
CIRCUIT SYNTHESIS EVOLUTION USING A HARDWARE-BASED GENETIC
ALGORITHM

Rami Abielmona, Voicu Groza

University of Ottawa
School of Information Technology Engineering

161 Louis-Pasteur St., CBY-A516
Ottawa, ON, K1N 6N5, Canada

ABSTRACT

In this paper, we propose a scheme based on a hardware
implementation of a genetic algorithm, to evolve the mini-
mized logic solution of a defined input function. The min-
imization will be one of resource usage, more precisely of
look-up tables (LUTs). The design aids in the difficult is-
sue of technology mapping, as well as multi-level logic syn-
thesis. The approach undertaken in this research involves
intrinsic hardware evolution, where the circuit solution is
evolved ”online”, and the output is a minimized structure
of the circuit. Our architecture is outlined and briefly dis-
cussed, while our current results are presented and analyzed.

1. INTRODUCTION

In the age of cloning and genome mapping, we have reached
a point in time, where with a little research and innovation,
we can achieve things previously thought impossible. With
today’s advances in reconfigurable computing, it is not be-
yond the realm of our imagination that circuits, that previ-
ously required a large knowledge database as well as human
resources, are being ”evolved” by machines. These circuits
are simplistic in nature, compared to the man-made com-
plex structures, but do provide us with a solid foundation to
expand our research upon. Evolvable hardware has become
a rapidly-growing field, in which new discoveries are being
made at an astounding pace.

The advent of such a technology has enabled us to think
of new ways to approach the research and development of
both hardware and software systems. The main design is-
sues have been shifted from a structural view to a functional
view. The internals architecture is being overshadowed by
the overall functionality of the system. To that effect, the de-
signer has the more daunting task of thinking of new func-
tionalities, without having to pay too much attention to the
intricacies of the system architecture. This novel approach
is not as simple as it is portrayed here. A lot of work has
to be done to ensure that the evolved solution matches the

characteristics that make the designer solution so effective,
be it robustness, scalability or fault tolerance, to name a few.
Other major advantages, such as speed of execution or re-
source utilization are considered the main drivers of success
for designer solutions.

The main problem faced when designing new chips these
days is the shortage of available silicon space. To bypass
this issue, an extension of the underlying instruction set can
be implemented by providing the programmer with anaide
to the main processor orCentral Processing Unit (CPU).
The assembly-level programmers are thus provided with a
substantially greater domain of instructions, allowing them
to gain access to a myriad of deemed integral operations.
This solution is a typical one these days, ascoprocessors
provide that aforementioned extension. Another feasible
solution involves re-studying the design that is being at-
tempted. This requires the designers to repeat several tasks
which have already been performed for the original design,
but that need to be optimized in a new and previously un-
forseen manner. This optimization will require a new method-
ology for logic synthesis, when speaking of general purpose
chips.

The main goal of the research reported in this paper is
to propose a scenario that involves the introduction of an
innovative logic minimization scheme. The use of artifi-
cial intelligence to produce a minimal (according to some
function) solution is not new, but in this research, artificial
intelligence will be used to map a design to a technology,
while minimizing the resources utilized. The scheme will
be referred to asGenetic Algorithm Synthesis (GAS).

GAS, as the name precludes, is a synthesis scheme based
on a standard genetic algorithm. It is accompanied by an
inherently powerful advantage:multi-level multi-output
(MLMO) logic minimization. The latter feature has been a
fuzzy topic in the circuit design milieu for a long time. This
research attempts to extend the work of [1], [2], [3] and oth-
ers on this topic, by offering a hardware-oriented minimiza-
tion mechanism. Along with MLMO minimization, GAS’s
inputs, consisting of truth tables and GA parameters, pro-



vide the designer with an easy interface to programmable
logic. In other words, GAS has a simple system require-
ment: ”To evolve a minimal working solution for a defined
truth table”.

