheduler Implementation
	4.6. FCFS-specific Implementation Discussion
	4.7. RR-specific Implementation Discussion
	4.8. STCF-specific Implementation Discussion
	4.9. Implementation Issues
	5.0. Simulation Results
	5.1. Results and Observations
	6.0. Other Scheduling Algorithms
	6.1. Multi-Level Feedback Queues (MLFQ)
	6.2. Lottery Scheduling
	7.0. Open Research Topics
	8.0. Bibliography

	Appendix A-
	Source Code
	Appendix B-
	Task Set Results

