
Proknet c©: Not your average IP over

ATM segmenter

Submitted in partial fulfillment of the requirements for 97.584:

VLSI Design

Professor Ralph Mason

Fall Term 2000

Wael Hermas†
Rami Abielmona†

Mohamed Abou-Gabal†

†(whermas,rabiel,mabou)@doe.carleton.ca

December 10, 2000

2

Contents

I Preface 13
0.1 Abstract . 15
0.2 List of Acronyms . 16

II Introductions 17

1 IP over ATM 19
1.1 Segmentation Theory . 21
1.2 AAL Protocols . 21
1.3 ATM Adaptation Layer 5 . 22

1.3.1 The CPCS within AAL5 23

2 System Architecture 25

III Module design 31

3 TLL module design 33
3.1 Top Level . 33

3.1.1 Theory . 33
3.1.2 Design History . 34
3.1.3 Functional and Hardware Specifications 35
3.1.4 Functional Simulation 36
3.1.5 Synthesis . 37
3.1.6 Timing Simulation . 37

3.2 Counter . 38
3.2.1 Theory . 38
3.2.2 Functional Specification 38
3.2.3 Hardware Specification 42
3.2.4 Functional Simulation 47

3

4 CONTENTS

3.2.5 Synthesis . 48
3.2.6 Timing Simulation . 49

3.3 Extractor . 49
3.3.1 Functional Specification 49
3.3.2 Hardware Specification 50
3.3.3 Functional Simulation 50
3.3.4 Synthesis . 52
3.3.5 Timing Simulation . 52

3.4 Padder . 53
3.4.1 Functional Specification 56
3.4.2 Hardware Specification 58
3.4.3 Functional Simulation 60
3.4.4 Synthesis . 61

3.5 ALU . 61
3.5.1 Theory . 61
3.5.2 Design History . 62
3.5.3 Functional Specification 64
3.5.4 Hardware Specification 65
3.5.5 Functional Simulation 65
3.5.6 Synthesis . 66
3.5.7 Timing Simulation . 66

3.6 Accumulator . 66
3.6.1 Theory . 66
3.6.2 Functional Specification 66

4 FIFO module design 75
4.1 Theory . 75
4.2 Functional Specification . 75
4.3 Hardware Specification . 77
4.4 Functional Simulation . 79
4.5 Synthesis . 79
4.6 Timing Simulation . 79

5 Trailer module design 81
5.1 Theory . 81
5.2 Functional Specification . 82

5.2.1 Trailer I/O . 82
5.2.2 Trailer Operation . 83

5.3 Hardware Specification . 84
5.4 Functional Simulation . 85

CONTENTS 5

5.5 Synthesis . 86
5.6 Timing Simulation . 86

6 CRC module design 87
6.1 Theory . 87

6.1.1 Byte-wise CRC . 90
6.2 Functional Specification . 92

6.2.1 CRC Components and Operation 94
6.3 Hardware Specification . 94
6.4 Functional Simulation . 97
6.5 Synthesis . 97
6.6 Timing Simulation . 97

7 SAR module design 99
7.1 Functional Specification . 99
7.2 Hardware Specification . 101
7.3 Functional Simulation . 102
7.4 Synthesis . 104
7.5 Timing Simulation . 105

8 Microprocessor Module Design 107
8.1 Theory . 107
8.2 Design history . 110
8.3 Functional Specification . 116

8.3.1 Instruction Set . 116
8.3.2 Memory Interface . 118
8.3.3 Control Units . 121

8.4 Hardware Specification . 125
8.5 Functional Simulation . 126
8.6 Synthesis . 127
8.7 Timing Simulation . 128

9 Memory Module Design 129
9.1 Theory . 129
9.2 Design History . 130
9.3 Functional Specification . 132
9.4 Hardware Specification . 133
9.5 Functional Simulation . 135
9.6 Synthesis . 135
9.7 Timing Simulation . 136

6 CONTENTS

IV Conclusions 137

10 System Integration 139
10.1 Proknet c©in all its might . 139

10.1.1 System Integration . 139
10.1.2 Functional and Hardware Specification 139
10.1.3 Functional Simulation 139
10.1.4 Synthesis . 141

10.2 Proknet c©limitations . 141
10.3 Future Work . 143
10.4 Project Conclusions . 143

A A - TLL module 147

B B - Trailer module 149

C C - CRC module 151

D D - Microprocessor module 153

E E - Memory module 155

F F - SAR module 157

G G - System Integration 159

H H - Design Documents 161

I I - Project Presentation 163

List of Figures

1.1 IP packet . 20
1.2 ATM cell . 21
1.3 ATM protocol reference model 22
1.4 AAL type 5 CPCS PDU . 23

2.1 Preliminary system architecture 26
2.2 Intermediate system architecture 27
2.3 Pre-final system architecture 28
2.4 Final system architecture . 29
2.5 System breakdown . 30

3.1 IP packet header . 33
3.2 TLR storage . 35
3.3 TLR/extractor algorithm . 36
3.4 TLR/extractor circuit . 37
3.5 Initial counter algorithm . 39
3.6 Initial counter implementation 40
3.7 ASM chart . 41
3.8 Data path . 41
3.9 Detailed ASM chart . 42
3.10 Control path . 43
3.11 Status signal . 43
3.12 XOR tree . 44
3.13 Ripple binary up counter . 45
3.14 Data path of the counter module 46
3.15 Control path of the counter module 47
3.16 Counter module architecture 47
3.17 Extractor architecture . 51
3.18 First approach to padder algorithm 54
3.19 Next-generation approach to padder algorithm 55

7

8 LIST OF FIGURES

3.20 Padder logic operations . 67
3.21 Padder operations using the register method 68
3.22 Padder algorithm . 69
3.23 Control path using gates . 70
3.24 Flip-flops of the 7 states of the control path 71
3.25 Comparator circuitry . 72
3.26 Full adder circuitry . 72
3.27 Full adder-subtractor circuitry 73

4.1 I/O of the FIFO module . 75
4.2 FIFO module architecture . 76
4.3 FIFO control logic design . 78
4.4 Comparator design . 78
4.5 FIFO memory design . 80

5.1 Trailer overview . 81
5.2 Packet in memory . 82
5.3 Trailer field initializations . 82
5.4 I/O of the trailer module . 83
5.5 Trailer module architecture 84
5.6 2 to 1 input multiplexer . 85

6.1 Logic circuitry . 89
6.2 Transmitted message . 90
6.3 I/O of CRC module . 92
6.4 CRC module architecture . 93
6.5 4 to 1 multiplexer . 95
6.6 CRC-32 overall design . 96

7.1 Start counting and corresponding flip-flop 102
7.2 SAR FSM . 103

8.1 Microprocessor general architecture 108
8.2 Execution state machine . 110
8.3 Initial pipeline design . 111
8.4 Initial memory interface . 114
8.5 Initial memory map . 115
8.6 Final memory interface . 120
8.7 PC architecture . 120
8.8 WAR architecture . 121
8.9 RAR architecture . 121

LIST OF FIGURES 9

8.10 ICU FSM . 122
8.11 ACU FSM . 123
8.12 MCU FSM . 126

9.1 RAM cell . 132
9.2 Final memory map . 133
9.3 Micro-CPU address decoding 134

10 LIST OF FIGURES

List of Tables

3.1 Comparator circuit truth table 63
3.2 Full Adder circuit truth table 64

4.1 Truth table for address decoder 79

6.1 CRC algorithm . 88
6.2 CRC example . 90
6.3 CRC equation calculations (Most significant 16 bits) 91
6.4 CRC equation calculations (Least significant 16 bits) 91

8.1 Instruction set encoding . 117
8.2 Final instruction set . 118

11

12 LIST OF TABLES

Part I

Preface

13

0.1. ABSTRACT 15

0.1 Abstract

This project presents Proknet c©. It is a play on the following words: network
and processor. It represents a module that is capable of receiving incom-
ing variable-sized IP packets, and outputting fixed-sized ATM cells. The
applications of this module are numerous, especially in the communications
field, where this type of circuit is needed in order to implement the ATM
forum specifications. The following report is presented in a book fashion,
in order to clearly dissect all of the tasks that were delegated and accom-
plished by the designers. To be specific, any TLL- or SAR-related work is
accredited to Wael Hermas, any trailer- or CRC- related work is accred-
ited to Mohamed Abou-Gabal, and any micro-processor/memory- or ALU-
related work is accredited to Rami Abielmona. Appendices are included in
this report presenting the different modules and their corresponding source
and output files (Verilog code, functional/timing simulation diagrams, and
synthesis outputs). Finally, attached to this report is a CD (also see Ap-
pendix I), which contains all of module related work and a PowerPoint
2000 (Microsoft c©) lasting approximately 5 minutes. This presentation is
an overview of the overall system architecture and operation. Take a few
minutes and view the presentation (as a slide show) in order to get familiar
with the many topics that are discussed in this report.

16

0.2 List of Acronyms

AAL ATM Adaptation Layer
ACC Accumulator
ACU Address Control Unit
ALU Arithmetic/Logic Unit
AR Address Register
AR Flip-flop Asynchronous Reset

ARSE Flip-flop Asynchronous Reset and Synchronous Enable
AS Flip-flop Asynchronous Set

ASM Algorithmic State Machine
ATM Asynchronous Transfer Mode
CISC Complex Instruction Set Computer
CPCS Common Part Convergence Sublayer
CPE Customer Premise Equipment
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CS Chip Select

DPRAM Dual-Port RAM
EOP End of Packet
FAS Full Adder-Subtractor
FF Flip-flop

FIFO First-in First-out
FSM Finite State Machine
ICU Instruction Control Unit
IP Internet Protocol
IR Instruction Register

MCU Main Control Unit
OSI Open System Interconnection
PC Program Counter

PDU Protocol Data Unit
PR Pad Register

RAM Random Access Memory
RAR Read Address Register
ROM Read-Only Memory
RISC Reduced Instruction Set Computer
SAP Service Access Point
SAR Segmentation and Reassembly
SP Stack Pointer

SPR Special Purpose Register
SSCS Service Specific Convergence Sublayer

TPRAM Ternary-Port RAM
TLL Total Length Logic
TLR Total Length Register

VLIW Very Long Instruction Word
WAR Write Address Register

Part II

Introductions

17

Chapter 1

IP over ATM

The Internet has become one of the most diverse, information-filled library
this century has ever seen, since the library of the U.S Congress. Its contents
range from a variety of different topics, some of which include education,
information, leisure and entertainment, as well as research and development.
As the Internet becomes more reliable even on a daily basis, we are evolving
to be more dependent on its various tools and services. Our dependency
hence increases our awareness of the Internet, which in its turn leads to
customers demanding more diverse and tailored services that they can map
to their everyday lives. This demand drives he emergence of new technolo-
gies as well as the refinement of old ones in ways never thought possible
before. Two of the leading technologies that have surfaced are the Inter-
net Protocol (IP), and Asynchronous Transfer mode (ATM). There
are many differences between the two communication protocols, but due to
the scope of this document, only a few will be highlighted for clarity. The
IP communication protocol utilizes connectionless-based datagrams that are
routed using hop-by-hop routing algorithms to transfer information, while
ATM utilizes connection-based cells that are guided using a pre-planned
path between nodes. The main difference between the two is the processing
power required by both as well as the reliability offered by both protocols.
As shown in figure 1.1, the total length of the packet is variable ranging
from 20 bytes to as big as 65,536 bytes. The datagram approach is best
suited for this type of routing methodology because each packet is treated
independently, with no reference to packets that are gone before it. Dif-
ferent packets may thus end up selecting different routes depending on the
network’s current status, and thus may end up arriving at the destination
in different orders. Neither error control nor any reliability mechanisms are

19

20 CHAPTER 1. IP OVER ATM

exercised in this protocol, which allows for the transmission of such variable
sized packets, yet routing of every single packet is required which consumes
greater processing power. Now referring to figure 1.2, the total length of an
ATM cell is fixed at 53 bytes in total. The cell approach is alternatively best
suited for this type of routing methodology because each packet is guided
via a pre-planned route, where each cell traverses the dedicated route for
the entire length of data transmission. With this scenario, error control and
reliability mechanisms are provided on a connection basis rather than a cell
basis, which reduces the processing power required by each node.

Figure 1.1: IP packet

Currently though, as a result of different amalgamated services, more and
more packet-switching networks have been making use of the more reliable
cell-switching networks. The benefit from both technologies hence improved
the different service provider’s delivered products. This allowed networks
around the world to present a service that is as reliable and dedicated as
ATM, while utilizing IP’s greater transmission capability and reduced over-
head in terms of route setups. Out of this concept transpired the migra-
tion of networks to offer IP over ATM. As described above, this protocol
uses both technologies to deliver data, voice and video from one Customer
Premise Equipment (CPE) to another CPE and ultimately to the user
that desires this service. In order to be able to transmit variable-sized IP
packets over a fixed-cell ATM network, we have to be able to segment the IP

1.1. SEGMENTATION THEORY 21

packets into 48-byte cells at the transmitter, and be also able to reassemble
these same cells into the original packet at the receiver. Thus, this is going
to be the focus of this project and the discussion of Segmentation and
Reassembly (SAR).

Figure 1.2: ATM cell

1.1 Segmentation Theory

Figure 1.3 refers to the Open System Interconnection (OSI) model
developed by ISO as a model for computer communications architecture.
Within the ATM reference model, the ATM Adaptation Layer (AAL)
has the ability to provide a transitional layer between the ATM layer and
the higher protocols. This allows for an enhancement of services provided
by the ATM layer to all the higher level layers, which in our case is IP. The
functions performed by the AAL depend on the higher layer requirements.

1.2 AAL Protocols

There are different types of protocols that AAL supports in order to meet
the variety of needs of the higher layers, which are all defined under four
classes of service that cover a broad range of requirements. The classification
is based on whether the application requires timing between the source and

22 CHAPTER 1. IP OVER ATM

Figure 1.3: ATM protocol reference model

destination, whether it requires a constant bit rate for traffic, and finally
whether it is a connection-oriented or connection-less transfer. Based on this
criterion for classes of service, ITU-T defined four different AAL protocols
that classify the operation the AAL based on each class of service [Hal92].
As mentioned in figure 1.3, the AAL is made up of two logical sub layers: the
Convergence Sub layer (CS) and the Segmentation And Reassembly
sub layer. The convergence sub layer is needed to provide functions for
specific applications that are using the AAL. Higher protocols attach to the
AAL by using a Service Access Point (SAP), which is the address of the
application. This makes the CS a service dependent layer.

The SAR sub layer is then required to accept information from the CS
while molding them into cells that are acceptable for transmission by the
ATM layer, as well as doing the opposite upon reception of cells from the
ATM layer at the other end. As mentioned above, the ATM layer can only
accept a 48-byte payload. Thus the SAR has to group any SAR headers
and/or trailers as well as the CS payload into 48-byte cells ready for pro-
cessing by the ATM layer.

1.3 ATM Adaptation Layer 5

Thus, for our IP application, the characteristics are that timing is not re-
quired between the source and the destination, the bit rate is variable, and

1.3. ATM ADAPTATION LAYER 5 23

it is a connection-less transfer. This classifies IP as a class D application,
which entails the utilization of the type 5 AAL protocol, which is a newly de-
fined protocol. Like all other AALs, the higher layer protocols send a block
of data to the CS, which encapsulates them into Protocol Data Units
(PDU) [Tan96]. Actually, the CS is referred to as the Common Part
Convergence Sub layer (CPCS), making this layer in the CS the one
that performs common functions for the higher protocols, while the Service
Specific Convergence Sub layer (SSCS) performs the service specific
operations depending on which AAL is being utilized at the time by the
higher layer protocols based on their application.

1.3.1 The CPCS within AAL5

The function of the CPCS is very limited in for layer 5, in contrast with
layer 3/4 which has a more involved role in the AAL. CPCS takes on most
of the functions as the one used in layer 3/4, but with the difference of
exclusively providing error protection without the involvement of the SAR,
as well as not giving a buffer allocation size indication to the receiving peer
entity. Mainly, the CPCS is responsible for the following functions as show
in figure 1.4 [Pry95]:

Figure 1.4: AAL type 5 CPCS PDU

• Padding (Pad) field This field allows the CPCS PDU total length to
be a multiple of 48, aligning it with the cell-size of an ATM cell. Its
size varies from 0 to 47 bytes.

• User to User field (UU) This field is used transparently between the
AAL5 CPCS users, containing 1 byte of information

24 CHAPTER 1. IP OVER ATM

• Common Part Identifier (CPI) This field contains zeros at the moment,
indicating that there are user data in the payload field.

• Length field This field indicates the length of the CPCS PDU payload
stored in the CPCS PDU. This is required in order to determine the
size of the pad field. The size length field varies from 0 to 2 bytes,
which represents the size of the payload. As well, of note here is that
the total length of an IP packet also varies from 16 bytes (header) to
65535 bytes.

• CRC-32 field This field contains the CRC-32 calculation, which is done
over the entire CPCS PDU, including the payload, the pad, and the
CPCS-PDU trailer in entire contents.

The polynomial used to generate CRC-32 is the following:

G(x) = x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1
(1.1)

Chapter 2

System Architecture

The main goal of this project is to provide an IP over ATM segmentation
entity, that will accept a variable-sized IP packet, and transform it into
fixed-sized ATM cells. To perform this goal, it was necessary to select a
base architecture, that will aid us in the design and implementation phases.
This task was not taken lightly as it will influence many future design aspects
and decisions. The system architecture has to present to the designer the
main components, their interconnections and their operations. That said,
the system architecture is not going to present the internal implementation
details of any component, leaving it up to the imagination and innovation
of the designer to design a functionally correct system. For this project,
the system architecture went through quite a few design cycles before its
eventual hardened declaration. The fact that the architecture is presented
first in this document is due its vitality for a smooth module design transi-
tion. The drawbacks of ”hard-coding” the circuit to match the underlying
architecture are numerous, and expensive in terms of design cycles. Other
pitfalls of a bad system architecture are work-arounds implemented in order
to do exactly that: work around a system bug. On the other hand, a well
thought-out architecture will provide a baseline for all designers to review
and synchronize to.

The system architecture started out with a basic design involving all the
functions needed for a SAR entity (segmentation only in this case). Please
refer to figure 2.1 for the first design done. This design is very preliminary
and did not include many of the details of the correct system operation. It
does present, however, the goals of the project, the inputs and outputs of
the system, and the high-level data flow. On the other hand, the design is
missing quite a few important aspects, such as appending a trailer after each

25

26 CHAPTER 2. SYSTEM ARCHITECTURE

IP packet. The design does not also take into effect which module should
perform what operation. For that matter, the design does not even break
down the system into different modules. As a first design, it is quite concise
and presents the idea in an orderly matter.

Figure 2.1: Preliminary system architecture

The next design is a CPU-intensive design, as seen in figure 2.2. This ar-
chitecture plays very nicely into the re-programmability aspect of hardware
design. The CPU sequentially performs its functions. The throughput of the
design is considered to be low due to the intense CPU-memory interaction in
sending completed packets to the SAR module. What this design presents
is a breakdown of the system into components. The architecture also clearly
shows the datapath as well as the system inputs and outputs. The architec-
ture also defines some previously mysterious interactions between different
logical components, as well as the inputs and outputs of each of the modules.
As time went on, the design was modified in order to attempt to speed up
the processing throughput.

An intermediate design that was briefly considered involved each of the
modules shown in figure 2.2 interacting with the memory unit. This design
allowed for multiple packets to be processed simultaneously, but required
the use of a large multiport RAM and thus was instantly scrapped.

The final system architecture involved a pipelined design from start to
end. There are two actual pipelines, an input and an output pipeline. Please
refer to figure 2.3 for a clearer picture of the following discussion. The
input pipeline contains the TLL module, the CRC module and the trailer
module, while the output pipeline contains the SAR module. Sandwiched in

27

Figure 2.2: Intermediate system architecture

between both pipelines are the CPU and the memory modules, which link
the output of the input pipeline to the input of the output pipeline. The
pipelined design allows us to handle multiple packets simultaneously without
the need for much external RAM. Each module is able to operate according
to specification on the IP packet, as frames are transferred, byte-by-byte,
through the pipeline (1 byte/1 clock cycle). Other advantages to this design
is that each module views the whole packet one byte at a time, and hence
packet processing time is minimized. The whole architecture seems to be
operating in a parallel fashion, while latency and throughput are minimized
and maximized, respectively. One final issue is that the CPU is left to handle
non-data-intensive tasks, and thus memory interaction is also reduced.

