Robotic Sensors

Mini-Enrichment Course Robotics: Intelligent Connection of the Perception to Action Rami Abielmona SMRLab – Spring 2004

Different Types

• Tactile Sensors

- Magnetic
- Ultrasonic
- Microwave
- Optical
- Time of Flight Sensors
 - Ultrasonic
 - Laser-Based

• Compasses

- Mechanical
- Fluxgate
- Hall-Effect

Miscellaneous

- Gyroscopes
- Motion Detection
- Smoke
- Pressure
- Temperature

Used to tell us if we hit something

Used to tell us how far objects are from us

Used to tell us our heading (angle from North)

Used to tell us things about our environment

Tactile Sensors

• Mainly used for collision detection

- If the switch connects, electricity passes and we can detect a "hit"
- Different from *Proximity (Non-contact) Sensors*
 - These are used to detect near-collisions
 - More complex internals

Tactile Sensors (2)

The EM Spectrum

THE ELECTROMAGNETIC SPECTRUM

The Light Spectrum

Time of Flight Sensors

- Procedure is quite simple
 - 1. Send a signal and start a timer $(t_1 = 0 \text{ sec})$
 - 2. Wait for echo signal, and stop timer ($t_2 = 12$ sec)
 - 3. Calculate difference $(t_1 t_2 = 12 \text{ sec})$
 - Use time difference to calculate distance (distance = speed * time)
- Different signals have different speeds
 - Sound travels at 1 ft/ms
 - Light travels at 1 ft/ns (Faster than light)

IR Sensors

- Works on Infra-Red light (invisible to humans)
- Measures the time it takes for light to go and come back
- Works at about 15 degrees away from the robot

IR Sensors (2)

IR Sensors (3)

Simple Configuration

Tank-Style Configuration

Sound (Ultrasonic) Sensors

- Very similar to the light sensor, but works by sending sound waves instead!
- We can't hear the sound waves, but they bounce off the target and come back to the sensor
- We measure the distance in the same manner as we do it for light

Compasses

- Compass sensors can tell us our *heading*
 - Either by N, E, W and S
 - Or by the angle from 0°

Compasses (2)

Other Sensors

• Gyroscope

Motion Detection

Smoke

Other Sensors (2)

• Temperature

• Line Tracking

References

- <u>http://www.intersema.com/site/technical/ms5534.</u>
 <u>php</u>
- <u>http://www.acroname.com</u>
- <u>http://www.robotstorehk.com/sensor.html</u>
- <u>http://www.hvwtech.com</u>
- <u>http://www.site.uottawa.ca/~rabielmo/elg4392b</u>
- http://www.lynxmotion.com
- http://www-2.cs.cmu.edu/~cmucam/