2. PRELIMINARIES

Developed by John Holland, his colleagues and students
at the University of Michigan, GAs are search techniques
modeled after natural selection, including the genetic opera-
tors that play an important role in the fashion that we survive
in our environment [4]. GAs are stochastic algorithms with
very simple operators that involve random number gener-
ation, and copying and exchanging string structures. The
aforementioned operators act on apopulation of members,
represented bychromosomes. Members are mated by the
crossover of their appropriate chromosome, the latter un-
dergoing amutation operator after crossover. The nextgen-
eration of members is selected from the current one accord-
ing to how well (fitness value) the members react to their
present environment [5]. GAs have been efficient in their
”evolutionary” runs because as new generations are made of
older ones, one can easily select the members that are fairing
quite adequately in the environment they have been placed
in. The crossover operator ensures that the ”good” chro-
mosomes have more children in the generations to come,
while the ”bad” ones have less or no children at all. The
mutation operator provides a stabilizing random input of er-
ror, to emulate the corresponding phenomenon that occurs
in nature [6].

Evolvable hardware is a term coined by Hugo De Garis
in 1992 [6]. Evolware, as it is often referred to, consists
of reconfigurable hardware that can undergo a number of
evolutionary cycles, producing a suitable solution to the ap-
plication at hand [7]. The introduction of FPGAs has per-
mitted the use of GAs invery large scale integration (VLSI)
chips and hence, the creation of evolware.

The use of reconfigurable hardware for the design of
a GA was seen in projects such as [8], [9] and [10]. In
Stephen Scott’s behavioral-level implementation of a GA
[8], the targeted application was the optimization of an in-
put function. In [9], a GA was designed and implemented
on a PLD, using theAltera hardware description language
(AHDL). In [10], a number of GAs were designed and im-
plemented in a text compression chip.

The first major breakthrough in the field of intrinsic hard-
ware evolution was accomplished by Adrian Thompson in
1996, when he successfully used completely unconstrained
evolution techniques to configure the logic inside of a FPGA
[11]. The findings have propelled a wide area of research in
intrinsic (as well as extrinsic, or off-chip) evolvable hard-
ware methodologies [6], [12] and [13].

Other related work includes the work done on logic min-

imization through the use of GAs. Louis [1] has made use of
genetic algorithms on design structures to attempt to solve
the combinational circuit design problem. His use of amasked
crossover genetic operator proved to be very advantageous,
but the GA itself became less of a powerful search tech-
nique. Coello et all [2] extended the research done by Louis,
and used a GA to automate the design of combinational
logic circuits. They modeled logic circuits with matrices,
with each element representing a gate and the inputs from
previous elements. The gate was selected from a list of
five fundamental gates : AND, NOT, OR, XOR and WIRE,
where the first four are self-explanatory, and the last rep-
resenting a physical wire (and thus, the absence of a gate).
Logic minimization was thus solved by a constraint on the
matrix elements: maximizing the WIRE element, and hence
minimizing the total number of gates necessary for the im-
plementation of the circuit. Koza [3], on the other hand,
used genetic programming to assist him in the design of
combinational circuits. The main goal of Koza’s research
was the successful generation of the circuits, and not their
minimization, thus does not completely apply to the task at
hand.

In our current work, we combined the topics to create
a scheme, which attempts to minimize the logic resources
used within aprogrammable logic device (PLD), with par-
ticular emphasis on the design of aregister transfer logic
level hardware implementation of a GA.

3. SYSTEM ARCHITECTURE

The overall system is composed of two PLDs, appropriately
called theoptimizer and thehost (refer to figure 1). The
optimizer is where the input function logic is ”evolved”,
whereas the host is where the input function solution is ac-
tually instantiated and tested. The host will be included in
the design as a sub-block of the optimizer (please see the
ECLBs discussion below). The optimizer’s main objectives
are to interface with the CPU and the host, start off the
Hardware-Implemented Genetic Algorithm (HIGA) on
its evolutionary run, store the solutions to each input truth
table and evaluate the fitness of each candidate solution.
The host is used in order to instantiate the functional units
that each logical function needs for execution. Hence, the
optimizer performs the evolutionary work, writes to mem-
ory the best solution and instantiates the solution in the host,
the latter being an originally empty PLD. As an implemen-
tation note, all PLDs in this research are actuallyField-
programmable gate arrays (FPGAs).

The optimizer is made up of the following (refer to fig-
ure 2): a HIGA subsystem, a memory subsystem, anEvolv-
able Configuration Logic Blocks (ECLBs)subsystem and
a CPU interface subsystem.