The reasons for adding the total length logic (TLL) module on the
pipeline are to find the total length of the IP packet, and setting the result
into the total length (TL) register. The TLL also calculates the number
of bytes (assuming they are zeros) needed to be used in padding. The latter
is done by setting the padding register (PR). The pipeline processes are

28 CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.3: Pre-final system architecture

data intensive that do not present any delays. The modules on the pipeline
are the ones which require control signals (from a control unit).

What follows are a few of the design reviews that were performed to
the final system architecture, and are included here as is, in order to give a
reality aspect to the project:

October 9th - Design Re-engineer(DR): The padding algo-
rithm/module should be moved to a different position on the
pipeline. The ”Padding” should be implemented right after ”TLL”
and before ”CRC”. ”Padding” was moved around like this be-
cause we did not take into consideration of why ”padding” was
placed right after ”Append T Trailer”. The only reason why
is that we just switched ”queuing” and ”padding” from the CPU
module. The other reason of why it makes sense to put it af-
ter TLL is because the way CRC is calculated. CRC needs to
be done on all the bits in the frame including trailer and CRC
(XOR + shift). Thus it is easier to pad after TLL because TLL
has already supplied us w/ all the relevant info in order for
padding to occur. Solution: The solution proposed was to move
the ”padding” module from where it was before to a position
after ”TLL” and before ”CRC.

October 9th - DR: We have just realized that a bottleneck
has occurred in our pipeline design. The bottleneck came up
when we realized that what happens when you actually begin
to pad. The ”padding” module will begin to pad for the cur-
rent packet, while it receives the byte of the next IP packet.
This is not good because we have ”racing” conditions creeping

29

up in the design. The ”padding” module will have to identify
when the ”END” byte was received before it can start the pad
process. While this is happening, the Trailer module is already
passing the next byte of the IP packet into the ”padding” mod-
ule. Extra logic would have to implemented like a mux or de-
lay to allow the padding to do its job sequentially. Solution:
The solution that was agreed upon is to move the ”pad” module
back into the CPU in order to relieve that delay or bottleneck
introduced. This is because padding in the CPU is allowed in or-
der to relieve the stress on the bottleneck and because CRC
can be hard-coded for 1-byte of ”zeros” in the padded area.

On October 21. We decided to insert Trailer Module before
CRC because we have to perform CRC on the Trailer according
to the spec and on the receiver end CRC will be performed on
Trailer and The Message only. We assume that the receiver
end will only do CRC on intelligent enough to recognize that
where message starts and ends.

The final pipelined design is shown in figure 2.4. This design is discussed
in more detail

Figure 2.4: Final system architecture

30 CHAPTER 2. SYSTEM ARCHITECTURE

Figure 2.5: System breakdown

Part III

Module design

31

Chapter 3

TLL module design

3.1 Top Level

3.1.1 Theory

In order to be able to design a fully functional SAR according to our spec-
ifications, we will require the retrieval of certain information form the IP
packet itself. This information is necessary in order for the SAR to proac-
tively monitor the stream of packets entering its module, as well as perform
preliminary setups for the downstream modules, such as padding and mem-
ory storage. As in figure 3.1, the most important information contained in
the IP packet is the Total Length (TL) field, which is stored in the 3rd

and 4th byte of the header, making it a 16 bit field, and hence setting the
total length of the packet to be between 20 bytes (minimum length of the
header) and 65,535 bytes (maximum allowable transferable length).

Figure 3.1: IP packet header

By foreshadowing the TL, we are able to determine several other ne-

33

34 CHAPTER 3. TLL MODULE DESIGN

cessities that are to be used by the pipeline at its various stages. Thus the
need arises for a method that allows us to read the TL field for the incoming
packet, storing it for further use as the packet transverses the pipeline, as
well as determining the necessities early in the pipeline in order to ensure a
heuristic transfer of the packet from module to module. Some of these neces-
sities are calculating the number of padding bits required by the packet as
well as the storage of that value in a manner that is easily accessible to the
control unit and hence the modules along the pipeline The Total Length
Logic (TLL) is the name given to the module that is to fulfill the latter
requirements.

3.1.2 Design History

The original design of the TLL allowed for only the ability to read the TL
of the IP packet and store that value in an entity labeled Total Length
Register (TLR). The TLR is to hold its value until the extractor reads
the next packet’s TL. Hence, due to this idea was born the extractor logic
module within the TLL, whose sole purpose is to extract the TL of the IP
packet from the 3rd and 4th byte of the header, and store that value in the
TLR. The TLR is to be 16 bits long in order to hold the value of the TL,
which is also 16 bits long. The extractor, along with the rest of the pipeline,
is to operate assuming the follow conditions:

1. Externally fed clock oscillating at 25 MHz. Thus our processing power
allows to output data at a rate of 200 Mbps. This is obtained by the
following: 8 bits/cycle (width of bus) * 25 MHz (cycles/sec) = 200M
bps

2. Our pipeline is to be fed one byte at a time clocking at a speed of 1/25
MHz = 40 ns, which is the period of one clock cycle.

Thus the extractor is designed to extract the 3rd byte out of the IP
header and store it in the LSByte of the TLR, followed by extracting the
4th byte and storing it in the MSByte of the TLR. This is illustrated in
figure 3.2.

Based on the above diagram, an algorithm was designed to implement the
extractor and the TLR at the same time. Figure 3.3 outlines the algorithm.

We based the extraction mechanism and its transfer into TLR on two
signals that indicate the processing of the third byte and the fourth byte.
The availability of the third byte signals the data to be loaded into the least
significant byte of TLR, while the availability of the fourth byte signals the

3.1. TOP LEVEL 35

Figure 3.2: TLR storage

data to be loaded into the most significant byte of TLR. We thus obtained
the following circuit, shown in figure 3.4 based on the defined algorithm. The
algorithm will be discussed in detail in the functional specification section.

3.1.3 Functional and Hardware Specifications

The operational behavior of the TLL was defined to be a module that acts
upon the total length field in the IP packet header. By clearly outlining
the functions of the above modules, i.e. extractor, counter, and padder, we
have reached the step where we would group all of them together under one
module, and that is the TLL. Thus our definition of the TLL is nothing
more than an instantiation of all three modules in order to operate correctly
and output the relevant signals that re required by Proknet. Thus we will
define the I/O signals of the TLL:

• Input: clk, resetb, star counting, pipeline data in

• Output: s PR, s Prout, s TLR, pipeline data out, c DoneC

In short words as to not repeat the description of the above modules, the
TLL receives packet an input buffer, which it continuously streams to the
output module, in this case being the trailer. Along the passage of the bytes
through the TLL, the three modules begin to operate according to their
definition. The counter begins counting and signals the passage of several
key bytes. The extractor is awaiting these signals in order to extract the TL
from the IP header. Upon storing the TL, the padder begins its operations
in order to calculate the pad bits. All these processes occur sequentially
and in parallel of each other. The extractor module for example awaits the
s Done3 signals from the counter in order to kick-start its task. Once it has
begun, then it is not listening to the counter module anymore, up until it
the arrival of a new packet to the TLL.

36 CHAPTER 3. TLL MODULE DESIGN

Figure 3.3: TLR/extractor algorithm

3.1.4 Functional Simulation

The TLL was defined in TLL top.v and executed against the test bench
labeled TLL top tb.v. the results of the functional simulation are outlined in
Appendix A. Basically, the pipeline data streaming into the TLL contained
only the TL, and in this case it was 15, i.e. the length of the IP packet was a
fictional 15 bytes. As we can see, the PR and PRout registers both contain
the number 25, which is the total number of padding bits required : # pad
bits = 48 - (15 (TL of packet) + 8 (length of trailer)) = 25. as well, we can
see that the done signal is asserted once the 15th byte is about to travel
through the TLL, indicating that we have reached the end of our packet.
Along the way to the end of the packet, the signals indicating the arrival of a
certain packet were also asserted at their appropriate times during our cycle.

3.1. TOP LEVEL 37

Figure 3.4: TLR/extractor circuit

These are basically the functions that the TLL was defined to execute.

3.1.5 Synthesis

The synthesized TLL module is represented in Appendix A. We only show
the top module synthesis, which contains COUNTER TOP, TLL EXTRACTOR,
PADDER TOP, ALU TOP, and ACCUMULATOR. The accumulator was
a simple module that was defined to serve the purpose of holding the result
of an arithmetic operation in memory, for its use by other modules. The
accumulator is defined in accumulator.v.

Thus, the rest of the modules are not expanded upon in this section as
they will be discussed in their relevant sections.

3.1.6 Timing Simulation

Unfortunately, the gate level timing simulation for the TLL module did not
execute as expected. As seen in the results, the number of padding bits did
not correspond to the number obtained in the functional simulation. This is
explained by the fact that upon the assertion of s LoadAB, register A never
gets loaded with the appropriate value, this is 15. on the next clock cycle,
the result of the ALU addition in the ACC is loaded into register A. That
addition is the value in ’A’ (0) added with the value in ’B’ (8), which get
loaded accordingly. Thus, register A contains the number 8 as opposed to

38 CHAPTER 3. TLL MODULE DESIGN

23. It is easy to calculate how many padding bits are required for a packet
of length 8 bytes, and that is 40 bytes, hence the contents of the PR and
PRout registers. After several discussions, we have attributed this error to
the fact that the mux responsible to correctly loading each register with
its content was designed using behavior modeling, which might have caused
some undesired results and configurations.

3.2 Counter

3.2.1 Theory

In order to implement the extractor/TLR, an up counter had to be designed
for the sole purpose of tracking the number of bytes for a single packet that
have transversed the TLL. As well, this is needed for the extractor/TLR
module in order to signal the occurrence of processing the 3rd and 4th bytes
in succession to allow the TLR/extractor to operate successfully. Thus,
because of the latter mentioned reasons, a counter logic module is required
within the TLL module. The counter design was originally thought out to be
a just a simple register that is to be originally initialized with zeros and sub-
sequently incremented on every successive clock cycle. This design method
proved to be the wrong approach as it required the involvement of the ALU,
which has a limited amount of clients that can access it at one time. This
is a problem that we had to deal with frequently for several modules, and
thus required multiple re-engineering efforts in order to satisfy our require-
ments. Thus, the most autonomous counter that we decided to implement is
a 16-bit binary ripple up counter, which is easy and flexible to design as well
as implement. Using Algorithmic State Machine (ASM), a hardware
design language that utilizes a concrete defined algorithmic methodology to
define a design of any hardware circuit, the counter, along with its many
control signals, was implemented The reader is welcomed to refer to [Lee00]
for more details. The up counter will be discussed with more details in the
following section.

3.2.2 Functional Specification

One of the most important and required modules that needed to be designed
for this project is the counter module. As described above, the counter
module has but two clearly defined purposes in the operation of the pipeline:

• When there are no packets or bytes of packets flowing through the
TLL, the counter is to remain in the OFF state, while being preloaded

3.2. COUNTER 39

Figure 3.5: Initial counter algorithm

with ”zeros” ready to begin counting at the moment a byte is presented
to the TLL. One thing to mention here is that we have adapted a
packet prediction mechanism to forecast to the counter the presence
of a packet at the TLL input. This was necessary in order to kick start
the counter to begin counting.

• When a packet is indeed at the input of the TLL, the counter is to
begin counting, starting from zero and resetting when the TL value
has been reached. The counter will have exposure to the TLR, loaded
by the extractor module, and be able to use it as a comparator to
determine when to stop counting and reset back to zero.

• As bytes traverse the TLL, the counter will generate several signals
that are required by other modules. These signals indicate when the
counter has reached a predetermined and specified value, i.e. the 5th
byte, the 6th byte, etc. The following signals are generated by the
counter module

� c DoneC : signal to indicate that the counter has done count-

40 CHAPTER 3. TLL MODULE DESIGN

Figure 3.6: Initial counter implementation

ing; that is the counter has reached the TL value. Downstream
modules refer to this as EOP.

� s Done3 : signal to indicate that the counter has reached the 3rd

byte.

� s Done4 : signal to indicate that the counter has reached the 4th

byte.

� s Done5 : signal to indicate that the counter has reached the 5th

byte.

� s Done6 : signal to indicate that the counter has reached the 6th

byte.

� s Done7 : signal to indicate that the counter has reached the 7th

byte.

� s Done8 : signal to indicate that the counter has reached the 8th

byte.

Besides these signals, the counter makes available the current counter
value. This value is stored in the registers that make up the counter, and
is broadcast to the rest of the modules if they need to use this value. The
counter module is a simple module, and hence using ASM, we will examine
its design. The ASM requires us to define pseudocode, generate an ASM
chart, generate a data path, generate a detailed ASM chart, and generate a
control path. Below is the design methodology of the up counter:

1. Pseudocode: S0. s counter value ←− 0

C0. If (s counter value = s TLR), (goto s0) else (goto s1)

S1. s counter value++, (goto c0)

2. ASM chart

3. Data Path

3.2. COUNTER 41

Figure 3.7: ASM chart

Figure 3.8: Data path

4. Detailed ASM chart

5. Control Path

6. Status Signals

The data path is responsible for the data part of the counter, i.e. in-
crementing the up counter by one at each rising edge of the clock. On the
other hand, the control path is responsible for controlling the operation of
the up counter, i.e. instructing the counter to preload the value zero into
the up counter or instructing it to increment as long as it c DoneC hasn’t
been asserted. c DoneC and the rest of the status signals will be generated
using a simple comparison method using primitive gates, described in the
next section.

42 CHAPTER 3. TLL MODULE DESIGN

Figure 3.9: Detailed ASM chart

3.2.3 Hardware Specification

The counting sequence that is to be executed by the up counter will be of
the following manner: 000, 001, 010, 011, 100, 101...but to be applicable
over 16 bits. Examining the sequence with a closer view and with the
help of truth tables and logic minimization, we were able to determine that
the toggling capability of the T-flip-flops, which are nothing more that D
flip-flops whose inputs are their inverted outputs, depending on the input
makes them ideal for our up-counter. Combinational logic will have to be
implemented in order to trigger the toggling of the flip-flops depending on
what value needs to be changed at every clock cycle. For this reason, the
flip-flops are to be made of the synchronous type, where the clock inputs of
all the flip-flops are connected together and are triggered by the input pulses,
making the flip-flops change states simultaneously. Figure 3.13 represents
the interconnection of the flip-flops to implement the up counter.

In figure 3.13, the ”reset” and ”enable” signals to the flip-flops are left in
their primitive state as they will be determined according to the ASM design.
Both of these signals will be determined as we begin to clearly define our
hardware circuitry for the counter module following the ASM methodology
of above.

The counter module is subdivided into two main sub-modules: a data
path module and a control path module. As mentioned earlier, the sole
purpose of the data path module is the implementation of the up counter
using the method of figure 3.13, as well as the generation of the various
status signals. The up counter will utilize 16 FFs to count up to 65,535.

3.2. COUNTER 43

Figure 3.10: Control path

Figure 3.11: Status signal

Although we limited the maximum length of our packet to 100 bytes due
to performance issues, we still implemented all 16 FFs. The status signals
will be generated from within the XOR tree in the data path. c DoneC will
be a combinational output signal between s TLR and s counter value, while
the other status signals will each be a sequential output signal of the AND
tree from within the XOR tree. Thus the inputs to the data path module
are the global clock (clk), the global reset signal (resetb), s TLR, s LoadC,
and s IncC that are signals generated from the control path. The data path
module also takes in a secondary input discussed earlier and is labeled as
start counting. This signal is used to forecast a packet that is about to
transverse the TLL module. The start counting signal also has for purpose
to kick-start the up counter once every arrival of a new packet. Thus, it
is connected with c DoneC via a NOR gate to provide that functionality.
c DoneC is the only relevant signal because it is the one directly affecting
the control path module. Thus, we have the following definition for the I/O
signals of the data path module:

44 CHAPTER 3. TLL MODULE DESIGN

Figure 3.12: XOR tree

• Input: clk, resetb, s TLR, s LoadC, s IncC, start counting

• Output: c DoneC, s Done3, s Done4, s Done5, s Done6, s Done7, s Done8,
s counter value.

The control path module will control the operation of the up counter
depending on the state that we are currently in. As per step 5 of the
ASM method, the masked c DoneC signal (containing start counting)
initiates the status change of the control path from loading with zeros to
incrementing, which is going to initiate the up-counter’s operation. Thus
we can safely deduce from design (usage of ”one-hot encoding” method)
and from the above mentioned that whenever s IncC is asserted, s LoadC
is de-asserted and vice-versa. Let us examine in more details those two
signals as they prove to be the operating signals of the counter module.
The control path module is further broken into two sub-modules as well:
STATE0 CL module responsible for outputting s LoadC, and STATE1 CL
module responsible for outputting s IncC . from a high-level perspective, we
intended for the s LoadC signal to preload zeros into the up counter while the
s IncC signal to increment the counter. We quickly realized that our choice
of synchronous ripple counter using T flip-flops proved extremely valuable.
The main characteristic of the counter’s T FFs is that, provided all their
control signals are present, i.e. Enable, clk, and reset, they will continue
to operate at each clock cycle generating the correct counting sequence.
Thus, in order to control their operation, we just have to make sure that
the Enable signal is ON when there is a need to count, and OFF when there

3.2. COUNTER 45

Figure 3.13: Ripple binary up counter

isn’t. Hence, s IncC as an output signal of STATE1 CL, and ultimately
an output of the control path module, will be used as the Enable signal
being inputted into the data path module. Similarly, in order to preload
the counter with zeros, we need to preload or load all of the T FFs with
zeros. This can be done by driving their reset signal whenever required.
Thus, s LoadC will be used as one reset signal that is to be combinationally
incorporated with global reset signal in order to provide a reset circuitry for
the FFs. Having defined the role of both output signals of the control path, a
conflict aroused with regards to the operation of these signals. The ”one-hot
encoding” method allows us to only assert one signal at every clock cycle.
As well, the T-FFs are require that when the Enable signal is asserted, the
reset signal has to be de-asserted, whereas when the reset signal is asserted,
it will take priority over any other signal. This will only cause a conflict
when and only when the global reset signal is asserted, where both s IncC
and s LoadC will be driven high. To combat this situation, we forced each
signal to behave in an opposite manners by using an Asynchronous Set
(AS) sequential logic circuitry for s LoadC, while using an Asynchronous
Reset (AR) sequential logic circuitry for s IncC. The use of an AS flip-flop

46 CHAPTER 3. TLL MODULE DESIGN

Figure 3.14: Data path of the counter module

for s LoadC allows us to reset the T-FFs in the data path module every
time the global reset line is asserted. This happens because the AS is being
driven by the inverse of global reset, which we have chosen to be low. Thus,
whenever the global reset is asserted, it will drive a logical high,’1’, into
the AS flip-flop, which will translate to a logical ’1’ as the reset line to the
T-FFs, hence resetting all of them with a ’0’. Thus, we can now define the
inputs and outputs for the control path module ad being the following:

• Input: clk, resetb, c internal reset (combinational circuitry for resetb
and c DoneC)

• Output: s IncC, s LoadC

Figure 3.15 illustrates the control path module for the counter module.
With both sub-modules defined for the counters, we can now examine the
counter module’s I/O signal port list as the following:

• Input: clk, resetb, s TLR, start counting

• Output: c DoneC, s Done3, s Done4, s Done5, s Done6, s Done7, s Done8,
s counter value

3.2. COUNTER 47

Figure 3.15: Control path of the counter module

Figure 3.16: Counter module architecture

3.2.4 Functional Simulation

Functional simulation for the counter was executed using the top module
test bench (counter top tb.v) definition along with the top counter module
(counter top.v). The functional simulation results are shown in the counter
section of Appendix A. Functional simulation is needed to test the ability of
the counter module to incrementally count beginning from zero and ending
at a specified value. As well, we needed to test the ability of the module
to produce all of the status signals required. The test bench targeted the
behavior of the counter module as closely as possible to emulate its interac-
tion with the rest of the modules. Thus, as can be seen from the simulation
results, the test bench asserts the global rest line (active low) in the begin-
ning of the simulation at 10 ns and de-asserts it at 30ns. This is required
to load in the ’0’ values into the T-FFs. Next, the start counting (referred
to as startC in the counter module) is asserted at 60ns and de-asserted at

48 CHAPTER 3. TLL MODULE DESIGN

180ns. This has kick started the counter to begin the up-counting process.
Of notice next is that TLR becomes valid after the 5th byte transverses the
TLL. This will represent the maximum value that the counter has to count
to before asserting the c DoneC signal. As we progress through the results
with regards to time, we can see how the status signals are all being asserted
as designed, i.e. s Done3 after the 3rd byte, s Done4 after the 4th byte, etc..
finally, after the 21st byte has been received, the c DoneC signal is asserted
and the counter is reset back to ’0’ to start counting again. The results
obtained from functional simulation proved to us that the counter behaved
as it was designed to do, though one major flaw surfaced while closely exam-
ining the results. It was thought that upon the assertion the startC signal,
the counter would immediately begin to count incrementally. Yet, this is
not the case in our simulation results. The counter’s actual behavior is at-
tributed to the fact that writing the code in RTL to model its operation
allowed us more flexibility and control over the behavior of the counter, but
in the process created extra sequential logic that might have not existed if
the code was written behaviorally. As noticed, the counter begins counting
2 full clock cycles after the assertion of startC. This is attributed to the
fact that when startC enters the control path module, it correctly initiates
s IncC on the next clock cycle. s IncC in its turn enables the T-FFs to
begin incrementing on the next clock cycle as well, hence losing two clock
cycles in the process. This was considered to be a flaw in the operation of
the counter due to the result of the design.

