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Abstract– In this paper we present Proknet, which is a play on the following
words: network and processor. It represents a module that is capable of re-
ceiving incoming variable-sized IP packets, and outputting fixed-sized ATM
cells. The applications of this module are numerous, especially in the com-
munications field, where this type of circuit is needed in order to implement
the ATM forum specifications. Our design is outlined and briefly discussed,
while our final results are presented and analyzed.
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I. INTRODUCTION

The Internet has become one of the most diverse, information-
filled libraries this century has ever seen. Its contents range
from a variety of different topics, some of which include ed-
ucation, information, leisure and entertainment, as well as re-
search and development. As the Internet becomes more reli-
able, we are evolving into dependencies for its various tools
and services. Our dependency hence increases our awareness
of the Internet, which in its turn leads to people demanding
more diverse and tailored services that they can map to their
everyday lives. This demand drives the emergence of new tech-
nologies as well as the refinement of old ones in ways never
seen before. Two of the leading technologies that have surfaced
are theInternet Protocol (IP) , andAsynchronous Transfer
Mode (ATM) .

The main goal of this research was to provide an IP over ATM
segmentation entity, that accepts a variable-sized IP packet,
and transforms it into fixed-sized ATM cells. The design goals
set out at the start of the research included forum compliance,
efficient implementations, digital design adherence, speed of
execution and network processor functionality. The research
provided a solid foundation for IP over ATM segmentation
abilities, and made the design of network processors, a current
hot topic within the communications field, simpler to visualize
and understand.

The undertaken work was accomplished through the use of var-
ious tools, including theSynopsis Verilog compiler and simu-
lator, theCadence design analyzer tool for synthesis and the
Cadence waveform analyzer tool for simulation results anal-
ysis. Preliminary work was done on theXilinx Foundation
Student Edition design entry tools [1].

The next section gives a little more detail on what IP and ATM
are, how they are inter-related, and where they fit in Proknet.
The system and detailed architectures, as well as the final re-
sults are then shown, finishing with an analysis of the overall
research and a few concluding remarks.

II. PRELIMINARIES

The IP communication protocol utilizes connectionless-based
datagrams that are routed using hop-by-hop routing algorithms
to transfer information, while ATM utilizes connection-based
cells that are guided using a pre-planned path between nodes.
The main differences between the two is the processing power
required by both as well as the reliability offered by both pro-
tocols. The total length of the IP packet is variable, ranging
from 20 bytes to 65,536 bytes [2]. The datagram approach is
best suited for this type of routing methodology because each
packet is treated independently, with no reference to packets
that are gone before it. Different packets may thus end up
selecting different routes depending on the network’s current
status, and thus may end up arriving at the destination in dif-
ferent orders. Neither error control nor reliability mechanisms
are exercised in this protocol, which allows for the transmis-
sion of such variable-sized packets, yet routing of every single
packet is required which consumes greater processing power.
Now, the total length of an ATM cell is fixed at 53 bytes. The
cell approach is alternatively best suited for this type of routing
methodology because each packet is guided via a pre-planned
route, where each cell traverses the dedicated route for the en-
tire length of the data transmission. With this scenario, error
control and reliability mechanisms are provided on a connec-
tion basis rather than on a cell basis, which reduces the pro-
cessing power required by each node [3].

Currently though, as a result of different amalgamated ser-
vices, more and more packet-switching networks have been
making use of the more reliable cell-switching networks. The
benefit from both technologies hence improved the different
service providers’ delivered products. This allowed networks
around the world to present a service that is as reliable and ded-
icated as ATM, while utilizing IP’s greater transmission capa-
bility and reduced overhead in terms of route provisioning [4].



Out of this concept transpired the migration of networks to of-
fer IP over ATM. As described above, this protocol uses both
technologies to deliver data, voice and video from oneCus-
tomer Premise Equipment (CPE)to another CPE and ulti-
mately to the user that desires this service. In order to be able
to transmit variable-sized IP packets over a fixed-cell ATM net-
work, one has to be able to segment the IP packets into 48-byte
cells at the transmitter, and also be able to reassemble these
same cells into the original packet at the receiver. The segmen-
tation function is the focus of this research.