HIGA This subsystem provides the optimizer with the ”nu-



Fig. 1. System Diagram

cleus”, or brain, of the operation. According to the in-
put function (represented by a truth table) presented
to the optimizer, the HIGA begins to run in order
to determine, through intrinsic hardware evolution,
which ”chromosome” (or solution) is best suited for
the operation. The HIGA is implemented in thevery
high speed integrated circuit hardware description lan-
guage (VHDL) and contains the following modules:
Random Number Generator (RNG), Input Instantia-
tion, Selection, Crossover, Mutation, and Fitness mod-
ules.

Memory This subsystem is what is referred to as the”hard-
ware cache” (hcache)of the system. It sits on the
optimizer as memory cells that, upon optimizer pro-
gramming, could be loaded from a ROM device which
contains the previously stored circuits of logic func-
tions. This subsystem stores the ”solutions” to all the
already-encountered truth tables, and thus acts as a
common storage facility for designs that could be uti-
lized in the future. This is initially external memory,
as opposed to what is shown in figure 2.

ECLBs These logic blocks are empty on boot up, but are
used to evaluate the chromosomes in order to provide
the HIGA subsystem with feedback on how well the
candidate chromosome performed in the current en-
vironment. This is initially an empty logic device, as
opposed to what is shown in figure 2. This subsystem
is viewed as the current replacement for the host. It

has the same functionalities as the latter, but also acts
as an area for the actual evolution of each circuit.

CPU Interface This subsystem provides the interface to the
CPU. It consists of data, control and status registers,
as well as a myriad ofspecial purpose registers (SPRs).
The interface integrates the programmer’s model of
the optimizer and the host communication functions,
in order to easily and successfully allow for the hard-
ware/software co-execution and control.

Fig. 2. Optimizer module design

As seen in figure 3, the HIGA receives its inputs from
on-board shared memory. Currently, the user manually en-
ters the input truth table, as well as the input GA parame-
ters (maximum population, crossover and mutation proba-
bilities, etc...). The HIGA proceeds to iteratively evaluate
chromosomes in the ECLBs subsystem. This real-time, on-
board evaluation constitutes the ”intrinsicity” of this project.
The output of the HIGA is a best-fit function-specific solu-
tion, which is stored in the memory/”hcache” subsystem.
The stored solution can then either be kept in the hcache or
moved to external memory, for future reference.

As previously mentioned, the HIGA subsystem is com-
posed of the following modules:

Random Number Generator This module periodically pro-
vides the input instantiation, selection, crossover and
mutation modules with pseudo-random numbers.

Input Instantiation This module provides the output, of
each truth table input combination, stored in external
memory. This output feeds into the fitness module for
comparison to the experimental output. This module
accesses the on-board memory to read the input truth
table values.



Fig. 3. Overall architecture

Selection This module accepts a member and a random
number as inputs. It uses a hybrid algorithm (roulette
wheel selection [5] and tournament selection [4]) to
decide whether the member is to be selected for the
next generation or not.

Crossover/Mutation These modules accept members as in-
put, and use the input pseudo-random numbers to de-
cide whether crossover/mutation are to be performed
upon the individuals or not. Typical single-point crossover
and single-bit mutation are used.

Fitness This module is used to evaluate the fitness of each
individual. It accepts the ideal output from the input
instantiation module, compares it to the experimen-
tal output generated from the ECLBs subsystem, and
calculates the fitness of that individual. The output,
consisting of a member/fitness combination as well
as the address to write the structure at, is passed on
to software for further processing. This module also
dubs as a control module, as it handles the transfer
of individuals between the modules and memory. It
stores the new individuals in memory and passes them
on to the selection module.

To summarize the operation of the HIGA, the truth ta-

ble and GA parameter inputs are stored in shared memory.
The initial generation of chromosomes is generated pseudo-
randomly, and stored in shared memory. Each member un-
dergoes the three major genetic operators, processed in the
selection, crossover and mutation modules, and is either
wholly or partially picked to move on to the next genera-
tion. Once picked, the new member is evaluated in order to
receive a fitness value, which is compared to the ideal out-
put produced by the input instantiation module. The mod-
ules coordinate all the transfers between each other, thus
ensuring a successful sequential operation.