3.2.5 Synthesis

Beginning with the top module representation, the I/Os identified above are
the signals that constitute the COUNTER TOP black box. Delving closer
into the design of that black box, we discover that two components are in-
stantiated: the CONTROL PATH CL and the DATA PATH CL along with
their associated I/O signals. The data path component is further broken into
two T FF REG EIGHT parts, each representing an ARSE REG EIGHT
component whose input is tied to the combination of its inverted output
with the input to the T FF, and an XOR TREE, representing the com-
binational logic needed to generate the various status signals. Yet, the
ARSE REG EIGHT component is nothing but a definition of 8 D-FFs (AR-
SEs) that make up our up-counter along with their interconnections accord-
ing to figure 3.13. Looking closer at the ARSE components, we notice
that there are 8 D FF ARSE components connected to their respective in-
put/output busses (d[7:0] - q[7:0] ; d[15:8] - q[15:8]). The XOR TREE

3.3. EXTRACTOR 49

on the other hand has two components to it: the combinational logic for
c DoneC and the sequential logic for s Done3, s Done4 and the rest of the
status signals. This is the circuit that was designed in step 6 of the ASM.
Comparable to the data path, the control path is also divided into two
components, STATE0 CL and STATE1 CL. As illustrated in figure 3.15,
STATE0 CL defines a D FF AS along with the combinational logic as its
input, while STATE1 CL defines a D FF AR along with its combinational
logic as its input. Thus, with the definition of both path modules, we can
conclude that the counter module synthesized into the precise hardware cir-
cuit that we intended for it using RTL code generation.

3.2.6 Timing Simulation

After synthesizing our counter for the creation of the gate level modeling,
we used the Cadence design tools to generate the net list that makes up the
design of the complete counter. We then attempted a first trial simulation
using the same test bench as in the functional simulation to generate our
gate level timing simulation results. The results are outlined in Appendix
A for the TLL. As can be seen, the gate level simulation results matched in
an accurate manner the results obtained for functional simulation. The net
list verilog code reflected the exact behavior of our counter, hence declaring
success with regards to the design of this module.

3.3 Extractor

3.3.1 Functional Specification

As mentioned in the section covering the counter module, and as stated in
the beginning of the TLL design history, the extractor has a function of
extracting the total length value stored in the 3rd and 4th byte of the IP
packet’s header. It is then responsible to transfer this value into a special
purpose register called TLR. The TLR contents will be made available for
other modules to use depending on their requirement. The TLR is to hold
its contents until the next packet is injected into the TLL and along the
pipeline. We have slightly modified the operation of the extractor module
after designing the counter module. It became obvious that the extractor as
well as the TLR can be grouped into one entity instead of two entities as the
original design slated them to be. The TLR will then act as an extractor
based on the reception of certain control signals as and act as a temporary

50 CHAPTER 3. TLL MODULE DESIGN

storage medium as well for the TL value based also on these same control
signals.

3.3.2 Hardware Specification

The extractor module will only consist of the Total Length Register,
which is to be constructed using 16 D-flip-flops to hold the TL value of
the packet. The reasoning behind the number of FFs is the same as the
one adapted for the counter’s 16-bit FFs: Although we are limiting our IP
packet’s length to be 100 bytes, where only 7 bits are needed, we chose to
implement the extractor to reflect as much as possible a real-life application
for the product. Thus, we have redefined our design for the extractor/TLR
than was previously discussed in the above section of the design history.
Figure 3.4 outlines the implementation of the D flip-flops that constitute
the extractor/TLR. As illustrated by figure 3.4, the D flip-flops utilize their
ability to employ their enable signal to be able to latch and hold the value
that is currently available at their input. Thus FF#0 through FF#8 will be
latching the current data available at the bus upon the assertion of s Done3,
which is indeed their ”enable” signal. This will represent the least significant
byte of the TL, which will occupy bits 0 through 7 in the TLR. On the other
hand, FF#8 through FF#15 will be latching the current data available on
the pipeline bus upon the assertion of s Done4, which is their ”enable”
signal. This will now represent the most significant byte of the TL, which
will occupy bits 8 through 15 in the TLR. The type of flip-flops used for the
realization of the TLR are ARSE (Asynchronous Reset - Synchronous
Enable) D flip-flops, which allows for the resetb signal to take precedence
over any other signal, therefore making it asynchronous, and for the enable
signal to be detected on the next rising clock edge, making it a synchronous
signal. After the TLR has latched the 4th byte of the current packet, it
will be able to hold this value until s Done3 and s Done4 get reasserted
again, making the TLR available to the rest of the modules while Proknet
is processing the packet. The only setback from this design is that the TLR
never gets re-initialized to zero after the arrival of the first packet, which
was point recognizable in the design, but most likely having no side effects.

3.3.3 Functional Simulation

The functional simulation that was run for this module delivered the desired
results in terms of what we designed the module to execute and in terms of
what the test bench tested and verified. The results of the functional simu-

3.3. EXTRACTOR 51

Figure 3.17: Extractor architecture

lation are presented in the extractor section of Appendix A. The extractor
test bench (extractor tb.v) used the top-level module instantiation of the
extractor module (extractor.v), which is actually the only component that
is defined in this module. Examining the results more carefully in parallel
with the test bench, we can observe that the test bench asserts the resetb
signal at 10 ns and then de-asserts it at 30ns. This is needed to initialize
the FFs with a ’0’ value in order to begin the extraction. At the same time,
en1 and en2, which represent s Done3 and s Done4 respectively, are set to
’0’ at time 0ns, then asserted at different times in order to correspond to
the arrival of the relevant count control signals, which are at 100ns for en1
and 140ns for en2. As well, at 240ns en1 is de-asserted and at 320ns en2 is

52 CHAPTER 3. TLL MODULE DESIGN

de-asserted, to allow for the FFs to latch the correct value from the pipeline.
Now, as far as the pipeline data in is concerned, the test bench sets a value
at 140ns and another one at 320ns to correspond to TL’s LSByte and MS-
Byte respectively. As can be seen from the simulation, the TLR contains
the correct values after en2 is de-asserted, which is the total length of the
current packet.

3.3.4 Synthesis

The synthesis process produced the hardware components that we defined
in our RTL code. We haven’t defined the I/O signals in the functional
simulation section, so we will take the opportunity to do it now:

• Input: clk, resetb, c data in (pipeline data in), s Done3 (s Enable1),
s Done4 (s Enable2)

• Output: s SPR (s TLR)

The synthesis results are located in Appendix A for the extractor section.
If we examine these results, we can confirm the fact that we were able to
build the components that we had envisioned for the extractor/TLR. Look-
ing first at the top module, the I/O signals outlined above are the ones that
make up the black box labeled TLL EXTRACTOR. Exploring the black
box more closely, we identify two parts that have been defined labeled as
ARSE REG EIGHT 0 and ARSE REG EIGHT 1, each of which is an en-
tity representing 8 D FF ARSEs along with their respective I/O signals, i.e.
s Enable1 for ARSE REG EIGHT 0, s Enable2 for ARSE REG EIGHT 1,
as well as the distribution of the input bus (d[7:0] - d[15:8]) and the output
bus (q[7:0] - q[15:8]). And finally, we obtained the physical representation
of the D FF as defined by Cadence design tools labeled DFCNS1Q, which is
what was achieved via the newly generated verilog code containing the net
list.

3.3.5 Timing Simulation

Once the synthesis was completed, we proceeded to generate the net list
that composes the physical representation of the counter circuit in hardware.
Again using the Cadence simulation tools, we re-ran the test bench that was
formulated for the functional simulation against the newly generated net
list verilog code. The results of the gate level timing simulation are placed
in Appendix A in the extractor module section. As can be seen from the

3.4. PADDER 53

results, the final value stored in SPR register reflects the data in values after
de-assertion of en1 and en2 at specified points in time. Comparing these
timing results against the ones obtained through functional simulation, we
can clearly declare that both are the same, hence achieving our goal in the
design for this particular module.

3.4 Padder

Along the same lines as the counter theory, we can take advantage of the
TLR and extractor performing their operation at an early stage in the
pipeline. By retrieving the TL of the IP packet, it is possible to calcu-
late the amount of padding bits that are required in order to make the total
packet length (CPCS PDU) a multiple of 48, which is required by the ATM
layer and hence the SAR. Obtaining the number of padding bits early on in
the pipeline became a necessity in order to correctly store the CPCS SDU in
memory as this will be explained in the memory module description. Thus,
we have defined the need for another module within the TLL module labeled
padder logic module. This module is solely responsible for calculating the
required number of padding bits and storing them in a register for retrieval
by the control unit and/or any other module on the pipeline. The design of
the padder logic evolved extensively as it was hard to determine the type
of method and algorithm to be applied in this case. The basic idea is to
be able to calculate the number of padding bits required for each packet.
The trick lies in the ability to be able to correctly identify the TLR and use
the ALU definition in order to obtain our result. Figure 3.18 illustrates our
first iteration at designing the padder logic. The algorithm represented here
basically states that the TLR is to be incremented by 8 bytes to account
for the trailer, then for the result to be loaded into the accumulator. The
accumulator is then checked for negativity; if true, then we have reached our
desired number for padding bits, thus perform inverse two’s complement on
the current contents of the accumulator, and load it into the Padding Reg-
ister (PR). If the negativity check is false, then we have not yet reached our
number, thus keep iterating by subtracting 48 bytes from the accumulator
until we reach our desired number. The problem with this approach is that
we need to utilize the ALU for operations such as addition and subtraction
as well as use the accumulator for temporary storage. This eventually cre-
ated a bottleneck in our pipeline design as we only have access to only one
ALU, which is also being used by the microprocessor for instruction decod-
ing and operand fetching. This will in time generate racing conditions as

54 CHAPTER 3. TLL MODULE DESIGN

well as arbitration conflicts with regards to which module is allowed to use
the ALU at any given clock cycle.

Figure 3.18: First approach to padder algorithm

A better design was hence implemented keeping in mind the above mis-
takes, and while it was not the final design, it did lead us in the right path.
We have taken in consideration here that the ALU can only perform one
operation at a time, and that the accumulator should only be used as a
temporary register if and only if there is a valid number to be examined,
i.e. the number of padding bits is valid. This allowed for the creation of an
algorithm that utilization of the ALU by the padder logic module at speci-
fied and set periods of the clock cycle, where it is easily predictable what is
to occur next in terms of the pipeline and the flow of bytes per packet. The

3.4. PADDER 55

padding algorithm was hence modified to operate in the same manner as the
counter algorithm, in terms that the padding algorithm was to be executed
only upon the availability of two signals: s Done5 and s Done6. These two
signals indicate the TLL’s processing of byte 5 and byte 6 respectively, which
in its turn is only an indication by the counter module that it has reached
counting up to value 5 and 6 respectively as well. The algorithm is defined
in figure 3.19.

Figure 3.19: Next-generation approach to padder algorithm

As mentioned above, the algorithm is designed to operate around the
availability of s Done5 and s Done6. These two signals are going to be
generated by the counter module and relayed directly to the padder module.
s Done5 indicates to the padder module that the value in the TLR is valid
and that it is available for use. Upon validation of the TLR, the padder
module will perform an operational request to the ALU instructing it to
add the value in TLR with the numerical value 8. This is necessary in order
to account for the addition of the trailer to the CPCS PDU, since padding
will have to be calculated with the trailer attached to the PDU. The next

56 CHAPTER 3. TLL MODULE DESIGN

clock cycle should allow the processing of the 6th byte on the pipeline, hence
the counter reaching a value of 6 and generating s Done6. This signal is
implemented in order to allow a grace period or a buffering mechanism for
the ALU to perform its instructed operations. But as it turned out, the ALU
was designed in combinational logic and not sequential, hence consuming
zero clock cycles per operation. The next step in the algorithm is to begin
subtracting the value 48 from the accumulator itself, which now contains
the TLR. Once we reach a negative value in the accumulator, the padder
module will receive the negative flag signal via the control unit. At this
very instant, the value held in the accumulator contains the value of the
padding bits that need to be inserted into the CPCS PDU to make it a
CPCS SDU. The next step would be to perform inverse two’s complement
on that value, and instantly move it into PR, which is outlined as the last
step in the algorithm. Figure 3.20 illustrates the padder logic operations.

Thus, we have clearly identified the three most crucial modules that are
to be included in the TLL as separate entities operating within the scope
of the ”total length” logic. These modules, autonomous as they may be,
all depend on each other in order to either begin or terminate operation or
kick start another module’s operation. Left to include in the TLL is the
ALU module and the accumulator module. These two modules will not be
designed in the TLL, but merely instantiated in the TLL based on their
design that stems from the CPU design discussed later in this document.
The padder module will only use the ALU and the accumulator in the TLL.

3.4.1 Functional Specification

As we have now outlined two of the three modules that compose the TLL,
we will now examine the most important module needed for the correct
operation of Proknet. In very few words, the Padder Logic is responsible
for calculating the number of padding bits that are needed to make the
IP packet’s length a multiple of 48, otherwise referred to as ”pad bits” in
the introduction. The number of pad bits ranges from 0 to 47 bytes to
compensate for the SAR’s ability to trigger on 48 byte cells only. The
implementation we followed here is the same one outlined in the theory
section with minor details to correctly operate the padder logic. Figure 3.21
below is an illustration of the logic implemented to calculate the number of
required pad bits.

From the operational behavior of the padder logic defined above, we
were able to determine a corresponding algorithm that is to be implemented.

3.4. PADDER 57

This algorithm was defined using the ASM methodology as was done for the
counter module. We will omit the details of ASM process due to its length,
but we will include the algorithm in figure 3.22.

The algorithm begins by initializing the various temporary registers to
zero by loading them with the ’0’ value. This is necessary to occur in order
to account for any previous values that where not resetted or cleared by
the previous iteration of the padder module. The padder remains in the
idle state up until the counter has reached the 5th byte, when s Done5
becomes asserted. As this state, the padder module will load the value ’8’
in register ’A’ while loading the s TLR value in register ’B’. This is done
in order to account for the extra bytes that are added by the trailer in our
calculation of the pad bits. Register ’A’ and register ’B’ are propagated to
the ALU module for the addition operation. To note here is that the ALU
is designed so that it always perform the addition operation by default until
it is instructed to perform a subtraction. For this reason, we don’t need to
instruct the ALU to add at this state because it is already ready to perform
the addition as soon as it receives its inputs. The ALU does not consume
any clock cycle while executing its operation, thus we can load the value
stored in the accumulator module into the accumulator register defined in
the TLL module. At this point we are waiting for s Done7 to be asserted in
order to move to the next operation. Actually, it was later discovered that
this is an obsolete conditional state as our pipeline architecture allowed us
to naturally increment from one byte to another, and hence from one count
value to another. Yet, we chose to implement it the way we designed it.
Hence, once s Done7 is asserted, register ’A’ is loaded with the accumulator
register’s value, while register ’B’ is loaded with the number ’48’, where
both registers are propagated to the ALU along with the subtraction signal.
At this point, we keep checking for the c Neg signal to be generated by
the ALU for the subtraction. As long as the c Neg is low, we keep loading
register ’A’ with the accumulator value, register ’B’ with the value ’48’ and
we keep subtracting. Once c Neg is high at a certain clock cycle, this signals
the padder module to move the current value of the accumulator from the
accumulator module into register ’temp’ in the padder module, which in the
previous clock cycle contained the ’0’ value. The ’temp’ register, which now
contains a negative number, feeds into the inverse 2’s complement module
that is to calculate, as the name suggests, the inverse two’s complement on
the number that is stored in register ’temp’ to output the number of padding
bits. The inverse two’s complement module is designed using combinational
logic, thus it will output its result in the same clock cycle to register ’PR’,
which previously held the ’0’ value. At this point , register ’PR’ will hold

58 CHAPTER 3. TLL MODULE DESIGN

its value until c DoneC is asserted, which indicates that we are processing a
new packet. This way, the rest of the modules, such as the memory module
and the SAR module, will have the ability to access this register.

Following this algorithm, we can define a data path sub-module and a
control path sub-module within the padder logic module, so that it is clearly
defined what is involved in the data and control paths. We will now examine
the implementation of the padder module in hardware.

3.4.2 Hardware Specification

From the description of the functional simulation, we can determine the
hardware that is to be implemented for our padder module. Since this is
one of many complicated designs in this project, we had to rely on a myriad
of components in order to determine what is to be included in each module
(data path and control path).

The data path module is responsible for correctly configuring the differ-
ent data items in order to generate the pad bits. Hence, it is responsible for
the implementation of all the relevant registers (’A,’ ’B’, ’temp’, ’PR’), all
the multiplexors that are needed to properly switch the data to the adequate
register, and the implementation of inverse 2’s complement logic. Beginning
with the registers, they were created in the same fashion that the counter
FFs were created, by using ARSE FFs each controlled by its own control
signal. Register ’A’ and ’B’ utilized 16 FFs created by molding 8 ARSE FFs
at one time, assigning them to represent the LSByte and the MSByte of
the registers. Register ’A’ and ’B’ are both controlled by c LoadAB, which
becomes the enable signal for their respective FFs. The input to these two
registers (i.e., FFs) are the multiplexors that correctly switch the data de-
pending at which state the data path module is at. The input to register ’A’
will be the output of the multiplexor toggling between the s TLR value and
the accumulator value generated by the accumulator module. Although this
register is located in a different module, we had to instantiate it, as is the
same case with the ALU, within the TLL module in order to gain access to
their functionalities. Thus, the accumulator register is also controlled by a
signal labeled c LoadAcc. On the other hand, the input of register ’B’ will
be the output of a multiplexor that toggles between the value’8’ and the
value ’48’. Both multiplexors are controlled by s SelMuxInput generated
again from the control unit depending at the current state. The other two
registers are ’temp’ and ’PR’. Register ’temp’ is controlled (enabled) by
s LoadTemp, which gets loaded with the accumulator contents when c Neg
is asserted. The output of register ’temp’ is fed into the combinational cir-

3.4. PADDER 59

cuitry that generates inverse 2’s complement. On the subsequent clock cycle,
the output of the combinational circuitry is fed into register ’PR’, which is
controlled by s LoadPR. The output of register PR is s PR, representing
the number of pad bits required for this packet. All of the above mentioned
registers are reset globally and loaded with the ’0’ value internally by the
combinational circuitry of resetb and s ClearRegs. Let us recap the different
I/O signal for the data path module:

• Input: clk, resetb, s ClearRegs, c LoadAb, s LoadTemp, s LoadPR,
s LoadPRout, s SelMuxInput, s TLR, s ACC (content of accumulator
register)

• Output: s PR, s PRout. s inputA (content of register ’A’), s input B
(content of register ’B’)

The control path contains less variety of components, but nevertheless
contains several instances of these same components. Essentially, the control
path module is employed to provide all the control signals that are required
to operate the data path components. Based on the ASM modeling of the
control path illustrated in Figure 3.23, the control signals were implemented
using the ”one-hot

encoding” technique, which maps each control signal with a flip-flop. If
we examine figure ?? closely, we can see that the process is initiated with
the assertion of c DoneC, which indicates that we are now processing a new
packet. This would cause all of the registers to be cleared by asserting
s ClearRegs. This is done by using an AS flip-flop for the same reason
explained in the counter module, and that is the fact that the ’reset’ flip-
flops would need to be differentiated from the others and this is by making
them generate a different output whenever they are to be resetted. As stated
in the counter module, the AS FF will receive an active-high reset signal
that will be mapped as a ’set’ signal that sets off a logical high (’1’) output
when asserted. The other control signals are implemented using AR flip-
flops which receive an active-low reset signal that is mapped as a ’reset’
signal that sets off a logical low (’0’) when asserted. Thus, except for 2
control signals (s LoadAB and s LoadAcc), all of the others do not require
any combinational logic to be implemented for their generation. Thus, each
state will be using an AR FF to generate their respective control signals,
which will ultimately drive the ’enable’ signal to the relevant registers and
their flip-flops. For example, state 6 labeled s6 will generate s LoadPR
which will be the ’enable’ signal driven into registers PR’s flip-flops. In
similar manner, the other states will generate their corresponding signals.