For our IP application, the characteristics are that timing is not
required between the source and the destination, the bit rate
is variable, and it is a connection-less transfer. This classi-
fies IP as a class D application, which entails the utilization
of the type 5ATM Adaptation Layer (AAL) protocol, which
is a newly defined protocol. Like all other AALs, the higher
layer protocols send a block of data to theConvergence Sub-
layer (CS), which encapsulates them intoProtocol Data Units
(PDU) [5]. Actually, the CS is referred to as theCommon
Part Convergence Sub layer (CPCS), making this layer in
the CS the one that performs common functions for the higher
protocols, while theService Specific Convergence Sub layer
(SSCS)performs the service specific operations depending on
which AAL is being utilized at the time by the higher layer
protocols, based on their application.

III. HIGH-LEVEL ARCHITECTURE

To successfully transition from the design phase into the im-
plementation phase, it was necessary to select a base archi-
tecture. This task was not taken lightly as it influenced many
future design aspects and decisions. The system architecture
had to present the designer with the main components, their
interconnections and their operations. That said, the system ar-
chitecture was not going to present the internal implementation
details of any component, leaving it up to the imagination and
innovation of the engineer to design a functionally correct sys-
tem. For this research, the system architecture went through
quite a few design cycles before its eventual hardened declara-
tion. The fact that the architecture is presented first in this pa-
per is due to its vitality for a smooth module design transition.
The drawbacks of hard-coding the circuit to match the under-
lying architecture were numerous, and expensive in terms of
design cycles. Other pitfalls of a bad system architecture were
work-arounds implemented in order to do exactly that: work
around a system bug. On the other hand, a well thought-out
architecture provided a baseline for all designers to review and
synchronize to. The chosen architecture is shown in figure 1.

Proknet is made up of the following (refer to figure 2): a
Total Length Logic (TLL) module, anArithmetic Logic
Unit (ALU) module, aTrailer module, aCyclic Redun-
dancy Check (CRC)module, aSegmentation and Reassem-
bly (SAR) module and aControl Unit (CU) module.

Fig. 1. Final system architecture

A. TLL module

In order to be able to design a fully functional segmentation
entity according to our specifications, we required the retrieval
of certain information form the IP packet itself. This informa-
tion was necessary in order for the segmenter to proactively
monitor the stream of packets entering its module, as well as
perform preliminary setups for the downstream modules, such
as padding and memory storage. The most important informa-
tion contained in the IP packet is theTotal Length (TL) field,
which is stored in the 3rd and 4th byte of the header, making
it a 16 bit field, and hence setting the total length of the packet
to be between 20 bytes (minimum length of the header) and
65,535 bytes ( maximum allowable transferable length).

By foreshadowing the TL, we were able to determine several
other necessities that were to be used by the pipeline at its var-
ious stages. Thus, the need arised for a method that allowed
us to read the TL field from the incoming packet, store it for
further use as the packet traverses the pipeline, as well as de-
termine the necessities early in the pipeline in order to ensure
a synchronized transfer of the packet from module to mod-
ule. Some of these necessities were calculating the number
of padding bits required by the packet as well as the storage
of that value in a manner that is easily accessible to the control
unit and hence the modules along the pipeline. The latter entity
was to operate assuming the follow conditions:

1. Externally fed clock oscillating at 25 MHz. Thus our pro-
cessing power allows to output data at a rate of 200 Mbps.
This is obtained by the following: 8 bits/cycle (width of



bus) * 25 MHz (cycles/sec) = 200 Mbps
2. Our pipeline is to be fed one byte at a time, clocking at

a speed of 1/25 MHz = 40 ns, which is the period of one
clock cycle.