4. RESULTS

The HIGA has been completely designed and developed.
The data and control paths of the modules have been de-
signed and functionally simulated. For shortage of space,
the paths will not be introduced here, as an extensive dis-
cussion must follow for clarity. The current remaining work
involves the overall architecture of the system, including
the real-time evaluation of each chromosome in the ECLBs
area, and its eventual feedback into the fitness module for
assignment. Presently, the random number generator mod-
ule generates an input train that feeds the input instantiation
module, and random numbers that feed each of the selec-
tion, crossover, mutation and fitness modules. A chromo-
some is fed into the selection module. The latter performs
the selection algorithm:

1. Select a member using the roulette wheel selection
algorithm;

2. Select another member using the roulette wheel se-
lection algorithm;

3. Compare a random number r to a preset parameter k,
and if r is smaller than k, then select the member with
the higher fitness, otherwise select the member with
the lower fitness;

4. Repeat this procedure until the population is full.

Once a member has been selected, it is passed on to the
crossover module. The latter awaits the arrival of two mem-
bers from the selection module, and proceeds to perform
single-point multiple-bit crossover on both members. The
results are forwarded to the mutation module, where single-
bit mutation is performed. The crossover and mutation mod-
ules perform their operations according to the GA probabil-
ities which are stored in shared memory, and have actually
been recently merged into one module, called themutover
module, for implementation efficiency purposes. Finally,
The fitness module receives the member and forwards it to
the controlling software, along with an assertion of a signal



to indicate that a member is ready for evaluation. The cur-
rent state of the system does not allow us to respond back
with real-time data as both the software and the feedback
paths are being developed.

In these preliminary designs, the software being utilized
consists of an innovative set of APIs, developed at Xilinx
Inc.[11], labelledJBits. This tool provides the designer with
a fast and simple interface to the Xilinx Virtex family of
FPGAs. The reconfiguration aspect of this research dictates
the use of a tool that allows for fast reconfiguration times,
as well as an ease and simplicity of use. Both aspects are
provided by JBits. The controlling software will have to in-
terface with JBits, as the latter will only be used in the ”live”
phase, where the bitstream is actually being configured on
the device. For that, theJava Native Interface (JNI) will be
utilized to establish the communications path between the
controlling software (which interfaces to the optimizer) and
JBits.

A GA was designed, implemented and tested in the C
high level language. A roulette wheel selection algorithm
was used to select a member for the next generation. Single-
point crossover and single-bit mutation were used, along
with a simple fitness function. The latter consisted of ob-
taining an optimal or near-optimal solution to a linear equa-
tion. The purpose of this research is to set the foundation
for further exploration of the simple GA in software. The
undertaken research (GAS) will be compared to a modified
version of the GA in software.

Upon successful completion of the system (as seen in
figure 3), the user will be able to input the initial GA pa-
rameters, as well as the truth table to be implemented, and
the corresponding optimal, or near-optimal, circuit solution
will be stored in the shared memory for the user to access.

5. NOVELTIES AND APPLICATIONS

This is an RTL-level hardware implementation of a GA, as
well as one of the few attempts to combine evolware with
traditional hardware as part of a complete system. The in-
teraction between the two forms a powerful hybrid of sys-
tems that can be easily expanded (ease of scalability and
parallelism). The research falls under the thirdgeneration
of evolvable hardware classes, according to Tomassini and
Sipper [14]. All of the operations of the GA, including the
fitness evaluation are performed ”online” in hardware. The
research also introduces another hidden novelty: the hard-
ware cache. The hcache subsystem stores the circuit solu-
tions of numerous logical functions.

The applications for this design include MLMO logic
minimization, discussed early on in this paper. According
to John Wakerley [15], it is impractical to deterministically
find a minimal cover of variables, and thus, heuristic ap-
proaches have to be undertaken, such as Espresso II [15]

for example. Heuristic methods, by definition, are ones that
use a solution of several to feed into the next stage of the
algorithm [16]. Thus, GAs are heuristic by nature, no pun
intended, and are used as an approach to MLMO logic min-
imization. GAS also attempts to combine GAs and func-
tional decomposition in order to introduce a novel logic
synthesis method for LUT based FPGAs. The approach
searches for functions that are useful in the realization of
other functions, thus allowing for sharing of common func-
tions.