60 CHAPTER 3. TLL MODULE DESIGN

on the other hand, s LoadAB and s LoadAcc will be generated as a result of
combinational OR gates. This is the case because register ’A’, ’B’, and ’PR’
are used by several different stats, hence require to be mapped correctly.
Figure 3.24 illustrates the above-discussed circuits.

Let us now recap the different I/O signals for the control path:

• Input: clk, resetb, s Done5, s Done6, s Done7, s Done8, c Neg, c DoneC

• Output: s ClearRegs, s LoadAB, s LoadAcc, s LoadTemp, s LoadPR,
s LoadPRout, s ALUSel, s SelMuxInput

If you noticed that there is an extra control signal (s LoadPRout) on
the port list that was not discussed earlier, that is quite normal. We decided
to add an extra register, labeled PRout, in the padder logic module when
we completed the system integration. It was revealed during that run that
register PR was not holding its value long enough to be retrieved by the
memory module in order for it to operate correctly (the memory module
will be discussed in the following section). We noticed that the c DoneC
signal was causing the registers to reset quicker than expected. To combat
that, we decided to introduce a non-intrusive register whose input is register
PR’s output, and whose output is the same as register PR’s output, i.e. the
number of pad bits. The trick with this register is that it is not tied to the
reset circuitry that the others are tied to, which means that this register
will never be reset. It just follows register PR’s output one clock cycle later.
This worked as an effective delay for the rest of the modules to be able to
latch the contents of PR because upon the assertion of c DoneC. With both
sub-modules defined, we can examine the complete I/O signals of the padder
module:

• Input: clk, resetb, c DoneC. S Done5, s Done6, s Done7, s Done8,
c Neg, s ACC, s TLR

• Output: s ALUSel, s LoadAcc, s ClearRegs, s PR, s PRout, s InputA,
s InputB

3.4.3 Functional Simulation

The functional simulation of the padder module was not executed due to
the unmanageable number of I/Os that are used to operate the module.
We decided that the integration of the padder module into the TLL module
would give us enough coverage that we would be able to debug any problems
that would arise from the padder module.

3.5. ALU 61

3.4.4 Synthesis

Comparable to the counter module, the padder module achieved the repre-
sentation of the many components that were born out the hardware speci-
fication. As outlined in Appendix A for the padder module, the op module
is divided in two components, the data path and the control path. The
data path unit itself had several components that it encircled as part of it
makeup. Of notice are the 10 ARSE REG EIGHT modules that constitute
the 5 defined registers, each of which gets broken down to 8 D FF ARSE
flip flop definition. As well of notice are the 16 muxes that are defined in the
data path module. These multiplexors take as input a single bit from the
two elements that have to be selected, and output a single bit as a result.
Our definition of these multiplexors was written in behavior mode, hence
losing all control of the components and thus obtaining the observed results.
Squeezed in there after register ’Temp’ is TWO COMPL INVERSE, which
is nothing more than combinational logic circuitry. The control path module
is broken up into 7 different state representations, each of which correspond-
ing to a specific control signal. The input to these various state modules is
nothing more than the combinational circuitry outlined in figure ??. it is
left up to the reader to verify the synthesis results for the control path.

3.5 ALU

3.5.1 Theory

In this section, we introduce the design of the arithmetic/logic unit, or
ALU for short. This is usually found in the main processing unit, and
performs all additions, subtractions, multiplications, divisions and logical
operations upon integers. The processing unit controls the ALU by provid-
ing it with signals in order to inform it which operations to execute. The
ALU’s output is usually held in a special purpose register, called the accu-
mulator. The width, in bits, of the words (conventionally, two inputs are
utilized) that the ALU handles is usually the same as the one used by the
external busses.

The ALU is a purely combinational circuit which represents the workhorse
of the main processor, and thus must be carefully designed, in order to en-
sure that it does not pose any bottleneck issues [Lee00]. Since the ALU aids
in the instruction execution, it resides on the datapath of the main proces-
sor, and feeds, as mentioned, a register (the accumulator) in order to hold
the value that it just calculated. The ALU also aids us in minimizing logic

62 CHAPTER 3. TLL MODULE DESIGN

gates and routing paths, since it can also be used to handle memory access
instructions, which need calculations to be performed in order to be exe-
cuted. Different algorithms can be implemented within the ALU to speed
up the operations, while for even faster execution, multiple ALUs can be
instantiated within the circuit to distribute the processing load. The typical
ALU consists of an adder that can, with external control, perform other
functions. That said, it is now assumed that the adder is the nucleus of the
ALU, and the addition operation is the most basic and time-consuming op-
eration. The adder implementation can be one of many: ripple carry-adder,
fast adders, carry-skip adders and carry-select adders.

3.5.2 Design History

The ALU design phase started by defining the operations needed for Proknet
to perform its duties. What came out of this first discussion, is that a 16-
bit full adder, and a 16-bit comparator were the only two circuitries that
are needed. The full adder would be used in conjunction with a circuit
that implemented a two’s complement inversion in order to perform 16-
bit subtraction. The fact is that subtraction is just addition of a negative
number, which is the reason for the two’s complement inversion circuit. The
comparator would be a simple one, whose outputs consist of feedback that
the first input is either greater than, less than or equal to the second input.
This was envisioned to be used in the padding algorithm, where we need to
compare to a particular number (48) in order to segment the IP packet into
fixed-size payloads.

The 16-bit comparator is presented first. Table 3.1 shows the truth
table of a 1-bit comparator. There are four inputs, mainly Ai and Bi, the
respective input bits, and PGT (Previous Greater Than) and PLT (Previous
Less Than), the memory elements of the circuit. The outputs at each stage
are two in number: GT (Greater Than) and LT (Less Than), which indicate
that, using previously found decisions, we can currently choose which of
the inputs is greater than the other (if at all). The idea is that if the
output of each bit decision is made and propagate through to the next bit,
at the end of the most significant bit position decision, the GT and LT
outputs will define which input is greater than the other (see figure 3.25
for a diagrammatical view of the schematic). If both GT and LT are de-
asserted, then the numbers must be equal, and hence external logic has to
be built to create an Equal line. From the truth table, we can derive the
following equations

3.5. ALU 63

Ai Bi PGT PLT GT LT
0 0 0 0 0 0
0 0 0 1 0 1
0 0 1 0 1 0
0 0 1 1 0 0
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 0 1
1 0 1 0 1 0
1 0 1 1 0 0
1 1 0 0 0 0
1 1 0 1 0 1
1 1 1 0 1 0
1 1 1 1 0 0

Table 3.1: Comparator circuit truth table

GT = AiBiPGTPLT+AiBiPGTPLT+AiBiPGTPLT+AiBiPGTPLT+AiBiPGTPLT
(3.1)

LT = AiBiPGTPLT+AiBiPGTPLT+AiBiPGTPLT+AiBiPGTPLT+AiBiPGTPLT
(3.2)

EQ = GT + LT (3.3)

where it is assumed that LT = 1, when Ai <Bi; and GT = 1, when Ai
> Bi.

The 16-bit full adder is also implemented using 1-bit full adder blocks.
The truth table of a 1-bit full adder is shown in table ??. There are two
inputs, mainly the previously calculated carry, and the current input. The
outputs are the calculated carry and the current sum. Just like in the
comparator design, each 1-bit adder is cascaded by another, and thus sixteen
instantiations are needed in order to correctly and efficiently operate on 16-
bit inputs. The carry out of each block is fed as the carry in of the next
block, and thus at the most significant bit position, the carry out is the
actual final carry status for the whole 16-bit operation (see figure 3.26 for a

64 CHAPTER 3. TLL MODULE DESIGN

A Cin Co S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Table 3.2: Full Adder circuit truth table

diagrammatical view of the schematic). From the truth table, we can derive
the following equations:

S = ACin + ACin (3.4)

Co = ACin (3.5)

As a last note for this section, it is worth mentioning that numerous
a design cycle were spent in order to attempt the definition of the control
signals for the ALU. A myriad of designs were presented and discussed, but
their inclusion is only restricted to Appendix H (pgs 20-24). The actual
solution to this issue is presented in section 3.4, as the ASM methodology
was used to resolve the problem.

3.5.3 Functional Specification

The implemented version of the ALU was majorly modified, as design holes
were found in the previous implementations. First of all, the comparator
was scrapped in favor of a better padding algorithm (see section 3.4). Sec-
ond, the full adder was transformed into a full adder-subtractor (FAS)
through the addition of XOR gates at the inputs of the same 1-bit full adder
blocks designed previously. This change allowed the user to add or subtract,
through the simple change of a Select signal. If the latter is a logical ’0’,
then an addition occurs, because the first 1-bit full adder receives a grounded
carry in signal. On the other hand, if the Select signal is a logical ’1’, then a
subtraction occurs, because the first 1-bit full adder will receive a carry in of
1, while the B bit input is XOR’ed with that same Select signal (logic ’1’).
The end result, is the two’s complementation of the B input, since the XOR
acts as a standard inverted, and the initial carry in of 1 forces an addition
of 1, as seen in figure 3.27.

Through intuitive analysis, it was shown that if the Select signal was
a logical ’1’, and thus the ALU was performing subtraction: if the final

3.5. ALU 65

carry is itself a logical ’1’, then the result of the subtraction is positive,
otherwise, it is negative. This aids us in the padding algorithm, as we need
to determine when the output of the ALU subtraction operations reaches a
negative value, for us to make a decision.

The result of the design process is an ALU capable of adding and sub-
tracting two 16-bit numbers, and signaling whether the result is negative
or positive. It is controlled by signals discussed in section ??. The two’s
complement inversion logic is still needed at the output of the ALU, in order
to recover the absolute value of the ALU output.

3.5.4 Hardware Specification

The ALU module was implemented using instantiations of the 1-bit full
adder design. The latter implemented a simple full adder circuitry, as seen
in figure 1-bit Full Adder. A FASFOUR module instantiated four of these
simple 1-bit full adders (FASONEs). The FASFOUR modules were instan-
tiated in a group of four in the main module, effectively instantiating 16
1-bit full adders. The concept was to connect the full adder inputs and out-
puts as seen in figure 3.27. The top-level ALUFAS module was instantiated
and properly connected in the ALU module. The latter included code to
generate circuitry for three ALU related flags: the zero flag, the carry flag
and the negative flag. The zero flag is easily generated by OR’ing all the
outputs of the ALU, thus indicating if we received a zero or not. The carry
flag, as previously mentioned, is connected to the final carry out of the full
adder-subtractor. Finally, the negative flag is generated as discussed above.

3.5.5 Functional Simulation

Functional simulation was run on the ALU top level module, and the cor-
responding results are shown in Appendix A. Functional simulation of this
module included the instantiation of the ALU module. The top level mod-
ule of the ALU is termed ALU TOP, while the test bench module is termed
ALU TOP TB. The former is instantiated in the latter, and subsequently
tested by the variation of the inputs to the module. As we can see from
the functional simulation, the ALU receives two 16-bit zero inputs and adds
them to get a 16-bit zero output. Then, the inputs are varied to 0x0003 and
0x0005, whence we get a 0x0008 output. Finally, the Sel line is changed
to a logical ’1’ which instructs the ALU to subtract (a-b), whence we get
a 0xFFFE output, which is the correct result. Taking the two’s complete

66 CHAPTER 3. TLL MODULE DESIGN

inverse of 0xFFFE, we get 0x0002, thus proving that the ALU functions
correctly, since 3 - 5 = -2.

3.5.6 Synthesis

The ALU module was synthesized successfully (for diagrams see Appendix
A). The output includes all the schematics for the aforementioned modules.
As was expected, all the modules are easily recognizable because of the RTL
style of coding for most of the internal architecture.

3.5.7 Timing Simulation

The ALU module was passed through gate level timing simulation, but it
failed to produce valid outputs. The final netlist was generated, but the
libraries that were called did not match the technology that was installed
(and utilized before). This issue was not resolved, and we refer you to
section 10.2 for a detailed discussion.

3.6 Accumulator

3.6.1 Theory

The accumulator is, as mentioned in section 3.5.1, a register that is used
to store the output of the ALU module. This special purpose register acts
as a temporary storage facility that could be queried in order to find out
the status of certain actions. The accumulator’s value raises several flags,
including the negative and the zero flags. The functionality of the accu-
mulator is discussed in section 3.4, and thus will be saved for that section.

3.6.2 Functional Specification

The accumulator is merely a 16-bit register, that is loaded with its value
according to its enable signal. If the enable is asserted, then the input is
latched on to the output of the register, otherwise the register keeps its old
value. Upon global reset, the accumulator is driven all zeroes.

3.6. ACCUMULATOR 67

Figure 3.20: Padder logic operations

68 CHAPTER 3. TLL MODULE DESIGN

Figure 3.21: Padder operations using the register method

3.6. ACCUMULATOR 69

Figure 3.22: Padder algorithm

70 CHAPTER 3. TLL MODULE DESIGN

Figure 3.23: Control path using gates

3.6. ACCUMULATOR 71

Figure 3.24: Flip-flops of the 7 states of the control path

72 CHAPTER 3. TLL MODULE DESIGN

Figure 3.25: Comparator circuitry

Figure 3.26: Full adder circuitry

3.6. ACCUMULATOR 73

Figure 3.27: Full adder-subtractor circuitry

74 CHAPTER 3. TLL MODULE DESIGN

Chapter 4

FIFO module design

4.1 Theory

The acronym, FIFO, stands for First-In, First-Out. In communication
systems, a transmitter may send data in bursts faster than the receiver can
handle, therefore a FIFO buffer is needed, because it can accept short bursts
of high-speed data and then allow data to be read out as needed; the bytes
in the data stream remains in order so that the first byte entered into the
buffer is the first byte read out from the buffer. Now let’s go into more
details of the FIFO design.

4.2 Functional Specification

Having introduced the FIFO module, the control unit must control it by the
Trailer Rd and Trailer Wr signals. The FIFO module will be responding to
the main control unit with the status signals Empty and Full, see figure 4.1.

Figure 4.1: I/O of the FIFO module

75

76 CHAPTER 4. FIFO MODULE DESIGN

Within the FIFO buffer itself, we have the following modules (see fig-
ure 4.2):

Figure 4.2: FIFO module architecture

Control Logic (CL) needed to control the incrementing of both and read
and write pointers depending upon whether FIFO is Empty or Full.

Write Pointer (Wrptr) basically a counter that increments in the wrap-
around sequence 0,1,..7, 0,1..,7,0,..(and so on), so that all 8 memories

4.3. HARDWARE SPECIFICATION 77

locations can be addressed. A write operation increments the pointer,
but not if the FIFO is Full.

Read Pointer (Rdptr) also a counter that increments in the wrap-around
sequence 1..,7. A read operation causes the pointer to be incremented,
but not if the FIFO is empty.

Comparator compares read and write pointer. If they are equal then this
means FIFO could be either Full or Empty.

Write Address decoder (WrAd) needed to decode write pointer and
enable the right memory location pointed to by the Write pointer

Read Address decoder (RdAd) is needed to decode read pointer and
enable the right memory location pointed to by the Read pointer

FIFO Memory static RAM; it’s needed to store the data.

4.3 Hardware Specification

FIFO HW Components

? Control logic;

? Read pointer(Rdptr , 3 bits (23 = 8));

? Write pointer(Wrptr , 3 bits (23 = 8));

? Comparator;

? Read Address decoder (RdAd, 8 bits);

? Write Address decoder (WrAd, 8 bits);

? FIFO Memory (8x8 bits).

Again some source code was written in behavior, while another part was
in gate level.

The control logic (see Appendix B, FIFO Control Logic.v) was designed
as shown in figure 4.3.

Since the read and write pointers are just pointers triggered by Rd and
Wr respectively, they were designed in the same fashion as the 3-bit counter
(see Appendix B, FIFO PTR.v).

78 CHAPTER 4. FIFO MODULE DESIGN

Figure 4.3: FIFO control logic design

Figure 4.4: Comparator design

A comparator is just a simple AND gate that takes in Rdptr and Wrptr
and outputs RdeqWr signal to the control logic (see Appendix B, FIFO Comparator.v).
See figure 4.4.

An address decoder for Read and Write was simply computed through
a truth table

Rd(0) corresponds to the first memory location in the FIFO. So if Rd(0)
is high, then we are reading form the first location in the memory. The
Write address decoder functions in exactly the same way (see Appendix B,
FIFO Address Decoder.v).

Finally the FIFO memory (the RAM); this one is very simple to design,
since it is simply a number of flip-flops, with a tristate buffer on the output
of each flip-flop (see figure 4.5. It is dual port memory that allows the write
and the read signals to be executed at the same time. (see Appendix B,
FIFO Memory.v)

4.4. FUNCTIONAL SIMULATION 79

Table 4.1: Truth table for address decoder

4.4 Functional Simulation

A test bench was written to test the FIFO module functionality (see Ap-
pendix B, TB FIFO.v and functional simulation TRAILER.FIFO). This test
bench checks if the FIFO is able to handle the write and read signals from
the control unit. Looking at the timing diagram. First, we input a byte and
on the next clock cycle it is read with no problem, on the third clock cycle,
a second byte is on pipeline, but the read pointer is pointing to another
location, therefore this byte is not read. So by looking at the functional
simulation we have proved that the FIFO is functionally correct.

4.5 Synthesis

The FIFO module was synthesized successfully (for diagrams see Appendix
B). The output includes all the schematics for the aforementioned modules.
As was expected, all the modules are easily recognizable because of the RTL
style of coding for most of the internal architecture.

4.6 Timing Simulation

The FIFO module was passed through gate level timing simulation, but it
failed to produce valid outputs. The final netlist was generated, but the
libraries that were called did not match the technology that was installed
(and utilized before). This issue was not resolved, and we refer you to
section 10.2 for a detailed discussion.

80 CHAPTER 4. FIFO MODULE DESIGN

Figure 4.5: FIFO memory design

Chapter 5

Trailer module design

5.1 Theory

The trailer is an 8-byte field that will get appended to the end of the packet.
The trailer contains 4 fields, as seen in figure 5.1. The fields are described
below:

Figure 5.1: Trailer overview

UU (User to User) The field contains one octet of information, which
will be transferred transparently between users of the AAL5 CPCS
users

CPI (Common Part Indicator) The field is used to interpret subsequent
fields for the CPCS functions in the CPCS header and trailer

Packet Length This field contains the size of the incoming packet.

CRC-32 This field is filled with the value of a CRC calculation which is
performed over the entire content of the packet. It is filled with zeros
before going to the CRC circuitry. Once passed through the CRC-32
circuitry, it will be filled with the correct values and then transmitted
(see section 6.1.1 for more details).

81

82 CHAPTER 5. TRAILER MODULE DESIGN

The main concerns in this project are the packet length field and the
CRC field. Packet length is used to calculate how many bytes the packet
will be padded with, in order for it to be divisible by 48 bytes to achieve
our goal (IP over ATM segmentation). Therefore after our packet has been
passed through the Trailer and CRC modules, it will be stored in the Packet
Memory and it will have the format shown in figure 5.2. PAD is the field
used to align the Packet on a 48 octet boundary. Its size varies from 0 to
47 unused octets, but it does not convey any information.

Figure 5.2: Packet in memory

5.2 Functional Specification

The trailer module appends 8 bytes at the end of the incoming packet and
feeds the new packet into the CRC module, the latter located next on the
pipeline. The trailer module allows the packet to pass through and waits
for the last byte of packet to be received, when it appends the trailer. In
this project the trailer fields are initialized according to figure 5.3.

Figure 5.3: Trailer field initializations

The TLR (Total length Register) that was extracted from the packet
by the TLL module, is stored in the third and fourth byte positions. The
CRC field is initialized to zeros because of the CRC algorithm requirements.