B. ALU module

In this section, we introduce the design of the ALU. It is a
purely combinational circuit which represents the workhorse
of the main processor, and thus must be carefully designed, in
order to ensure that it does not pose any bottleneck issues [6].
Since the ALU aids in the instruction execution, it resides on
the datapath of the main processor, and feeds a register (the
accumulator) in order to hold the value that it just calculated.
The ALU also aids us in minimizing logic gates and routing
paths, since it can also be used to handle memory access in-
structions, which need calculations to be performed in order to
be executed. Different algorithms can be implemented within
the ALU to speed up the operations, while for even faster exe-
cution, multiple ALUs can be instantiated within the circuit to
distribute the processing load. The ALU that was designed and
implemented in this case consisted of a simple 16-bit adder-
subtractor unit, which performed its operations on two inputs,
and directly stored its output into the accumulator. Its detailed
design is not presented below as a traditional ALU design was
undertaken.

C. Trailer module

The trailer is an 8-byte field that was appended to the end of
the packet. The trailer contains 4 fields, which are described
below:

Fig. 2. System breakdown

UU (User to User)The field contains one octet of informa-
tion, which is transferred transparently between users of
the AAL5 CPCS users

CPI (Common Part Indicator)The field is used to interpret
subsequent fields for the CPCS functions in the CPCS
header and trailer

Packet LengthThis field contains the size of the incoming
packet.

CRC-32 This field is filled with the value of a CRC calcu-
lation which is performed over the entire content of the
packet. It is filled with zeros before going to the CRC
circuitry. Once passed through the CRC-32 circuitry, it is
filled with the correct values and then transmitted.

Please refer to figure 3 for a diagram of the following explana-
tion:

Fig. 3. Trailer module architecture

1. When a byte of a packet is received from the TLL mod-
ule, the control unit writes into the 8-byteFirst-In First-
Out (FIFO) memory

2. On the next clock cycle, the byte that was written in step
1, gets read and at the same time another byte is written
into the FIFO

3. Step 1 and 2 are repeated until theCU EOP signal is
asserted by the Control Unit. WhenCU EOP is asserted,
two events occur. First, the 2-1 input multiplexer switches
up and secondly, the 3-bit counter starts selecting the se-
lect signals for the 8-1 input mux

4. The counter keeps counting until all Trailer fields are
sent out and have been placed on the pipeline, then the
counter sends aDone Trailer signal to the Control Unit,
informing the latter that the trailer has been appended to
the packet.



D. CRC module

The cyclic redundancy check (CRC) is a number derived
from, and stored or transmitted with, a block of data in order
to detect corruption. By recalculating the CRC and comparing
it to the value originally transmitted, the receiver can detect
some types of transmission errors. A CRC is more compli-
cated than a checksum. It is calculated using division either
using shifts and exclusive ORs or table lookup (modulo 256 or
65536). The CRC is ”redundant” in that it adds no informa-
tion. A single corrupted bit in the data will result in a one-bit
change in the calculated CRC but multiple corrupted bits may
cancel each other out. Most CRC implementations operate 8
bits at a time by building a table of 256 entries, representing
all 256 possible 8-bit byte combinations, and determining the
effect that each byte will have. CRCs are then computed using
an input byte to select a 16- or 32-bit value from the table. This
value is then used to update the CRC [4]

Since we want to calculate the CRC eight bits at a time, we
need an algorithm that will produce the same CRC value as
would occur after eight shifts of a bit-wise CRC calculation.
There is already a well-established algorithm developed to do
the byte-wise CRC. Simply, the contents of the CRC register
after eight shifts are a function (exclusive-OR) of various com-
binations of the input data byte and the previous contents of
the CRC register. Following the byte-wise CRC algorithm [3],
we managed to implement the functionality.

As a design note, a FIFO buffer was used in the CRC for two
reasons. First, the Trailer might be transmitting faster than the
CRC can handle (therefore congestion must be avoided); sec-
ond, the packet must pass through and the last 4 bytes of trailer
(which are zeros) must be held in the FIFO, while the 4good
bytes of CRC module are placed on the pipeline.

Refer to figure 4 for a diagrammatical view of the following
explanation:

1. The Trailer module sends the first byte of packet, thus the
Control Unit writes it to the 4 byte FIFO and this is done
by assertingCrc write

2. On the next clock cycle, a second packet comes in, the
Control Unit will write it into the FIFO, and at the same
time it will read the first byte. These actions are done by
assertingCrc write andCrc Read simultaneously

3. Steps 1 and 2 are repeated untilCU Done Trailer is as-
serted, and, when this occurs, two events are triggered:
first, the 2 to 1 input multiplexer and the 2-bit counter are
enabled, which basically means it is time to output the 4
bytes of CRC (known as predetermined divisor). There-
fore,CU Done Trailer will stay high for 4 clock cycles to
allow the 4 bytes to be placed on the pipeline.