The overall system is also suited for many additional
applications, one of which is the development of a system
whose main advantages are:

I the provision of a massively parallel structure, com-
posed of many solution-searching areas for predefined
functions;

II the inherent property of adaptation, that allows the
system to change its optimization goals according to
the provided cost function; and

III the fault-tolerance issue, in that most of the deemed
non-working solutions, or subfunctions for that mat-
ter, are progressively eliminated through the evolu-
tionary runs.

GAS is targeted for use in all hardware chip design projects.
The applications of the chip-based systems are numerous,
ranging from robots used for chip layout and fabrication, to
VLSI circuits used for telecommunication systems.

6. CONCLUSIONS

GAS provides a test bed for evolutionary circuit design.
Once the optimizer has been completely implemented and
tested, then it is trivial to incorporate a PLD in order to re-
alize the entire system. This combination is the epiphany
for reconfigurable computing platforms, because of its abil-
ity to implement any logical function at any point in time.
Upon the correct modeling of the overall system, the user is
able to input this model into GAS, and receive a minimized
logic circuit, without having to be concerned with imple-
mentation or minimization algorithms or details. GAS also
distinguishes itself by the amount of functionality that is
built into hardware, instead of software, allowing for faster
reconfiguration and processing times.

Contrary to current methodologies, the design power,
with the help of the host, now resides in the software de-
signer’s hands, as the hardware is actually a tool that can
be modified to fit the designer’s needs. All that is required
from the software designer in order to harness that power is,
a correct model of the new functionality to start the evolu-
tionary run, and a working host to evolve the circuit.



7. REFERENCES

[1] Sushil J. Louis and Gregory J. Rawlins, “Using ge-
netic algorithms to design structures,” Tech. Rep.
326, Computer Science Department, Indiana Univer-
sity, Bloomington, Indiana, Feb. 1991.

[2] Alan D. Christiansen Carlos A. Coello Coello and Ar-
turo Hernandez Aguirre, “Towards automated evolu-
tionary design of combinational circuits,” .

[3] John R. Koza, Genetic Programming. On the Pro-
gramming of Computers by Means of Natural Selec-
tion, The MIT Press, 1992.

[4] David E. Goldberg,Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison-Wesley
Publishing Company, Incorporated, Reading, Mas-
sachussetts, 1989.

[5] Melanie Mitchell, Introduction to Genetic Algorithms,
MIT Press, Cambridge, Massachussetts, 1996.

[6] Hugo De Garis, “Evolvable hardware: Printciples
and practice,” Last viewed on September 20, 2000,
http://www.hip.atr.co.jp/ degaris/papers/CACM-E-
Hard.html.

[7] T. Gordon, “Introduction to evolvable hard-
ware,” Last viewed on September 20, 2000,
http://www.cs.ucl.ac.uk/staff/T.Gordon/ehwnote.html.

[8] Stephen Donald Scott, “Hga: A hardware-based ge-
netic algorithm,” M.S. thesis, University of Nebraska,
August 1994.

[9] Tommi Rintala, “Hardware implementation
of ga,” Last viewed on September 20, 2000,
http://www.uwasa.fi/cs/publications/2NWGA/node60.html.

[10] Loring Wirbel, “Compression chip is first to use ge-
netic algorithms,” Electronic Engineering Times, p.
page 17, December 1984.

[11] Xilinx Incorporated, The Programmable Logic Data
Book, San Jose, California, 2000.

[12] Isamu Kajitani Tetsuya Higuchi, Masaya Iwata and
Masahiro Murakawa, “Hardware evolution at gate and
function levels,” .

[13] Didier Keymulen Hidenori Sakanashi, Masaya Iwata
and Masahiro Murakawa, “Evolvable hardware chips
and their applications,” .

[14] Marco Tomassini and Moshe Sipper,
“An introduction to evolvable hard-
ware,” Last viewed on January 25, 2001,
http://evonet.dcs.napier.ac.uk/evoweb/evonews/news3/ehard.htm.

[15] John Wakerley,Digital Design Principles and Prac-
tices, Prentice Hall, 1994.

[16] The American Heritage Dictionary of the English Lan-
guage, Houghton Mifflin Company, 3rd. edition,
1996.