5.2.1 Trailer I/O

The trailer module takes in a variety of inputs from the control unit and the
pipeline (see figure 5.4)

Examining the figure, the horizontal lines are inputs and outputs of the
pipeline. The vertical lines represent inputs and outputs of the main control
unit. In order to achieve the implementation of the trailer, we need the
following modules:

FIFO To store the next packet while the trailer module is appending the
trailer on the previous packet, and since we have 8 bytes of trailer, we
will need a 8x8 byte FIFO memory

5.2. FUNCTIONAL SPECIFICATION 83

Figure 5.4: I/O of the trailer module

8-1 input mux To allow the selection of the trailer fields one at time

3-bit counter To control the select signals of the 8-1 input mux, i.e. it is
the select bus.

2-1 input mux As you can see (figure 5.1 we already have two routes in the
design and only one of them can be sending bytes out to the pipeline,
thus, the introduction of this multiplexer will help resolve the issue.

5.2.2 Trailer Operation

Please refer to figure 5.5 for a diagram of the following explanation:

1. When a byte of a packet is received from the TLL module, the control
unit writes into the 8-byte FIFO

2. On the next clock cycle, the byte that was written in step 1, gets read
and at the same time another byte is written to the FIFO

3. Step 1 and 2 are repeated until the CU EOP is set to high by the
control unit. When CU EOP is set high, two things happens. First,
the 2-1 input mux switches up and secondly, the 3-bit counter starts
selecting the select signals for the 8-1 input mux

4. The counter keeps counting until all trailer fields are mux-ed out and
have been put on the pipeline, then the counter sends a Done Trailer
signal to the control unit, informing the latter that the trailer has been
appended to the packet.

84 CHAPTER 5. TRAILER MODULE DESIGN

Figure 5.5: Trailer module architecture

5.3 Hardware Specification

Trailer HW Components

? 8 to 1 input multiplexer (8 bits input);

? 2 to 1 input multiplexer (8 bits input);

? 8-byte FIFO (8x8 bits);

? 3-bit counter.

In this project some of the code was written in register-transfer logic
(RTL), behavioural coding and even in gate level.

Here’s an example of how the multiplexers were derived (see figure 5.6 :
Now the above mux is just for a 1 bit input (see Appendix B, Mux2 1.v),

in order to have 8 bits inputs. This mux was instantiated 8 times (please
refer to Appendix B mux21 7 0.v for a 2 input mux).

5.4. FUNCTIONAL SIMULATION 85

Figure 5.6: 2 to 1 input multiplexer

For the 8 input mux, the design was approached exactly the same way
as the 2 input mux (see Appendix B, Mux8 1.v and Mux81 7 0.v).

For details on the FIFO design, please refer to section 4.1. In this
project, the 3-bit counter was designed behaviorally (please see Appendix
B, trailer counter.v). The pointer is incremented when it receives CU EOP
and it keeps incrementing until CU EOP goes low.

Having understood the design and operation of the trailer, the trailer
module was implemented in Verilog please refer to Appendix B, TRAILER.v.
The code is a simple instantiation of all the modules that were described
above.

5.4 Functional Simulation

After the trailer was implemented, a test bench was written in order to
test the trailer module’s functionality. Please refer to Appendix B for the
test bench and for the corresponding functional timing diagram. In the test
bench we attempt to set CU EOP high first (which indicates that it’s time to
mux the the trailer on the pipeline), then we see the all 8 fields of trailer are
on the Pipeline Data Out. Once trailing is done, the Done Trailer signal is
set high (indicating that all trailer fields are out on the pipeline). In order to
test that the FIFO is properly working, the test bench writes two bytes into
the FIFO and after two clock cycles, the read signal is set high, therefore
the two bytes are on the pipeline (PP Data Out). The timing diagram
simulation proves that everything was well implemented and successfully
working.

86 CHAPTER 5. TRAILER MODULE DESIGN

5.5 Synthesis

The trailer module was synthesized successfully (for diagrams see Appendix
B). The output includes all the schematics for the aforementioned modules.
As was expected, all the modules are easily recognizable because of the RTL
style of coding for most of the internal architecture.

5.6 Timing Simulation

The trailer module was passed through gate level timing simulation, but it
failed to produce valid outputs. The final netlist was generated, but the
libraries that were called did not match the technology that was installed
(and utilized before). This issue was not resolved, and we refer you to
section 10.2 for a detailed discussion.

Chapter 6

CRC module design

6.1 Theory

The cyclic redundancy check (CRC) is a number derived from, and
stored or transmitted with, a block of data in order to detect corruption. By
recalculating the CRC and comparing it to the value originally transmitted,
the receiver can detect some types of transmission errors. A CRC is more
complicated than a checksum. It is calculated using division either using
shifts and exclusive ORs or table lookup (modulo 256 or 65536). The CRC
is ”redundant” in that it adds no information. A single corrupted bit in
the data will result in a one-bit change in the calculated CRC but multiple
corrupted bits may cancel each other out. Most CRC implementations seem
to operate 8 bits at a time by building a table of 256 entries, representing all
256 possible 8-bit byte combinations, and determining the effect that each
byte will have. CRCs are then computed using an input byte to select a 16-
or 32-bit value from the table. This value is then used to update the CRC.

CRC is often used because it is easy to implement and it detects a large
class of errors. For any given message, CRC can detect the following:

• All one or two bit errors

• All odd numbers of bit errors

• All burst errors less than or equal to the degree of the polynomial used

• Most burst errors greater than the degree of the polynomial used

In a system employing CRC, the message being transmitted is considered
to be a binary polynomial M(X) (which is the message or payload). It is

87

88 CHAPTER 6. CRC MODULE DESIGN

Table 6.1: CRC algorithm

first multiplied by Xk and then divided by an arbitrary generator polyno-
mial G(X) (also known as the predetermined divisor) of degree k (k is the
number of bits in G(X)), which results in a quotient Q(X) and a reminder
R(X)/G(X). All arithmetic is done in modulo-2. This process is shown
in the following equation, in which ⊕ is the sign for addition in modulo-2
arithmetic:

XkM(X)
G(X)

= Q(X)⊕ R(X)
G(X)

(6.1)

In modulo-2 arithmetic, the results of subtraction are equivalent to the
results of addition. By applying this property and some simple algebra to
the equation, we get

XkM(X)⊕R(X) = Q(X)G(X) (6.2)

R(X) will always be of degree k or less.
The CRC algorithm calculates R(X) and appends it to the message being

sent. Since XkM(X) ⊕ R(X) equals Q(X)G(X), the original message with
the CRC appended will be evenly divisible by G(X), if and only if no bits
are changed. At the receiving end, the received message (original message
plus R(X)) is divided by the generator polynomial G(X). If the remainder
is zero, it is assumed that no errors have occurred. If the remainder is zero,
it is assumed that no errors have occurred or that an error has occurred but
has gone undetected by the algorithm. A list of commonly used generator
polynomials is shown in the following table:

The CRC-16 polynomial is a common standard used around the world
(it is the polynomial used in the Bisync protocol). SDLC synchronous data
link control is used by IBM and is the standard in Europe. The CRC-12
polynomial is used with six bit bytes. The CRC-32 is used in the field of

6.1. THEORY 89

Figure 6.1: Logic circuitry

telecommunication. It is mostly used in checking the errors in the AAL5
(ATM Adaptation Layer 5) messages. However ATM CRC-32 is difficult
to use because it is based on a polynomial of degree 32 that has many more
terms (15) than any other CRC polynomial in common use. CRC checking
and generation are generally carried out on a per-byte basis, in an attempt
to cope with the dramatic increase of the data throughput of higher-speed
lines.

Since CRC arithmetic is done in modulo-2, it can be easily implemented
in hardware with shift registers and exclusive OR gates. Each flip-flop con-
tains one bit of the CRC register. Most software routines emulate the hard-
ware method, thus operating on one bit at a time. Since most processors
are not bit-oriented, the bit-wise software approach requires lengthy peri-
ods of CPU time. Given that many microprocessors are byte-oriented, an
algorithm to calculate CRC on a byte-by-byte basis would be of a great
benefit.

Let’s take an example to make sure that the logic CRC implementation
is well understood. Assume we have the following :

• M(X) = 1010001101 (10 bits) (This is going to be the input to our
circuit)

• G(X) = 110101 (6 bits) = X5 +X4 +X2 +1 (which will represent the
logic circuitry)

• R(X) to be calculated (5 bits)

As you can see the the Remainder R(X) = 1110 which are the content
of (R4, R3,R2,R1,R0) . So the transmit message to the receiver is

90 CHAPTER 6. CRC MODULE DESIGN

Table 6.2: CRC example

Figure 6.2: Transmitted message

So to finish up with this example, the receiver has exactly the same
hardware circuitry. So it will (M(x)R(X)) / G(X) , and if the remainder is
zero therefore no errors have been found.

6.1.1 Byte-wise CRC

Since we want to calculate the CRC eight bits at a time, we need an algo-
rithm that will produce the same CRC value as would occur after eight shifts
of a bit-wise CRC calculation. There is already a well-established algorithm
developed to do the byte-wise CRC. Simply the contents of the CRC register
after eight shifts are a function (exclusive-OR) of various combinations of the
input data byte and the previous contents of the CRC register. Following
the byte-wise CRC algorithm [Ibe97], we managed to develop the following
table.

The above table shows the CRC register for each of the eight shifts. The
notation used is as follows:

* The ”SH” column is the shift number

6.1. THEORY 91

Shift In CRC registers

R31 R30 R29 R28 R27 R26 R25 R24 R23 R22 R21 R20 R19 R18 R17 R16

8 M8 M5 M7 M7 M6 M7 M6 M3 M7 M6 M0 M5 M4 M7 M7 M6 M5
C23 M4 M6 M5 M5 M4 M2 M2 M1 C14 C13 C12 M3 M6 M5 M4
C29 C22 M3 M2 M4 M3 C17 M1 M0 C24 C29 C28 C11 M2 M1 M0

C28 C21 C20 M1 M0 C26 C16 C15 C27 C10 C9 C8
C31 C27 C26 C19 C18 C27 C25 C24 C31 C26 C25 C24

C30 C29 C25 C24 C26 C25 C30 C29 C28
C31 C30 C28 C27 C30 C30 C31 C30 C29

C30 C28
C31 C30

Table 6.3: CRC equation calculations (Most significant 16 bits)

Shift In CRC registers

8 R15 R14 R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

M7 M7 M7 M6 M4 M5 M5 M4 M7 M7 M7 M6 M7 M7 M7 M6
M5 M6 M6 M5 M3 M4 M3 M5 M6 M6 M6 M4 M3 M6 M6 M0
M4 M4 M5 M4 M1 M2 M2 M1 M3 M5 M5 M3 M2 M2 M1 C24
M3 M3 M3 M2 M0 M0 M1 M0 M2 M4 M4 M2 M1 M1 M0 C30
C7 M2 M2 M1 C3 C2 C1 C0 M0 M2 M3 M0 C25 M0 C24
C27 C6 M1 M0 C24 C24 C25 C24 C24 M1 M1 C24 C26 C24 C25
C28 C26 C5 C4 C25 C26 C26 C25 C26 C25 M0 C26 C27 C25 C30
C30 C27 C25 C24 C27 C27 C28 C27 C27 C26 C24 C27 C31 C26 C31
C31 C28 C28 C25 C28 C29 C29 C28 C29 C28 C25 C28 C30

C30 C30 C26 C30 C29 C27 C30 C30
C31 C31 C28 C30 C28 C31

C29 C31 C29
C30 C30

C31

Table 6.4: CRC equation calculations (Least significant 16 bits)

92 CHAPTER 6. CRC MODULE DESIGN

Figure 6.3: I/O of CRC module

* The ”IN” column is the data in, with Mi being the ith bit of the
current byte of message M(X)

* Ri is the ith bit of the CRC register

* Ci is the ith bit of the initial CRC register, just before any shifts due
to the current input byte

* Vertical entries in the Ri columns denote that the entries are to be
exclusive-Ored to form the contents of each Ri

6.2 Functional Specification

In order to implement the CRC-32 into our pipeline, the CRC module will
have the following inputs and outputs (see figure 6.3):

The horizontal lines represents inputs and outputs of the pipeline, while
the vertical lines represent input and output signals of the control unit.

A FIFO buffer will be used in the CRC for two reasons. First, the
trailer might be transmitting faster than the CRC can handle (therefore
congestion must be avoided); second, the packet must pass through and the
last 4 bytes of trailer (which are zeros) must be held in the FIFO, while
the 4 good bytes of CRC module (which is R(X)) are put on the pipeline.
To make our CRC module more effective, the following components were
introduced (see figure 6.4):

• 2 to 1 input mux

• 4 to 1 input mux

6.2. FUNCTIONAL SPECIFICATION 93

Figure 6.4: CRC module architecture

94 CHAPTER 6. CRC MODULE DESIGN

• 4 byte FIFO

• CRC-32 (It is an implementation of tables that were introduced in
section 6.1.1)

6.2.1 CRC Components and Operation

1. Now say that the trailer module sends the first byte of packet, thus the
control unit writes it to the 4 byte FIFO and this is done by asserting
Crc write

2. On the next clock cycle, a second packet comes in, the control unit
will write it in the FIFO, and at the same time it will read the first
byte. These actions are done by asserting Crc write and Crc Read at
the same time

3. Steps 1 and 2 are repeated until CU Done Trailer is asserted, and,
when this happens, two things are triggered: first, the 2 to 1 input
multiplexer and the 2-bit counter are enabled, which basically means
it is time to output the 4 bytes of CRC (known as predetermined
divisor). Therefore, CU Done Trailer will stay high for 4 clock cycles
to allow the 4 bytes to be placed on the pipeline.

4. Once all 4 bytes are put on the pipeline, the 2-bit counter sets Done crc
signal high (meaning that the CRC module has finished its job).

6.3 Hardware Specification

Trailer HW Components

? 4 to 1 input mux (8 bits input);

? 2 to 1 input mux (8bits input);

? 4 byte FIFO (8 bits x 4);

? CRC32 module.

Some of the design in Verilog was done behaviourally , RTL and in gate
level.

The 4 input mux was designed as shown in figure 6.5.

6.3. HARDWARE SPECIFICATION 95

Figure 6.5: 4 to 1 multiplexer

The design shown (see Appendix C, mux4 1.v) is only 1 bit input. In
order to have 8 bits input, this mux was instantiated 8 times (see Appendix
C mux41 7 0.v). The same concept was used to design the 2 to 1 input mux.

The 4 byte FIFO was designed exactly the same as the one designed in
the trailer module (see section 4.1), except this fifo is 4 bytes wide. There-
fore, the only changes that were made are: FIFO HW Components

? Control logic (no changes) (see Appendix C, fifo control logic.v);

? Read pointer (Rdptr , 2 bits (2 2 = 8)) (see Appendix C, fifo ptr.v);

? Write pointer (Wrptr, 2 bits);

? Comparator (no changes) (see Appendix C, fifo comaprator.v);

? Read Address decoder (RdAd, 4 bits) (see Appendix C, fifo address decoder);

? Write Address decoder (WrAd, 4 bits);

? FIFO Memory (4*8 bits) (see Appendix C, fifo memory.v).

The CRC32 module was implemented using the tables that were shown
in theory section (see Appendix C, CRC32.v). A good view of the imple-
mentation is shown in figure 6.6.

Once all these components were implemented, they were all merged to
create the final crc.v (see Appendix C).

96 CHAPTER 6. CRC MODULE DESIGN

Figure 6.6: CRC-32 overall design

6.4. FUNCTIONAL SIMULATION 97

6.4 Functional Simulation

A test bench was written to model the control unit actions and to verify
the functionality of the CRC module. (see Appendix C,tb final crc.v and
CRC functional diagram). At the beginning of the test, we test the flow
of the packet, two bytes are written and then read with no problems, this
shows that the 4 byte FIFO is functionally working. As said earlier, when
Done Trailer is set high for 4 clock cycles by the main control unit (which is
our test bench for now), it causes the 2 to 1 input mux to switch up and the
2-bit counter to start counting, this allows the 4 bytes CRC (predetermined
divisor) to be placed on the pipeline as you can see on the timing diagram.
Once all 4 CRC bytes are out, Done crc goes high. Therefore, the timing
diagram has shown that the CRC is functionally correct.

6.5 Synthesis

The CRC module was synthesized successfully (see Appendix C). The out-
put includes all the schematics for the aforementioned modules. As was
expected, all the modules are easily recognizable because of the RTL style
of coding for most of the internal architecture.

6.6 Timing Simulation

The CRC module was passed through gate level timing simulation, but it
failed to produce valid outputs. The final netlist was generated, but the
libraries that were called did not match the technology that was installed
(and utilized before). This issue was not resolved, and we refer you to
section 10.2 for a detailed discussion.

98 CHAPTER 6. CRC MODULE DESIGN

Chapter 7

SAR module design

7.1 Functional Specification

After the design and implementation of the preliminary modules, we finally
reach the core module of our project labeled the SAR module. Although
we intended to implement a segmenter as well as an assembler, the immense
time consumption required for this project limited us to the design and
implementation of only a segmenter, yet we will continue to refer to this
module as the SAR module.

The main purpose of the SAR module is to partition incoming packets
into cells. Referring back to figure 1.4 in the introduction, the SAR, residing
in the AAL, receives CPCS PDUs that are tagged with a trailer. The SAR
then, upon reception of the PDU, is to segment the variable-length PDU into
fixed-length cells, each representing now a 48-byte cell, and send them to the
ATM layer to be tagged with the appropriate header and transmitted to the
physical interface. This is the high-level description of the SAR functionality,
yet we have adopted a new method of performing this operation. We have
chosen not to transmit the completed packet (CPCS PDU + trailer) to the
SAR module at once and allow the SAR to section off 48-byte cells from the
PDU for transmission to the ATM layer, until it has exhausted the entire
PDU. This method presented two disadvantages from Proknet’s point of
view. First, this would impose a strain on the pipeline design that we have
chosen for this project. The pipeline is not to be halted at any time for the
processing of any type of operation. The above-proposed procedure of the
SAR would force the pipeline to delay its operations in the SAR module,
hence creating an unnecessary bottleneck for the processing of a PDU of
constantly changing length. Second, we have chosen to adopt an 8-bit bus

99

100 CHAPTER 7. SAR MODULE DESIGN

that clocks 8 bits at any one time on the rising edge of our clock. Thus, for
example, in order to transfer a 100-byte packet, we require either a faster
clock, or a wider data bus able to accommodate a large packet, neither
of which is available to us. Thus, we slightly modified the operation of
the SAR in order to fulfill our design requirements and conditions. The
SAR will receive packets from the packet memory only when there is an
entire completed packet residing in memory. When this occurs, the packet
will not be transferred to the SAR module in its entirety. Instead, it will be
transferred from memory to the SAR one byte at a time, where no processing
or delaying of that byte is to occur. The byte will simply pass through the
SAR module seamlessly, and onto the ATM layer. All the meanwhile, as
soon as the first byte of the packet is passed through the SAR, a counter is
initiated to count up to ’48’, signal the ATM layer that we have just reached
48 bytes, re-initialize to ’0’ and begin counting again. Once the last cell of
the packet has been received, a notification is sent, via a control signal, to
the ATM layer informing it of that fact, thus allowing the ATM layer to
write a bit in its header indicating that this is the last cell pertaining to the
current packet. This is indeed required because at the receiving end, the
reassembler needs to know when it has processed the last cell of packet in
order to complete the concatenation of the PDU. At this time, the counter
will remain at ’0’ and the packet will not be outputting anything toward the
lower layer. The last cell will be detected by performing manual calculations
throughout the transfer of the packet through the SAR. When a packet
is first received by the TLL, it is allocated a beginning address in packet
memory. The SAR module also latches this address. Once the CRC has been
completed on this packet, a signal is sent to the control unit, which relays
it to the SAR module indicating that a completed packet is now residing in
memory. This signal serves two purposes. First, it allows the SAR to begin
streaming bytes into its module as well as initiate the counter. Second, it
allows the SAR to latch the end address of the packet. By knowing the start
address and the end address, the SAR is able to calculate the size of the
completed packet. This will aid the SAR in determining when it has received
the last cell of the packet in order to inform the ATM layer. We have also
designed the SAR module to have a memory capability for the purpose of
remembering how many completed packets reside in memory. In the case
where there is a completed packet residing in memory while the SAR module
is still operating on a current packet, then the SAR will not pause when it
comes to service the next packet residing in memory. On the contrary, after
it has informed the ATM layer that it has just transmitted the last cell of
the packet, the memory capability of the SAR will allow it to continuously

7.2. HARDWARE SPECIFICATION 101

stream the bytes of the next packet without any interruption. This was
designed for the reason of being able to track the number of completed
packets that are residing in memory at any one time.