4. Once all 4 bytes are placed on the pipeline, the 2-bit
counter assertsDone crc signal (meaning that the CRC
module has completed its task).

Fig. 4. CRC module architecture

E. SAR module

After the design and implementation of the preliminary mod-
ules, we reach the core module of our research labeled the SAR
module. Although we intended to implement a segmenter as
well as an assembler, the immense time consumption required
for this research limited us to the design and implementation of
only a segmenter, yet we will continue to refer to this module
as the SAR module.

The main purpose of the SAR module is to partition incoming
packets into cells. The SAR, residing in the AAL, receives
CPCS PDUs that are tagged with a trailer. The SAR then,
upon reception of the PDU, is to segment the variable-length
PDU into fixed-length cells, each representing now a 48-byte
cell, and send them to the ATM layer to be tagged with the
appropriate header and transmitted to the physical interface.
This is the high-level description of the SAR functionality, yet
we have adopted a new method of performing this operation.
We have chosen not to transmit the completed packet (CPCS
PDU + trailer) to the SAR module at once and allow the SAR
to section off 48-byte cells from the PDU for transmission to
the ATM layer, until it has exhausted the entire PDU. This
method presented two disadvantages from Proknet’s point of
view. First, this would impose a strain on the pipeline design
that we have chosen for this project. The pipeline is not to be
halted for the processing of any type of operation. The above-
proposed procedure of the SAR would force the pipeline to
delay its operations in the SAR module, hence creating an un-
necessary bottleneck for the processing of a PDU of constantly
changing length. Second, we have chosen to adopt an 8-bit
bus that clocks 8 bits at any one time on the rising edge of
our clock. Thus, for example, in order to transfer a 100-byte
packet, we require either a faster clock, or a wider data bus able



to accommodate a larger packet, neither of which is available
to us. Thus, we slightly modified the operation of the SAR in
order to fulfill our design requirements and conditions. The
SAR will receive packets from the packet memory only when
there is an entire completed packet residing in memory. When
this occurs, the packet will not be transferred to the SAR mod-
ule in its entirety. Instead, it will be transferred from memory
to the SAR one byte at a time, where no processing or delay-
ing of that byte is to occur. The byte will simply pass through
the SAR module seamlessly, and onto the ATM layer. All the
meanwhile, as soon as the first byte of the packet is passed
through the SAR, a counter is initiated to count up to ’48’,
signal the ATM layer that we have just reached 48 bytes, re-
initialize to ’0’ and begin counting again. Once the last cell of
the packet has been received, a notification is sent, via a control
signal, to the ATM layer informing it of that fact, thus allowing
the ATM layer to write a bit in its header indicating that this is
the last cell pertaining to the current packet.

F. CU module

The Control Unit was renamed to the microprocessor module.
Initially, this module was thought to be one of the few first
modules to be designed. Time proved otherwise, as we real-
ized that our microprocessor is a tailored one, in that it pro-
vides typical microprocessor functionalities, but also extends
to supply network processor functionalities. The initial design
started with a look-back towards our pipeline design. The latter
included modules, that were later scrapped, such asQueuing
and Scheduling (QAS)and its associated Queue Memory, the
Input Buffer Control Unit and the pipeline buffer. These mod-
ules were taken into consideration when the initial design was
laid out.

The microprocessor chosen for implementation in this project,
was an 8-bit microprocessor. All instruction opcodes were lim-
ited to 8 bits. The memory was addressed with a 12-bit address
bus, while the data path (according to our pipeline structure)
was 8 bits wide. The clock period was originally defined to be
40 ns, thus the clock frequency was 25 Mhz. This microproces-
sor falls under the RISC family of processors, as its instruction
is quite reduced [7].