7.2 Hardware Specification

The implementation of the SAR module components closely resembled the
implementation of the counter module components. Mostly, the counter was
the main driver in this module to enable the ability to do the up counting.
The data and control paths defined for the counter module were replicated
within this module, except that our counter consisted of only 8 bits, as op-
posed to 16 bits for the counter module. Thus, we will not re-examine the
definition of these sub-modules in this section. There is one subtle difference
between the SAR module and the counter module and that is the memory
capability of the SAR, which we will discuss next. As outlined in the func-
tional specification, the memory component was added to the SAR module
in order to keep track of how many outstanding completed packets are re-
siding in packet memory. This is extremely important in order for the SAR
to continuously stream the bytes of each packet without any interruptions,
to keep in-line with the pipeline design as well as repetitively keep track of
the start and end of each packet. This will flag the ATM layer about the
completed transmission of one complete packet. As mentioned above, once
the CRC is done on the current packet, crc done will be generated from
the CRC module for the control unit to process. This signal will be trans-
formed into s BeginCounting for the SAR module, which indicates that a
completed packet is now residing in packet memory. This signal will used
as the clock of our memory flip-flop, which will be driven high all the time
and only output its value when its clock, s BeginCounting, which is only a
pulse of one clock cycle duration, is asserted. We attach our memory FF
to a secondary FF that is clocked to our main clock, in order to make the
memory signal a clocked signal. This procedure will allow us to buffer any
s BeginCounting signals that are not serviced instantly and be able to keep
track of them via a state machine.

The state machine is a Mealy finite state machine that is responsible
for generating s PacketDone signal, which, as the name implies, indicates
that we have completed the segmentation of a completed packet. The FSM
is also responsible of keeping a running tab of how many s BeginCounting
signals were received but not serviced. When we designed this function, we
intended it to be as close as possible to an interrupt system, complete with

102 CHAPTER 7. SAR MODULE DESIGN

Figure 7.1: Start counting and corresponding flip-flop

its signals and service routines. In short words, the FSM is started when a
global reset is asserted. This is when we kick into state0 of the FSM. We will
remain in state0 until we receive an s BeginCounting signal. The FSM will
change states to state1 while incrementing an internal counter by one, which
keeps track of how many of s BeginCouting signals we have received. State1
is only an intermediate state, thus the FSM will naturally move to state2,
in the process asserting a signal labeled enable. This is the signal that will
act as the ’enable’ signal for the entire counter FFs. The FSM will remain
in state2 until it either encounters one of two cases. If the FSM receives
another s BeginCounting signal while there is one outstanding, then the
FSM will switch back to state1, while incrementing the internal counter and
keeping Enable asserted. If the FSM receives an s PacketDone signal (along
with resetb, these signals are combinationally combined to provide the reset
circuitry for the memory FFs), it will switch to state3 while decrementing
the internal counter. In this state, the FSM will check if the internal counter
is zero or not. If it is, then the Enable signal will be de-asserted and the
FSM will return to state0. If the internal counter is not zero, then the
FSM will return to state2, while keeping Enable asserted. The FSM was
designed using behavior modeling, thus we will not delve into its hardware
configuration.

7.3 Functional Simulation

Functional simulation for the SAR was executed using the top module
test bench (SAR top tb.v) definition along with the top counter module
(SAR top.v). The functional simulation results are shown in the counter
section of Appendix F. Functional simulation for the SAR module needed
to test the ability of the SAR to output the bytes that it receives from the
packet memory seamlessly. This is illustrated by watching as the OUT PM

7.3. FUNCTIONAL SIMULATION 103

Figure 7.2: SAR FSM

104 CHAPTER 7. SAR MODULE DESIGN

signal follows the IN PM signal exactly. The second test that we needed to
prove was the ability to generate the atmdone signal, which indicates that
we have counted up to 48 bytes, while handling nested s StartCounting. The
startC signal is asserted at 40ns and de-asserted at 80ns. At 40ns as well, an
endAddr is also latched for calculating the packet’s length. Thus, at 40ns
the counter begins counting from 0 up to 48, where atmdone is asserted.
Indeed, as we see at around 2000ns, atmdone is asserted and de-asserted
at the next clock cycle. Now, the donePacket signal is asserted at around
4000ns, which is the amount of time it took to count till 94, constituting 2
complete 48-byte segmented cells (there are some discrepancies in this case
due to the way the packet memory was designed). And lastly, we tested
the ability of the SAR to handle nested s StartCounting signals. As we can
see, at 240ns, startC signal is asserted while we still are servicing the pre-
vious startC signal. As we have designed it, our counter didn’t stop from
counting when donePacket was asserted for the first packet. On the con-
trary, the length of the second packet was stored in a temporary register,
while operating on the first packet. Once it came time to service the second
packet at 4,100ns, the counter remained in its incrementing state, of course
after it reset back to zero. Once it reached 47 bytes, atmdone signal was
asserted, shortly followed by donePacket signal. These results were enough
to convince us that the SAR operated as designed.

7.4 Synthesis

The SAR module culminated in a having a variety of synthesized components
as part of its complete structure. The SAR top module’s I/O signal were
defined as being the following:

• Input: clk resetb, in packet memory (bytes from the packet memory
towards the SAR), s BeginCounting, s EndAddr, s StartAddr

• Output: c CellDone, out packet memory (bytes from the SAR module
towards the ATM layer), s Packet Done, s atmcounter

Exploring the top module in a closer manner reveals two sub-modules,
the data path and the control path module. The data path module can be
seen as being composed of the ’atm counter’, which is labeled as T FF REG EIGHT.
Since this is only an 8-bit counter, we only require one of the FF modules.
As well, we notice the FSM SAR ENABLE component, which constitutes
the finite state machine for the ’enable’ signal. Feeding the FSM are the

7.5. TIMING SIMULATION 105

two memory FFs labeled as D FF AR 2 and D FF AR 1. The last part of
the puzzle is the XOR Tree SAR, which is setup in the same manner as the
counter module, except that is it triggered upon the detection of the number
’48’.

The control path in this module is the same as the one implemented in
the counter module. Thus, we can note the two states each using a different
type of FF. The reader is invited to revisit the counter module section for
more details. The results of the synthesis are located in Appendix F.

7.5 Timing Simulation

As usual, the synthesized files generated the netlist for the verilog code.
The newly formulated verilog code was given a secondary test run against
the original test bench, and the results were recorded in Appendix F. The
gate level simulation closely resembled the functional simulation, except for
one glaring difference. If we examine the results, we realize that the same
functionality was tested in this case, regarding the generation of atmdone
and donePacket. As well, we attempted at testing the buffering capability
of our SAR regarding the s BeginCouting signal. atmdone was generated
correctly according to the results, as well as being generated correctly when
the buffering mechanism was involved. The only signal that did not work is
the donePacket. We were not successful in generating this signal because of a
major error in our implementation code. The code was written in a manner
that it passed functional simulation, but we weren’t able to generate the net
list without modifying the code. This modification caused the donePacket
signal not be generated

106 CHAPTER 7. SAR MODULE DESIGN

Chapter 8

Microprocessor Module
Design

8.1 Theory

In this section, we introduce the final piece to the puzzle. Proknet has, up
to now, been defined and outlined in terms of its functional blocks. All these
modules can operate autonomously, provided valid inputs, and can execute
their intended functions, by supplying temporal correct outputs. To make
Proknet a viable IP over ATM segmentation entity, it is required to auto-
mate the whole process. By automation, we mean allowing the machine to
execute its purposed functionalities from power up, without the need for user
intervention or guidance. Enters the illustrious ”microprocessor”. By def-
inition, a microprocessor is ”an integrated circuit semiconductor chip that
performs the bulk of the processing and controls parts of a system” [1.697].
The bulk of the processing and the system control can be assembled into a
common term: the Central Processing Unit (CPU). The CPU’s main
tasks are the interpretation and execution of instructions. It is tradition-
ally composed of a register unit, an arithmetic/logic unit (ALU) and
a control unit. Other less-renowned functions of the CPU include address
decoding, address and data bus buffer control and memory management. As
we can see, the CPU is the central nucleus which manages the information
flow within the system. When included on a chip, the CPU is normally
labeled as the microprocessor. For this reason, from here on, we will use the
terms ”microprocessor” and ”CPU” interchangeably to represent the same
entity [Cle92][Tre87].

There is a myriad of characteristics that a microprocessor can be as-

107

108 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

sessed by, the vital ones being: the widths of its address bus and data bus,
its clock rate and its instruction set. A microprocessor can also be classified
as being a reduced instruction set computer (RISC) or a complex
instruction set computer (CISC). Recently, other classes have emerged,
such as very long instruction word (VLIW), but do not apply in this
scenario. These features are used to describe the microprocessor, and can
encapsulate a large amount of information about the operation and utiliza-
tion of that particular one. Different combinations of these features produce
microprocessors tailored for different applications. It is very important to
carefully study the design at hand, and incrementally plan the architecture
of the microprocessor, knowing that major design changes to this module are
very expensive in terms of man-hours and man-neurons. The former implies
that the microprocessor sub-system always resides on the critical path of a
project chart, when discussing any processor-oriented or driven implemen-
tation, while the latter implies that the microprocessor sub-system exhausts
the system designer(s) thinking because of its inherent intertwined complex-
ities and its module inter-dependencies. The design will also involve an open
portal of communication between all the other module designers, in order
to facilitate the automation process, and not have to spend unnecessary
design cycles, attempting to correct a miscommunication-caused erroneous
functionality (for example, a module is expecting a signal to be asserted for
the duration of an operation, while the microprocessor control unit provides
a pulse to that module).

Figure 8.1: Microprocessor general architecture

A typical microprocessor is shown in figure 8.1. It indicates that the
CPU interacts with memory and input/output devices to perform a system-
wide task. The memory module will be discussed in more detail in section
Memory module, but can be introduced as the random access memory
(RAM) accessible from the system buses. The memory itself in the mem-

8.1. THEORY 109

ory module can be of two major types: RAM and read-only memory
(ROM). The former allows the microprocessor to perform read and write
operations, while the latter only provisions for read operations. The ROM
is thus used for holding data that rarely changes, such as the operating sys-
tems, interpreters for languages or bootstrap programs. The latter is the
first program that runs, after power up, and helps in the initiating sequence
of the system. RAM, on the other hand, is used to store the uncompressed
operating system, variables used during the execution of a program or in
this case, packets ready for segmentation. The input and output modules
represent the external peripherals of the microprocessor. These modules are
required to give significance to the execution order and output of the mi-
croprocessor, as the only way to alter the operation of the microprocessor
is through the input module, and subsequently, the only way for the micro-
processor to alter another system’s operation is through the output module.
These will, however, not be delved into more than their considerations as
input and output buses. A traditional environment would have had the mi-
croprocessor regard these modules as a set of memory cells (an I/O port),
that could be written to or read from by simply addressing them, but in our
case, an attempt was not done to emulate this tradition as it was not seen
to be integral to the correct functionality of the system. Hence, the modules
are regarded as buses, that are externally controlled by the corresponding
input or output modules.

As described above, one of the main tasks of a classical microprocessor
is the decoding and execution of instructions. The instructions are usually
stored in memory, for the CPU to fetch, decode and execute. For this
matter, registers are used to direct program flow. A register is a high-speed
location used to store important information during the execution of CPU
operations. One of these registers, the program counter (PC) keeps a
record of the address of the next instruction to fetch, while the instruction
register (IR) holds the recently fetched instruction. Figure Execution
state machine shows the state machine involved in the execution of program
instructions [dB98]. As we can see, the following process is iterated:

Fetch

• The instruction is addressed by the PC;

• The memory is read and its output is placed on a data bus, thus
transferring the value to the IR;

• The PC is incremented to point to the next instruction.

110 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

Decode

• The instruction is decoded by the control unit.

Execute

• The control signals are generated according to the decoded instruction;

• Go back to the Fetch state.

Figure 8.2: Execution state machine

The next section will discuss the design process that was undertaken in
order to achieve a working microprocessor module, that performs the bulk
of the processing and controls the execution of the IP over ATM segmenter.

8.2 Design history

Initially, the microprocessor module was thought to be one of the few first
modules to be designed. Time proved otherwise, as we realized that our
microprocessor is a tailored one, in that it provides typical microprocessor
functionalities, but also extends to supply network processor functionalities.
The initial design started with a look-back towards our pipeline design.
The latter included modules, that were later scrapped, such as Queuing and
Scheduling and its associated Queue Memory, the Input Buffer Control Unit
and the pipeline buffer. Refer to figure 8.2 for a reminder. These modules
were taken into consideration when the initial design was laid out. The
following brainstorm of instructions was also undertaken:

A - Input Buffer Load from RAM to Input Buffer, and check Empty/Full
status of buffer.

8.2. DESIGN HISTORY 111

B - TLL Start counting and calculate padding; wait for ”End of Packet”
from TLL, and interrupt UCPU.

C - Trailer Accept user information for UU & CPI fields (store them in
SPRs); start trailing, and send MUX switch signal.

D - CRC Interrupt on CRC DONE.

E - SAR Wait for data in memory, and segment packet.

F - QAS Move packets from PM to QM, while padding.

Figure 8.3: Initial pipeline design

112 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

The various acronyms will be explained and described later on in this
section. The pipeline revisited, the next step is to selectively choose which
instructions go into the instruction set. Many instructions were investigated
such as: load, store, add, clear carry flag, set carry flag , jump on carry,
jump on zero, jump, jump to subroutine, return from subroutine, return
from interrupt, subtract, multiply and test. Initially, the frontrunners were
load/store (because of QAS operations), add/subtract (because of padding
operations), jump/jz (for program control), and jsr/ret/reti (for subroutine
calls and interrupt handling). Other instructions were later appended to the
list such as ”load input buffer”, ”start pipeline” and ”start counter”. The
preliminary bootstrap program resembled the following:

0 clear_flags
1 load_ibuff
2 start_pipeline
3 start_counter
4 pad jsr pad_count
5 testing test pack_done
6 jz testing
7 jump pad
8
9
10
11 pad_count save_context
12 add TLR,8
13 sub 48
14 ret
15
16
17 ISR_EOP load_UU #10000101
18 load_CPI #00010010
19 mux_switch
20 reti
21
22
23 ISR_IBUFF test ibuff_empty
24 jnz empty
25 test ibuff_full
26 reset write
27 empty reset read

8.2. DESIGN HISTORY 113

28 reti
29
30
31 ISR_CRC move
32 set pack_done
33 reti

The previous program was written with the pipeline design already in
mind. Thus, we start by clearing the ALU flags (such as the carry, zero,
negative and pack done flags). Pack done will be used to indicate the com-
pletion of the processing of a packet, and its subsequent placement into
memory. In short, the packet is ready for segmentation. The ”load ibuff”
instruction was quickly annuled and joined with the ”start pipeline” instruc-
tion. The latter commands the input buffer to open its gate and start feeding
the pipeline with packet bytes, one a clock cycle. The ”start counter” in-
struction sends a control signal to the TLL to initiate the counting process.
A jump to a subroutine follows, whereas the padding algorithm is imple-
mented. First, the TLR (which contains the total length field, extracted
from the IP packet) is added to the eight bytes that make up the trailer,
and the latter value is decremented by 48 (the number of bytes to segment
each cell to). Once the value reaches 0 or becomes negative, then we know
that we have finished the padding algorithm, and the absolute value of that
number is the actual number of padding bytes. Please refer to the TLL sec-
tion for a more in-depth discussion of the padding algorithm. The program
above does not completely implement the algorithm, because it was decided
that the process should be implemented on the pipeline, and not be con-
trolled through machine instructions. On the return of the subroutine call,
we proceed to test for the Pack done signal. A unity value would indicate
that the ”ISR CRC” had executed and set the Pack done signal, otherwise,
the ”CRC DONE” signal has yet to be asserted. The other two interrupts
occur when the TLL is done counting the packet, and when the input buffer
is either empty or full. In either case, control signals have to be asserted,
in order to control the bytes through the pipeline. An interesting feature
in the ISR EOP (the TLL initiated ISR), is the fact that we can control
what the user would like to see in the UU and CPI fields of their IP packet.
The vision was that these values would be read in from memory and stored
into special purpose registers within the microprocessor, and upon signaling,
would be transferred over to the pipeline data bus, in order to complete the
trailer of the packet. This feature was scrapped due to the replacement of
the interrupt mechanism by the main control unit.

114 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

The initial microprocessor memory interface is shown in figure Initial
memory interface. The design involves the PC and the IR, but introduces
two new special purpose registers, mainly the stack pointer (SP) and
the address register (AR). The normal operation of the circuit involves
the PC addressing a value in memory which is brought into the IR, and
executed. The PC, meanwhile, gets incremented in order for it to point
to the next valid address of the program. The IR can provide the PC
with its value, instead of the incremented PC value, and that is because
of the jump instruction, which causes the PC to be loaded with the jump
address with the latter stored within the jump instruction in the IR. There
are a couple of variances to this scenario, and that is the additions of the
interrupt mechanism and the pipeline design. The interrupt mechanism
requires a register to point to an address in memory where the important
system information can be stored in the case of an interrupt occurring. This
address is usually stored in the SP. The pipeline design, also introduces a
new register. The reason for this is that the CRC module is required to
write out a byte of pipeline data every clock cycle. Hence, a mechanism
must be arranged in order to keep track of the address that the CRC writes
to next. This address is stored in the AR. The external memory has an
8-bit data bus, and a 12-bit address bus, thus, the total available memory
is 212 x 8 bytes, which comes out to 4,096 bytes or 4 kB. The memory itself
is byte-addressable, in that each address points to a byte of data.

Figure 8.4: Initial memory interface

8.2. DESIGN HISTORY 115

The initial memory map is shown in figure 8.5. It shows two major
decisions that were made. First, the largest IP packet that will be processed
in the pipeline will be 100 bytes long, and the input buffer, in the worst
case, can only hold 10 maximum-sized IP packets. The memory is further
subdivided into a QM and a PM, both of which are 10 kbytes long, and can
hold 100 maximum-sized IP packets at any one time. The major difference
is that the PM holds them successively, in the order they appear, while the
QM holds them in ordered queues (ordered according to priority). The last
segment of the memory map is the program memory, which was chosen to be
128 bytes long. The reasoning behind this is that all of the instructions are
8 bits long, and thus in a jump instruction, the largest memory that we can
jump to is 27 = 128 bytes away, assuming that the jump instruction itself
steals the most significant bit of the instruction, and leaves us with 7 bits to
use as an address to jump to (e.g. 10000111 decodes to a jump to memory
location 3). The memory map was introduced in this section because of its
relevancy to the microprocessor module. A more detailed description of the
memory module can be found in the succeeding section.

Figure 8.5: Initial memory map

The instruction set was initially encoded according to table 8.1. This
table shows that all instructions are 8 bits long, and that the largest mem-

116 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

ory we can jump was changed to 32, because of the encoding of the jump
instruction to to ”111a4a3a2a1a0”. Other significants are the operations
in the execute state of every instruction. Some instructions are typical,
thus have common execution steps, but others, such as ”start counter” and
”start pipeline” drive network functionality-specific control signals. One
last point to mention about the instruction set is that during the fetch state
of all instructions, a byte of memory will be written out to memory, thus
in register-transfer notation, the following would hold true ’RAM[AR] ←−
CRC output’.

8.3 Functional Specification

The microprocessor chosen for implementation in this project, is an 8-bit
microprocessor. All instruction opcodes are limited to 8 bits. The memory
is addressed with a 12-bit address bus, while the data path (according to our
pipeline structure) is 8 bits wide. The clock period was originally defined
to be 40 ns, thus the clock frequency is 25 Mhz. This microprocessor falls
under the RISC family of processors, as its instruction is quite reduced. The
final instruction set will be presented in this section. Also hardened will be
the memory interface, the bootstrap program, and the control units (yet to
be mentioned).

8.3.1 Instruction Set

The final instruction set was reduced to the following instructions: clear flags,
start pipeline, start counter and jump. Their subsequent encoding is shown
in table 8.2. Instead of explaining why all the other instructions were taken
out, it is more valuable to mention why these particular instructions were
kept in. The clear flags instruction allows us to, upon global reset of the
system, to clear all the flags that might depict actions taken during the pre-
vious operation. The start pipeline instruction allows us to signal the input
buffer to start streaming the packet bytes. The start counter instruction
allows us to inform the TLL (the first module on the pipeline) to commence
its starting sequence, in order to signal the ”End of Packet” state. The
final instruction, jump, is kept because it allows us to loop constantly upon
pipeline initialization. Taken out of the design were the subroutine calls,
the interrupt mechanism, the addition/subtraction control mechanisms, the
mux switch instruction and many more. The reasons vary from the use of
a piplined-design, to inherent operations executed within the pipeline (see

8.3. FUNCTIONAL SPECIFICATION 117

Mnemonic no. bytes Encoding Operations
clear flags 1 00000000 C ←− 0;N ←− 0; p d←− 0

start pipeline 1 00000010 TM rd←− 1
start counter 1 00000011 TM start counting ←− 1;

test pack done 1 00000100 ifp d == 1 −→ Z = 1;
elseZ = 0

test empty 1 00000101 ifempty == 1 −→ Z = 1;
elseZ = 0

test full 1 00000110 iffull == 1 −→ Z = 1;
elseZ = 0

add #h 1 0010h3h2h1h0 ACC ←− TLR + h;
C ←− carry out

sub #l 1 01l5l4l3l2l1l0 ACC ←− ACC − l;
C ←− carry out

jz #a 1 101a4a3a2a1a0 ifz == 1 −→ PC ←− a;
elsePC ←− PC + 1

jsr #a 1 110a4a3a2a1a0 STACK[SP]←− PC + 1;
SP ←− SP + 1;

PC ←− a

jump #a 1 111a4a3a2a1a0 PC ←− a

ret 1 11111110 SP ←− SP − 1;
PC ←− STACK[SP]

reti 1 11111111 SP ←− SP − 1;
ACC ←− STACK[SP];

SP ←− SP − 1;
PC ←− STACK[SP]

Table 8.1: Instruction set encoding

118 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

Mnemonic no. bytes Encoding Operations
clear flags 1 00000000 C ←− 0;N ←− 0; p d←− 0

start pipeline 1 00000010 TLL CU start←− 1
start counter 1 00000011 tll startC ←− 1;

jump #a 1 111a4a3a2a1a0 PC ←− a

Table 8.2: Final instruction set

padding), to the desirable simplicity characteristic. The final bootstrap pro-
gram follows:

0 clear_flags
1 start_pipeline
2 start_counter
3 loop jump loop

The program is not very long, but does keep its major functionality:
starting the pipeline. One of the many advantages of using a pipeline in our
design is shown here, as the bootstrap program (stored in ROM) does not
need to constantly control the pipeline. Some inherent control is done by the
pipeline itself, along with the aid of a number of control units. The progam
also leaves room for future development by keeping the jump instruction.
Not only does the instruction allow for branching to different parts of the 32
bytes program memory, but it also performs a continuous loop in this case,
and hence allows for easy interruption of the program, should the interrupt
mechanism deem useful at some time in the future.

8.3.2 Memory Interface

The final memory interface included a dissection of the previously designed
interface. As was shown in the final instruction set, the subroutine calls and
the interrupt mechanism are no longer needed, hence eliminating with them
the need for a stack pointer. One aspect that was modified from previous
designs is the break up of the address registers into two: the write address
register (WAR) and the read address register (RAR). The memory
itself will be discussed in the memory module design, but it is suffice to
say that the memory is a ternary-port memory. Traditionally, when
one needs to perform two operations upon the same memory, in one cycle,
dual-port memory is utilized. In this project, we need to perform three

8.3. FUNCTIONAL SPECIFICATION 119

distinct operations upon the memory, all in one cycle. The operations are
the fetching of an instruction to be executed, the write out to memory a
byte of packet information from the CRC module, and in some cases, the
read out to the SAR module a byte of packet information from the memory.
A solution to attempt to reduce the amount of ports on the memory (which
are a disadvantage, as each will require a data bus), is to multiplex at least
two of the addressing registers together, in order to alleviate the number of
data buses to be interfaced to external memory, but this particular solution
was not adopted because of two major reasons: first, the operations are
independent and do not have any relationships other than the RAR and
WAR addressing the packet memory (queue memory was taken out because
of the removal of the QAS module); the second reason for not adopting
multiplexed addressing schemes is that a decision was made to design the
memory internally, and thus avoid the external interface mechanism. The
data buses are thus found within the chip, and do not cost the designers any
more than their routing specifications. The overall final memory interface
is shown in figure 8.6. The PC is associated with the dual-port address
bus, while the IR is associated with the dual-port data bus. The main
address bus is connected to the WAR, while the value to write at the WAR’s
designated address, is received from the CRC module. Finally, the RAR
is associated with the ternary-port address bus, while the SAR module is
associated with the ternary-port data bus. All data buses are 8 bits wide,
while the address buses are 12 bits wide. That said, not all 12 bits are used
in address decoding, as will be seen later on.

At this point, we know who addresses what, but we don’t know how each
does it. There are three main addressing entities: the PC, the WAR and the
RAR. Each is vital to the operation of the whole pipeline, with the WAR and
RAR playing more eminent roles. The PC is designed according to tradition
[dB98], but, as we can see, is not very important in the final design, as it
does not address a very large program memory (32 bytes). The PC design is
shown in figure 8.7. The operation of this register does not change from the
design history section, except that it is worth noting the bus size limit of 5
bits, as the PC only addresses (25) 32 bytes of program memory. The rest
of the address lines (DPA5-DPA11) are connected to the power supply to
cause the program memory to be addressed to the end part of the memory
(see figure ??). The WAR and RAR operate according to figures 8.8 and 8.9.
They address the memories for the CRC module to write to, and for the SAR
module to read from. The actual transfer of the data is co-ordinated by the
address control unit (discussed below). The WAR differs from the RAR,
in that the former increments normally, until the jump war control signal

120 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

Figure 8.6: Final memory interface

is asserted, whence a switch is made to accept the pad register (PR) value
into the adder circuitry. This will perform the padding algorithm, in that,
upon command, a certain amount of memory locations will be effectively
skipped, and since the packet memory is initialized with zeroes, a certain
amount of pad bytes will be inherently appended to the packet. This will
work as long as zeroes are re-written into the memory location just read out
to the SAR module. Conversely, the RAR only has to increment after each
read (and its trigger to start reading), in order to address the bytes of the
packet to be read out next. The control signals designated in the previous
three diagrams will be discussed in the control units section below.

Figure 8.7: PC architecture

8.3. FUNCTIONAL SPECIFICATION 121

Figure 8.8: WAR architecture

Figure 8.9: RAR architecture

8.3.3 Control Units

Proknet contains a microprocessor which performs all of the previously men-
tioned tasks. However, the CPU is partitioned into three main units: the
instruction control unit (ICU), the address control unit (ACU) and
the main control unit (MCU). The instruction control unit is the least
complex of all three, and will be the first presented.

ICU design

The ICU was partially modified from the original state machine to look like
figure 8.10. The assertion of global reset causes the finite state machine
(FSM) to enter its reset state, where all the machine’s outputs are reset.
The PC is loaded with its initial value, and the inc pc signal is asserted to in-
dicate the increment of the PC after fetching the first instruction. The Fetch
state loads the IR (by assertion of load ir) with the data from the memory
(the actual instruction to be decoded), and the Decode and Execute state
actually performs the decoding and the execution, as all four instructions
do not require more than one clock cycle (no operands to fetch) to execute.
Depending on the received instruction, certain control signals are asserted,
and then de-asserted. The instructions are all stored in ROM, and hence
are fetched on start up. At this moment, it is worth mentioning that the
instructions and the instruction control unit do not add or hinder the overall
process. The functionality that was supposed to be an advantage was mostly

122 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

replaced by the introduction of the other two control units, and hence this
unit has nearly become obsolete. It is however interesting to note that this
unit is functioning, and if need be, can be utilized in future releases. The
only utilized function is the TLL CU startC signal, which is the ICU’s sig-
nal to the TLL to commence counting (for the very first time). The latter
is asserted upon decoding of the start counter instruction.

Figure 8.10: ICU FSM

ACU design

The ACU is a more vital control unit, and its corresponding FSM is shown in
figure 8.11. As we can see from the figure, the assertion of the global reset
puts us directly in the Reset state. The assertion of the TLL CU startC
signal from the ICU, will trigger a move to the CRC start state, where the
WAR begins to increment (from zero), in order to address valid locations to
write bytes out to (assertion of load war and inc war control signals). The
FSM transitions to the Idle state on the next clock edge (remember that all
our FSMs are sequentially designed around our 25 Mhz clock). The FSM
remains in the Idle state unless one of the following occurs:

1 The TLL module finished counting the number of bytes in the packet
(assertion of TLL eop)

• The jump war signal is asserted to execute a jump according the
amount of padding bytes we have to append;

2 The CRC module finishes writing a packet out to memory (assertion
CRC eop)

8.3. FUNCTIONAL SPECIFICATION 123

• The load rar and inc rar signals are asserted to load the RAR and
allowing it to start incrementing to feed the SAR module with
its bytes of packet information (the oe tp signal is also asserted
to allow ternary-port reads, while the we signal is de-asserted to
disallow writes from the CRC module to the packet memory);

3 The SAR module completes the segmentation of a packet (assertion of
SAR pd)

• The inc rar and oe tp signals are de-asserted to disallow reads
from the ternary-port memory;

4 A new packet comes into the pipeline (assertion of stimulus startC)

• The we and inc war signals are re-asserted to allow writes from
the CRC module again.

As a side note, upon reset none of the control signals are asserted. Also,
the CRC restart state was added in order to allow the pipeline to handle
more than one packet simultaneously. Finally, all secondary states (the ones
following the Idle state) are transitions states, in that they transition back
to the Idle state after one clock cycle.

Figure 8.11: ACU FSM

124 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

MCU design

The MCU is the nucleus of Proknet. Its corresponding FSM is shown in
figure 8.12. Instead of attempting to explain the packed FSM, it would be
easier to outline the main functions of the MCU:

1- TLL

• Start the TLL counter through the assertion of TLL startC ;

• Handle the TLL eop signal indicating the end of the packet.

2- Trailer

• Drive read and write signals to the trailer FIFO buffer;

• Drive a form of TLL eop to the trailer called CU T eop;

• Drive a T clr cntr signal to clear the trailer counter;

• Handle T eop signal indicating the end of the trailing for the packet;

• Handle Empty and Full signals indicating the status of the FIFO
buffer.

3- CRC

• Drive read and write signals to the CRC FIFO buffer;

• Drive a form of T eop to the CRC called CU CRC eop;

• Handle CRC eop signal indicating the end of the write to memory of
the packet;

• Handle Empty and Full signals indicating the status of the FIFO
buffer.

4- SAR

• Drive SAR startC upon reception of CRC eop;

• Drive Start Address and End Address which indicate the start and
end of the packet in memory;

• Handle SAR pd signal indicating the completion of the segmentation
process for one packet.

8.4. HARDWARE SPECIFICATION 125

The MCU operates on global reset as well, whereas it resets all of its
corresponding output signals. The control unit is also provisioned to handle
multiple packets on the pipeline as indicated in the FSM. The transition
states were carefully selected, after numerous sample scenario runs. For
example, a T eop transition can only occur when the machine is in its TLL
or Trailer states, because otherwise the trailer has already been completed,
and hence, the T eop signal has already been asserted and de-asserted.

8.4 Hardware Specification

The microprocessor module is implemented using the Verilog [DET95][Smi96]
language. Its main components are as described above in the Functional
Specification section. The source code can be revised by looking at Appendix
D (or in directory /proknet/ucpu, on the accompanying CD). There are
three main files: ’inst cntrl unit.v’, ’address control unit.v’ and ’main control unit.v’.
The microprocessor functionalities (PC, IR) are implemented in the ICU
design, while the network-processor functionalities (WAR, RAR) are imple-
mented in the ACU. The MCU controls the pipeline, and hence has many
other functionalities. All three files contain standard Verilog state machines,
with one caveat. The MCU contains a ”previous state” registered value,
which aids in the implementation of the FSM. This is necessary because of
different transitions within the state machine, hence we need a certain signal
to keep reminding us where the previous state, and hence, how we got to be
in the present state.

The implementation scheme for this module was chosen to be the be-
havioural one. Although most of the project was implemented in RTL-style
code, it would have been fruitless to attempt to do the same to this mod-
ule, as this module contained entities that were better-suited for a state
machine type of design, and hence, the behavioural representation in Ver-
ilog. The registers (PC, IR, WAR and RAR) were also implemented be-
haviourally (using always @ blocks) to follow with the top level structure of
this module. Other notables are the fact that addition was also implemented
behaviourally. We had at our disposal a fully functional ALU, capable of
adding/subtracting two 16 bit numbers, but it was tightly controlled by the
pipeline itself, and hence could not have its control shifted towards the MCU
without paying a price.

126 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

Figure 8.12: MCU FSM

8.5 Functional Simulation

Functional simulation was run on the microprocessor top level module, and
the corresponding results are shown in figure ??. Functional simulation of
this module included the instantiation of the memory module. Now, al-
though the latter has not been formally introduced (following), it has been
discussed enough to appreciate its projected objectives. The top level mod-
ule of the microprocessor is termed ucpu top, while the test bench module is
termed tb ucpu. The former is instantiated in the latter, and subsequently
tested by the variation of the inputs to the module. As we can see from
the functional simulation, the MCU starts out in the Reset state (state 0),
and upon reception of a start again signal indicating a new packet to be

8.6. SYNTHESIS 127

processed, proceeds to the Idle (state 1) and then the TLL (state 2) state
right after. In between, a tll startC signal is sent to the TLL module in-
structing to commence the counting process. The trailer and CRC module
read and write signals also are driven. They actually have the same charac-
teristics as the system clock, since we need to write and read bytes to each
of the trailer and CRC module FIFO buffers every clock cycle, in order to
fulfill our pipline requirements. The MCU remains in the TLL state until
it receives feedback from the module that it has completed the counting
process (tll eop), upon which the MCU transitions to the Trailer (state 3)
state, and sends the trailer module a signal (cu to trailer eop) to indicate
TLL completion, and TLR and PR validity. The machine remains in the
Trailer state until it receives feedback from the module that it has com-
pleted the trailing process (t eop), upon which the MCU transitions to the
CRC (state 4) state, sends the CRC module a signal (cu to crc eop) to indi-
cate trailer completion, and clears the trailer module’s counter by asserting
clear trailer counter. The MCU remains in the CRC state until it receives
feedback from the module that is has completed the processing of the packet,
which is safely stored in packet memory, through the assertion of crc eop.
The MCU then transitions to the SAR (state 5), and subsequently to the
SAR waiting (state 6) state, clears the CRC FIFO buffer by resetting both
pointers (clear read ptr and clear write ptr), and sends a signal to the SAR
module (sar startC) indicating to it that there is a packet in memory ready
for segmentation. The SAR proceeds in the segmentation process, and upon
completion, signals the MCU with the assertion of sar pd (sar packetdone),
whence the MCU transitions back to the Idle state awaiting a new packet
to come into the pipeline (signaled by start again).

8.6 Synthesis

The microprocessor module was synthesized using ”Design Analyzer” pro-
vided by Cadence. This software allows the designer to input Verilog source
files, and generates schematics for each of the modules utilized within the
design. Referring to appendix D, we can see the synthesis outputs for all the
modules in the microprocessor module. By looking at the top level module,
ucpu top, we can see the symbol and schematic diagrams that represent and
implement the module, respectively. The symbol diagram presents us with
a black-box view of the module, only showing the inputs and outputs of the
module, as well as the width of each input or output. The schematic diagram
on the other hand presents us with the underlying structure (a white-box

128 CHAPTER 8. MICROPROCESSOR MODULE DESIGN

view) of the module. First, we can see that the module contains four other
module instantiations, which is according to specification. The four inter-
nal modules are: instr cntrl unit, address cntrl unit, main cntrl unit and
tp ram memory. The former three will be discussed below, but the latter
will be left for the synthesis discussion of the memory module.

The three FSMs discussed earlier control the entire system. The Ver-
ilog source code was written behaviourally, and for that matter, it is not
simple to recognize the output of the synthesis process. That said, there
a few components that should be easily spotted, including all of the state
flip-flops, and the output construction logic. For example, looking at the
main cntrl unit schematic, we can trace the crc read signal output and how
it was generated. It is the output of an 2-input AND gate. One of the inputs
is the global system clock, while the other is the output of an internal latch.
The latch has an internal logic generated input, but also has an enable tied
to it. The enable is used to disable reading from the CRC FIFO buffer. This
is again according to specification.

8.7 Timing Simulation

This section is yet to be completed. The issue here is that the microprocessor
module instantiates the memory module. That said, the latter was written
in a brute-force behavioural fashion, and thus has caused the synthesis tool
to halt because of a lack of host machine memory. The memory module is
quite a large design, including 64 kB of RAM cell components. Included
in the memory module are various address decoder instantiations, which do
not help the size of the module. The synthesis tool handles the reading of
all Verilog source files, and a first-attempt compilation. The synthesis tool
orders the designer to ”uniquify” all multiply-declared instantiations. Upon
the completion of that request, the designer attempts a final compilation
step, whereas the synthesis tools utilizes around 1.18 GB of memory, but
still manages to crash. This issue is a major one, as the designer needs
to revert back to the design of the memory, and investigate other options
to create the memory. A simple solution would be to interface to external
memory, which would actually be the ideal situation. The reason for not
performing that in the first place, is that it was thought easier to create a
memory that is less than 5 kB in size within the design itself.

Chapter 9

Memory Module Design

9.1 Theory

The last topic of discussion is the memory module design. Memory is a large
array of storage cells, each capable of holding one bit of information [Kli82].
Traditionally, the CPU accesses the memory by altering a number of bits at a
time, and thus memory is usually byte addressable. The number of bits that
could be altered at any one time is termed the width of the memory, which
changes from computer to computer. An address is associated with each byte
of memory, because the latter is not usually accessed in a linear fashion, and
thus requires a mechanism of control. The number of addressable bytes in
the address space will be a power of 2, calculated by taking the power of
2 to the number of address lines present on the address bus. For example,
for a 16 bit address bus, there are 216, or 65,536 different memory locations
that could be written to or read from. The size of the memory is usually
described by two numbers: the number of total different memory locations
and the width of the memory. Thus, typical values for memory sizes include
2kB x 8 or 16kB x 4 (the unit kB equaling 1024 bytes).

Normal memory is designed with one write enable line and one output
enable line, in order to be able to read or write to memory. There is another
type of memory that allows for the reading and writing out to memory at the
same time called dual-port memory. If on the other hand, two writes were
to occur at the same time, some extra logic would have to be built in order
to make sure that both writes do not occur on the same memory location.
The write enable line is a single wire driven by the microprocessor to control
the function of the memory. If the write enable control line is asserted as
a logical one, i.e., ”true”, then the memory performs a write operation. If

129

130 CHAPTER 9. MEMORY MODULE DESIGN

it is asserted as a logic zero, i.e., ”false” then the memory cannot write out
to memory. The same logic holds for the output enable line, only that it
controls read operations.

The system memory is usually described by a memory map, which serves
to section off the different types of memory. The read/write memory, the
read-only memory, and the write-once memory (if present) have to be delin-
eated in terms of address space, in order to correctly address them internally
in the microprocessor’s memory interface. Traditionally, it is advantageous
to place the program space at the opposite end of the memory compared to
the data or user space. An address decoding mechanism also has to be put
into place in order to easily address a memory location by not having to de-
code all the address lines on the bus. It is worth noting that a chip select
(CS) signal is usually used when multiple devices are interfaced to the mi-
croprocessor, but in this scenario only the memory is interfaced, requiring
one CS signal. Delving further, the designed memory is not external, and
hence will actually not even require a CS signal to interface to, however,
does require a write enable and output enable(s) in order to correctly read
and write to memory locations.

There are numerous types of memories: asynchronous, synchronous,
dual-port, first-in-first-out. A brief discussion of each follows. Asynchronous
memory allows for new data to be written to it just by changing the address
lines, and hence the write enable lines. For this characteristic, a major
restriction is put into effect, and that is that the new address line must
remain stable for a certain period of time before the actual write enable
line changes. Synchronous memory on the other hand, handles these types
of situations much more efficiently, as it is quite easier to analyze signal
changes for setup and hold-time violations. All signals are synchronized to
a global clock, thus are easier to analyze. Dual-port memory has already
been discussed. Finally, first-in-first-out (FIFO) buffer memory is used to
accept short bursts of high-speed data from the input side, and output them
to the receiver at a rate that the latter can handle. FIFO buffers are mostly
utilized in communication systems, and have already been discussed in the
trailer and CRC module design sections [dB98].