The final memory interface included a dissection of the previ-
ously designed interface. The subroutine calls and the inter-
rupt mechanism are no longer needed, hence eliminating with
them the need for a stack pointer. One aspect that was modified
from previous designs is the break up of the address registers
into two: thewrite address register (WAR) and theread ad-
dress register (RAR). The memory itself is aternary-port
memory. Traditionally, when one needs to perform two oper-
ations upon the same memory, in one cycle,dual-port memory
is utilized. In this project, we need to performthree distinct
operations upon the memory, all in one cycle. The operations
are the fetching of an instruction to be executed, the write out

Fig. 5. Initial pipeline design

to memory a byte of packet information from the CRC module,
and in some cases, the read out to the SAR module a byte of
packet information from the memory. A solution to attempt to
reduce the amount of ports on the memory (which are a dis-
advantage, as each will require a data bus), is to multiplex at
least two of the addressing registers together, in order to al-
leviate the number of data buses to be interfaced to external
memory, but this particular solution was not adopted because
of two major reasons: first, the operations are independent and
do not have any relationships other than the RAR and WAR
addressing the packet memory (queue memory was taken out
because of the removal of the QAS module); the second reason
for not adopting multiplexed addressing schemes is that a deci-
sion was made to design the memory internally, and thus avoid
the external interface mechanism. The data buses were thus
found within the chip, and did not cost the designers any more
than their routing specifications. The overall final memory in-
terface is shown in figure 6. TheProgram Counter (PC) is
associated with the dual-port address bus, while theInstruc-
tion Register (IR) is associated with the dual-port data bus.
The main address bus is connected to the WAR, while the value
to write at the WAR’s designated address, is received from the
CRC module. Finally, the RAR is associated with the ternary-
port address bus, while the SAR module is associated with the
ternary-port data bus. All data buses were 8 bits wide, while
the address buses were 12 bits wide. That said, not all 12 bits
were used in address decoding, as will be seen later on.



Fig. 6. Final memory interface

IV. RESULTS

Proknet was implemented using the Verilog hardware descrip-
tion language [8]. It has been functionally simulated, synthe-
sized and timing simulated. The space restrictions do not allow
us to present all of the results, but the top-level simulation dia-
gram (see figure 7) is shown for clarity.

Fig. 7. Top level simulation

V. LIMITATIONS AND FUTURE WORK

A major limitation of Proknet is that it cannot handle more
than 2 packets on the pipeline. It can on the other hand handle
1 packet (the size being smaller or greater than 48 bytes), or

2 packets. The limitation is that when more than 2 packets
are present on the pipeline, the TLR andPad Register (PR)
(the latter holds the number of bytes to pad), as well as the
StartAddress and EndAddress lines (see figure 7) all latch or
store values of the next packet, while the previous one is being
processed by the SAR module.

An ATM specification change was made during the design, and
that is to only perform the byte-wise CRC calculations on the
packet and the trailer, excluding the padding bytes. The reason
for that is simplicity of design. In order to make up for this
specification change, an assumption about the reassembly side
was made: the reassembler will strip the padded bytes first, and
then calculate its own CRC to see if it matches the packet’s
appended CRC information.

Proknet could also benefit from a parallel architecture, where
multiple pipelines could be executing on various packets. This
system would have to be a massively-parallel system, but
would increase the throughput by leaps and bounds. This idea
could be beneficial in the re-engineering of today’s SARs on
the market, as they operate on a queuing and scheduling algo-
rithm, but do not include multiple pipelines.

VI. CONCLUSIONS

This research started off as a migration from traditional mi-
croprocessor design to a more innovative network processor
design. The idea was a raw one, with only a few references to
go by. The design work accomplished proved that this technol-
ogy is of great benefit to the networking world. Today’s major
communications field players use SARs as commonly as they
use resistors on their printed circuit boards.

The design of an IP over ATM processor provides great insight
into the interworkings of a network processor. The work can
be easily extended to other technologies merging together, in
order to perform the same functionalities, such as ATM over
frame relay. Also, given the points mentioned in section V, as
well as the implementation of a reassembly-side twin, Proknet
will stand as a stand-alone SAR processor.
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