9.2 Design History

The memory was one of the last modules to be designed and implemented.
For this matter, it was already outlined in terms of functionality, inputs and
outputs as presented in the microprocessor module design section. As can

9.2. DESIGN HISTORY 131

be seen in figure 8.5, the input buffer was thought to be contained within
the system memory. A buffer control unit would be controlled by the MCU,
and thus the pipeline would be fed with the bytes of the packets accord-
ingly. The initial design for the memory was for a single-port synchronous
memory, as shown in figure Initial memory interface. The design included
one input/output bus that would allow for read operations (into the IR),
and write operations (from the CRC module). This solution quickly be-
came disbanded for many reasons. First, as mentioned before, we will need
to perform three different operations simultaneously. One issue to mention
is that we will not have to introduce any external circuitry to disallow two
writes to the same memory location, because the three operations are one
write, and two read operations (Two reads to the same memory location
are allowed). For this matter, the implemented memory is a ternary-port
memory (TPRAM). It is, as mentioned, synchronized to the global 25
Mhz clock, and hence, the memory location values can only be altered at
the edge of the global clock, and not at the edge of the write enable lines
(as in asynchronous memories).

The memory itself is a 4kB large, and its size is represented by the
following notation: 4kB x 8, meaning that there are 4,096 total addressable
memory locations with a memory width of 8 bits. The total valid memory
locations came about by taking the power of 2 to the number of address
lines, the latter being 12. Thus, 212 equates to 4,096 memory locations.
The address bus width was chosen to be 12 bits, because packet memory is
defined to be 1 kB large, and the program space is defined to be 32 bytes
long. Hence, for further expansion, a sensible amount of unused memory
was placed in, and thus the 12 bit addressing scheme was selected. The
memory has one write enable line (w en) to allow for the writes from the
CRC module, and two output enable lines, one to enable reads to the SAR
module (tp rd), and the other to enable reads to the IR (dp rd). Each of
these signals are actually buses that should be 4,096 bits wide, but because
of address decoding are less than that. This point will be delved into in the
next section.

The need memory being only a few kilobytes large, it was unnecessary
to interface to external memory, and thus it was chosen to implement the
memory internally. That said, an initial design of a RAM cell is shown in
figure 9.1. This RAM cell is only used to instantiate two of the ports of the
TPRAM. The third port is actually the dual-port which feeds the IR, and is
presented in the ROM design section. The RAM cell will be the basis used to
make all of the system memory, and will hold all of the packet information.
It will be the lowest entity that will be visible in terms of system memory.

132 CHAPTER 9. MEMORY MODULE DESIGN

An address decoding mechanism will have to be used to address the different
types of memory, but its discussion will also be left for the next section, as
no major design iterations were spent on it.

Figure 9.1: RAM cell

9.3 Functional Specification

The new memory map is shown in figure 9.2. The only addressable spaces
are the packet memory and program spaces. The program space is actu-
ally a 32 byte ROM implementation, while the packet memory is a 1 kB
RAM implementation. The latter, as previously mentioned, took its shape
from the basic RAM cell. From the small building blocks (RAM cells), a
whole memory system was generated. More on this topic in the hardware
specification that follows.

Another major block of the memory module is the address decoding
scheme. There were two major types: the microprocessor address decoding
scheme, and the network processor address decoding scheme. The former is
illustrated in figure 9.3. It can be shown that from the address DPA5-DPA0,
and the oe dp enable line, the 32 output enable lines can be generated, so
as to read the correct memory location. The network processor address
decoding scheme is much more complex and will not be shown here, as it is
just an extension of the ideologies presented in the MCPU address decoding
scheme.

9.4. HARDWARE SPECIFICATION 133

Figure 9.2: Final memory map

One last point is the input buffer implementation. It was decided, that
since the input buffer usually feeds the IP over ATM segmenter, it would
be logical for it to be the output of a buffer or another chip sitting on the
board. That said, it would be quite unrealistic to store the buffer in the
main memory as depicted in the initial memory map. or this reason, the
input buffer will be moved from the main memory, and into the final test
bench of the top level module. A brief period of time was spent in order
to attempt to place the input buffer into a file, which could be read into
the Verilog simulation environment, but was not implemented due to time
constraints.

9.4 Hardware Specification

In order to generate the system memory, eight RAM cells were instantiated
to make a byte, then eight bytes were instantiated to make 8 bytes, eight of
which were instantiated to make 64 bytes, eight of which were instantiated
to make 512 bytes. Now, the memory space was modified during the address
decoding, since the WAR and RAR only used the least significant 10 bits
to address their common space, the packet memory, while the PC only used
the least significant 5 bits to address its space, the program space. The PC
was picked as the dual port, while the WAR was the single port, and the

134 CHAPTER 9. MEMORY MODULE DESIGN

Figure 9.3: Micro-CPU address decoding

RAR was the ternary port. That said, we come to an earlier point that
there less than 4,096 w en/dp rd/tp rd lines. This holds true because of the
address decoding simplifications. There are only 32 dp rd lines, as there are
only 32 bytes of ROM to read from, while there are 1,024 w en/tp rd lines
to encompas the 1 kB of packet memory. One major design change is the
reduction of the address space to 2 kB, as indicated by the 10 bit address
decoding of the WAR and RAR. That said, to instantiate 2 kB of memory
(32 bytes of which is ROM, and the rest RAM), we included three 512 byte
RAM instantiations, seven 64 byte RAM instantiations, one 32 byte RAM
instantiation, and of course, one 32 byte ROM instantiation (3*512 + 7*64
+ 2*32 = 2,048).

The ROM block was written in behavioural code. Its mode of operation
is quite simple: when queried with an address, decode it and drive the correct
dp rd line, whereas the data bus connected to the IR, will be filled with the
ROM byte at that memory location (see accompanying source code, or CD

9.5. FUNCTIONAL SIMULATION 135

directory /proknet/memory/rom 32bytes.v).
The address decoding block was implemented according to the truth ta-

ble implementations of each decoder. There are three decoder blocks: the
two-to-four decoder, the three-to-eight decoder and the four-to-sixteen de-
coder. All three are utilized in the decoding scheme, and their instantiations
and interconnections can be seen by looking at the source code (see accompa-
nying source code, or CD directory /proknet/memory/address decoder.v).

9.5 Functional Simulation

Functional simulation was run on the memory top level module, and the
corresponding results are shown in figure Memory functional simulation.
The top level module of the memory is termed tp ram memory, while the
test bench module is termed tb memory. The former is instantiated in
the latter, and subsequently tested by the variation of the inputs to the
module. As we can see from the functional simulation, the outputs match
our desired results. Upon global reset, our ROM begins to output bytes
of data to the IR, whence the oe dp output enable line to the dual port is
enabled. The ROM will output one instruction to the IR every clock cycle.
These instructions were initialized in the ROM source file. We can also see
that the PC is incrementing every clock cycle to address the next memory
location. Another observation to make is that the CRC module writes two
bytes out to memory, the first with a value of 0x12 to address 0x008, while
the second is 0x0F to address 0x004. The write en signal is asserted each
time a write is initiated. On the other side, the oe tp output enable signal
is asserted once the SAR module is ready for its data, which happens to be
0x12 and 0x0F, stored at addresses 0x008 and 0x004, consecutively. This
demonstrates the correct functionality of the TPRAM.

9.6 Synthesis

The memory module was synthesized using ”Design Analyzer” provided by
Cadence. This software allows the designer to input Verilog source files,
and generates schematics for each of the modules utilized within the design.
Referring to appendix E, we can see the synthesis outputs for all the modules
in the memory module. By looking at the top level module, tp ram memory,
we can see the symbol and schematic diagrams that represent and implement
the module, respectively. The symbol diagram presents us with a black-box

136 CHAPTER 9. MEMORY MODULE DESIGN

view of the module, only showing the inputs and outputs of the module, as
well as the width of each input or output. The schematic diagram on the
other hand presents us with the underlying structure (a white-box view) of
the module. First, we can see that the module contains two other module
instantiations, which is according to specification. The two internal modules
are: address decoder and ram 2kbytez.

The address decoder module contains numerous instantiations of the
three main address decoding modules: two four decoder, three eight decoder
and four sixteen decoder. Please refer to section 9.2 for a more detailed dis-
cussion of the design history of this module. The interesting note to observe
when referring to the address decoding synthesis outputs is that only NOT
and AND gates are utilized to implement the modules. This was expected as
the modules’ Verilog code only mapped out the truth table of each decoder
into source code. The truth tables are easily implemented using NOT and
AND gates, which was actually the truth.

The ram 2kbytez module contains numerous instantiations of the smaller
memory modules: ram 512bytez, ram 64bytez, ram 32bytez, ram 8bytez,
ram byte z, ram cellz and rom 32bytez. The basic module is the ram cellz,
which is implemented using a flip-flop and other combinational logic. The
main specifications of the memory can be reviewed in section 9.3.

9.7 Timing Simulation

Please refer to section 8.7 for a discussion of this task.

Part IV

Conclusions

137

Chapter 10

System Integration

10.1 Proknet c©in all its might

10.1.1 System Integration

This part of the project was divided into three parts:

• TLL and Trailer Integration. (see Appendix G, tll trailer top.v)

• TLL, Trailer and CRC integration. (see Appendix G, tll trailer crc top.v)

• TLL, Trailer, CRC, SAR and Micro CPU and Memory integration
which is know as Proknet. (see Appendix G, final top.v)

The reason for this is to assure that the modules are carefully studied
and that their behaviors well understood; that way it becomes easier to
debug as the integration progresses.

10.1.2 Functional and Hardware Specification

As far as functional and hardware specifications go, nothing was changed
in the designed modules of the pipeline. In each integration phase, the
appropriate modules were instantiated, and valid inputs and outputs were
passed as was designed in the pipeline.

10.1.3 Functional Simulation

For TLL and trailer integration, a test bench (see Appendix G, tll trailer top tb.v)
was written in order to model the control unit’s actions (see Appendix G),

139

140 CHAPTER 10. SYSTEM INTEGRATION

and to test their functionality together (see Appendix G for timing dia-
grams). In the first timing diagram (Tll Trailer Integration(1/2)), a packet
was received on the pipeline(In data bus) and StartC (start counting) was
asserted to allow the TLL module to extract the length of the packet and
to compute the padding bytes. As shown, the bytes of the packet were put
out to the pipeline (out data bus), a clock cycle later from when it was re-
ceived. This cycle keeps going until the TLL module sets the eop signal
high, which causes the control unit to set cu eop high for 8 clock cycles,
which allows the trailer module to output the trailer fields (see Appendix
G, Tll Trailer Integration (2/2)).

Knowing that the TLL and trailer modules functioned properly, the CRC
module was merged and integrated along with (see Appendix G, tll trailer crc.v).
A test bench was written to test the functionality of all three modules (see
Appendix G, tll trailer crc top tb.v). The main concern in this part was to
see if the CRC module will output the 4 bytes of CRC at the given signal
cu c eop (it is set by the control unit when signal doneT is received from
the trailer module), this signal will stay high for 4 clock cycles.

Having done so many integrations and feeling very comfortable with the
outputs and timing diagrams, it was time to pick up the speed and merge the
rest of the modules (SAR, MicroCPU and Memory). Please refer to Proknet
Top Level Functional Simulation 1,2 and 3 as the discussion progresses. A
packet of 16 bytes was put on the pipeline and the signal start again is
asserted to indicate the arrival of a new packet. The packet goes through
the TLL module and the following occurs:

• Extractor extracted the TL (total length of the packet) and stored in
TLR (16).

• Pad Unit computed the number of pad bits needed and displayed by
PR (24).

• Packet kept flowing through the TLL, trailer (because CU T eop is
low), CRC (because CU CRC EOP is low) until the TLL eop signal
is set high.

Just a reminder that 16 (length of packet) + 24 (output of pad algorithm)
bytes of padding + 8 bytes of Trailer = 48 bytes. Therefore the packet is
divisible by 48.

When TLL eop was set high by the TLL module, the Control Unit set
CU T eop high for eight clock cycles in the Trailer Module which in return:

10.2. PROKNET c©LIMITATIONS 141

• Switches the 2 to 1 mux and triggers the 3-bit counter to start count-
ing;

• The 3-bit counter is the selector of the 8 bytes trailer, therefore as it
counts, it is outputting the trailer fields to the pipeline. When the
3-bit counter is done counting, it sends a T eop back to the MCU.

When T eop is received by the MCU, CU CRC EOP is asserted for four
clock cycles which causes the following to occur in the CRC module:

• Switches the 2 to 1 mux and triggers the 2-bit counter to start count-
ing;

• The 2-bit counter is the selector to the 4 bytes of valid CRC that
were computed by the CRC-32 unit, so as the 2-bit counter counts,
it is selecting the CRC bytes and putting them out onto the pipeline.
(Please see crc data out, notice the Trailer and CRC). When the 2-bit
Counter is done counting it sends CRC eop (it means CRC has been
appended) to the MCU.

Upon receiving the CRC eop, the main control unit sends a SAR startC
signal to the SAR module, which causes the following to occur:

• Counter is triggered (see atmcounter), and the counter keeps counting
up to 48 then;

• Cell Done is asserted, meaning that 1 48 byte cell has been sent.

• Packet done goes high which means that 1 IP packet has been pro-
cessed.

10.1.4 Synthesis

Synthesis was previously separately done on each module (please refer to
the individual modules for more information).

10.2 Proknet c©limitations

The following section is brief liaison of all the major hurdles that have been
left behind because of a major lack of resources, be it time, man-power or
development tools. The major task to be handled is the completion of the
padding algorithm. The latter requires a module to write back zeroes into

142 CHAPTER 10. SYSTEM INTEGRATION

the just-read bytes of memory. The original thought was that the SAR
would accomplish this task, but it turned out too memory intensive, as a
record of the start and end addresses of the previous packet have to be kept.
The other module that could have taken care of this is the micro-processor
module, but the latter already was interfaced to a TPRAM, and was not
able to handle more ports, or multiplex the data on one of the existing ports.

A major limitation of Proknet is that it cannot handle more than 2
packets on the pipeline. It can on the other hand handle 1 packet (the size
being smaller or greater than 48 bytes), and 2 packets. The limitation is
that when more than 2 packets are present on the pipeline, the TLR and
PR registers, as well as the Start Address and End Address lines all latch
or store values of the next packet, while the previous one is being processed
by the SAR module.

An ATM specification change was made during the design, and that is to
only perform the byte-wise CRC calculations on the packet and the trailer,
excluding the padding bytes. The reason for that is simplicity of design.
In order to make up for this specification change, an assumption about the
reassembly side was made: the reassembler will strip the padding bytes first,
and then calculate its own CRC to see if it matches the packet’s sent CRC
information (4 bytes of it).

As previously mentioned, a queuing and scheduling module was supposed
to add extra functionality to Proknet, but it was scrapped as soon as the
priorities were handed down by the members of the group. Queuing and
scheduling was seen as a luxury to have, rather than a necessity for the
correct operation of the system.

As aforementioned as well, the timing simulation phase of the project
did not succeed as anticipated. Numerous problems were faced from design
methodologies, to library problems to memory constraints. Please see each
module design section for more detail on this topic.

Finally, by looking at the final top level functional simulation, we can
see that there are two bytes that are not propagated to the output of the
pipeline. The reason for that is found in a design error. The FIFO buffers
were designed to hold exactly the same amount of bytes as each module
(trailer and CRC) was transmitting. For this reason, the buffer would get
full, and then would have to be emptied by one byte first, before allowing a
write operation on the buffer. For this reason, a byte is lost in each buffer,
and is not saved, but actually overwritten in the buffer. A resolution to this
problem would be to increase each buffer’s size by one, making the trailer
FIFO buffer a 9-byte buffer, and the CRC FIFO buffer a 5-byte buffer.

10.3. FUTURE WORK 143

10.3 Future Work

Proknet has managed to successfully segment variable-sized IP packets into
fixed-sized ATM cells. That basic functionality was implemented and func-
tioned correctly. What is missing are all the extra caveats that were thought
up in the preliminary design phase of the project. Queuing and scheduling is
a great luxury to have, and would have to be the first module implemented
if Proknet 1.0 were to come out. Other major improvements would be
a greater pipeline throughput, a correct (according to specification) CRC
calculation, and a correct implementation of the padding algorithm. Re-
viewing the current limitations of Proknet, it would be a great improvement
to successfully simulate the timing characteristics, and place and route the
design. Proknet would then become an entity ready to be implemented on
any programmable chip.

Proknet could also benefit from a parallel architecture, where multiple
pipelines could be executing on various packets. This system would have to
be a massively-parallel system, but would increase the throughput by leaps
and bounds. This idea could be beneficial in the re-engineering of today’s
SARs on the market, as they operate on a queuing and scheduling algorithm,
but do not include multiple pipelines.

10.4 Project Conclusions

This project started off as a migration from traditional microprocessor de-
sign to a more innovative network processor design. The idea was a raw one,
with only a few references to go by. The design work accomplished proved
that this technology is of great benefit to the networking world. Today’s
major (communication) industry players use SARs as commonly as they use
resistors on their printed circuit boards. Proknet was born in a small design
room in McDonald Hall at the University of Ottawa, but its birth gave true
design experience to its parents. It has also come a long way from the block
diagrams that were ”supposed” to segment a packet into smaller chunks,
and has flourished into a working Verilog model, as well as a synthesized
netlist.

To make the really long story long, the project’s main objectives have
been met. The designers believe that they have acquired a great deal of
knowledge by doing everyday designer tasks. One point to be stressed is the
fact that the implementation phase should have been guarded against, as
the designers did spend quite a long time in the design phase. As a result

144 CHAPTER 10. SYSTEM INTEGRATION

though, a straightforward implementation eased the flow into synthesis.
Proknet is alive and well. It is awaiting its total completion, but stands

before you today, as a valid IP over ATM segmentation entity.

Bibliography

[1.697] Wordnet 1.6. Org from ftp://clarity.princeton.edu/pub/wordnet/wn1.6unix.tar.gz.
Technical report, Princeton University, 1997.

[Cle92] Alan Clements. Microprocessor Systems Design: 68000 Hardware,
Software, and Interfacing. PWS Publishing Company, 20 Park
Plaza, Boston, Massachusetts 02116, 2nd edition, 1992.

[dB98] Dave Van den Bout. The practical Xilinx Designer Lab Book.
Xilinx Inc., 1998.

[DET95] Philip R. Moorby David E. Thomas. The Verilog Hardware De-
scription Language. Kluwer Academic Publishers, Reading, Mas-
sachussetts, 1995.

[Hal92] Fred Halasall. Data Communications, Computer Networks and
Open Systems. Addison-Wesley Publishers Limited, 1992.

[Ibe97] Oliver C. Ibe. Essentials of ATM Networks and Services. Addison
Wesley Longman Inc., 1997.

[Kli82] Edwin E. Klingman. Microprocessor Systems Design, Microcoding,
Array Logic, and Architectural Design. Prentice Hall Inc., 1982.

[Lee00] Sunggu Lee. Design of Computers and Other Complex Digital
Devices. Prentice Hall, 2000.

[Pry95] Martin De Prycker. Asynchronous Transfer Mode Solution for
Broadband ISDN. Prentice Hall International (UK) Limited, 1995.

[Smi96] Douglas J. Smith. HDL Chip Design. Doone Publications, 1996.

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice Hall PTR,
1996.

145

146 BIBLIOGRAPHY

[Tre87] Nick Tredennick. Microprocessor Logic Design. Digital Equipment
Corporation, 1987.

Appendix A

A - TLL module

147

148 APPENDIX A. A - TLL MODULE

Appendix B

B - Trailer module

149

150 APPENDIX B. B - TRAILER MODULE

Appendix C

C - CRC module

151

152 APPENDIX C. C - CRC MODULE

Appendix D

D - Microprocessor module

153

154 APPENDIX D. D - MICROPROCESSOR MODULE

Appendix E

E - Memory module

155

156 APPENDIX E. E - MEMORY MODULE

Appendix F

F - SAR module

157

158 APPENDIX F. F - SAR MODULE

Appendix G

G - System Integration

159

160 APPENDIX G. G - SYSTEM INTEGRATION

Appendix H

H - Design Documents

161

162 APPENDIX H. H - DESIGN DOCUMENTS

Appendix I

I - Project Presentation

163

