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Abstract

When measurements are collected with real sensors, it is known that
they are always submitted to some level of uncertainty due to the
imperfection of practical systems. Often, it might be acceptable to
neglect uncertainty on measurements in order to simplify the
development. But such a simplification can also result in critical
situations under some specific circumstances such as the building of
virtual maps for robot guidance. Erroneous data can easily lead to
collisions between the robot and its environment which might result
in important damages both to the robotic system and its
surroundings. This papers presents an analysis of how uncertainty
originating from multiple sources including uncertain spatial
relationships in a robotic workcell can be propagated up to the scene
representation. Various ways are studied to propagate the
uncertainty over a chain of geometrical transformations in 3-D space
and an approach is proposed to merge the propagated uncertainty
into an occupancy grid that models a cluttered environment.

I. Introduction

In the context of autonomous robotics, most applications
require that a virtual representation of the environment is built
prior to the determination of movements. This is of paramount
importance for cluttered environments whose structure is not
known a priori. The availability of such a model allows the
robot to avoid collisions and eventually to optimize its
trajectory [ 1, 10]. Unfortunately, building a complete model of
a complex scene implies many important constraints. Because
of the fact that vision sensors have a limited field of view,
measurements must be taken successively from different
viewpoints in order to collect data on the entire structure of the
environment [6, 8]. This requirement to move the sensor might
introduce significant distortion or contradictory information in
the virtual representation if not carefully processed.
Maintaining the correlation between data gathered from
various viewpoints is difficult because of the uncertainty on the
sensor measurements but also because of the uncertainty
introduced by the positioning device that is used to move the
sensor up to these different viewpoints.

This paper proposes an examination of how the numerous
sources of error existing in a vision-based measurement setup
can be dealt with in the construction of a virtual representation.

The desired model is a probabilistic representation of space
cluttering encoded as an occupancy grid. This work is an
extension to a previously developed strategy for building
probabilistic occupancy models of 3D cluttered environments
from raw range measurements in a computationally tractable
way. The initial algorithm only dealt with uncertainty on the
distances provided by the range sensor. The goal of the
extended approach is now to take into account some
supplementary knowledge on the uncertainty distributions that
characterize both the sensor and the positioning device.

Kalman filters are powerful tools to deal with such noisy
data [3, 4] but they tend to process the measurements and the
errors simultaneously. When the uncertainty originates from
different devices with different magnitudes, it might be
interesting to process errors independently from the
measurements. Since the uncertainty sources are distributed
among the components of the modeling system, some means
might be developed to propagate the uncertainty from there
respective reference frame to that attached with the model
representation where the final information is to be encoded.

Jacobian matrices can be used to propagate the
uncertainty. Smith et al. [14] have developed the equations for
a propagation over a chain of two uncertain geometrical
transformations. This approach reaches a significant
complexity when supplementary uncertain transformations are
added as it is often the case in robotics systems where many
components are mobile. The case is still worse if inverse
transformation expressions need to be used.

Julier and Uhlmann [7] proposed a probabilistic approach
to propagate the uncertainty through general nonlinear
relationships. The complexity of this approach also depends on
the number of independent reference frames that are used to
fully describe the robotic workcell. However, covariance
matrix estimation which is usually complex is replaced by an
intermediate probabilistic distribution which is less
computationally intensive.

Both of these uncertainty propagation schemes are
detailed and their suitability to the probabilistic model building
application in a 3-dimensional workspace where a range sensor
is mounted on an arm manipulator is analyzed. Next the
uncertainty propagation technique is transposed in the model
building process. We then demonstrate how this critical
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information can be added to the virtual environment
representation that is to be used to plan collision-free
movements for the robot.

II. Probabilistic modeling scheme

In the context of mobile robot navigation, Elfes proposed
a framework for building 2-D probabilistic occupancy maps of
the environment using a sensor error model and a Bayesian
probabilistic approach to combine data from multiple
viewpoints. This results in an occupancy grid covering the
robot workspace in which cells are tagged with the probability
that an object lies in the corresponding area.

In previous works [9, 11], techniques have been proposed
to circumvent the computational explosion that results from
the addition of a third dimension to the original scheme. One
of these approaches proposes a new formalism of the Bayesian
occupancy probability estimation that consists in using a
closed-form approximation of the characteristic occupancy
probability distribution function (OPDF) obtained by Elfes
when the sensor measurements are characterized by a Gaussian
error distribution as shown in figure 1. As one can predict, the
occupancy probability reaches a maximum value at the object
surface while it is set to 0% (empty space) between the sensor
and the object surface. Behind the object surface, the
probability decreases to 50% only (unknown state) as this area
is occluded by the object from the sensor viewpoint.

Working on raw range measurements, this approximated
OPDF is used to directly compute the occupancy probability of
a given volume of 3-D space centered on the sensor viewpoint.
This process is repeated for each viewpoint visited by the
sensor and the resulting occupancy probability distributions
are temporarily stored into local occupancy grids. Next, an
intersection search algorithm merges all local occupancy grids
into a global Cartesian multiresolution occupancy grid. The
merging process is speeded up by taking advantage of the
multiresolution property of the model to avoid useless volume
matching. When some points in 3-D space have been measured
from more than one viewpoint, a Bayesian function is used to
compute the resulting occupancy probability. This leads to the
reinforcement of the occupancy probability as coherent
matching measurements are extracted from numerous local
occupancy grids. Figure 2 summarizes the occupancy
probability estimation and the merging process.

Figure 1: Approximative occupancy probability profiles for various 
levels of uncertainty.

III. Multi-viewpoints acquisition setup

In the previously described modeling scheme, only the
range sensor uncertainty was taken into account under the form
of a Gaussian error distribution on the distance measurement.
The spatial relationships between each local OPDF reference
frame was considered to be error free. But when a manipulator
is used to move the sensors to different viewpoints like in the
experimental setup depicted in figure 3, it is not safe to assume
that the sensor position and orientation are known without any
uncertainty. In practice, most sensors, and especially range
sensors, require that a positioning device is used in order to
allow them to scan a significant area as their field of view is
very limited, eventually to a single line or even a single point.
Very precise coordinate measuring machines (CCMs) can be
used to estimate the sensor position, but these are more of
obstacles in a real robotic workcell as they cannot actively
contribute to the task. Robotic arms provide good repeatability
but relatively poor accuracy in comparison with that of high
quality range sensors. However they are widely used in
practice because of their relative facility to program and their
versatility. When some means are developed to estimate the
registration between the viewpoints [5] there is still some
remaining uncertainty. Registration techniques do not provide
a complete information on geometrical transformations
between the camera and the model reference frames, but only
between two respective views.

Given the setup shown in figure 3 where a laser range
sensor is mounted on a 6-DOFs robot arm, a number of
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Figure 2: Probabilistic modeling scheme.
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uncertain relationships can be defined. Figure 4 shows the
main geometrical transformations to be considered as
uncertainty sources in this setup. Ellipses denote the
uncertainty on the corresponding pointers between reference
frames.

Since range data gathered from any viewpoint are defined
with respect to a local Rcamera while the model is built with
respect to Rscene to facilitate further manipulations of the
model, initial measurements  must be transposed from
Rcamera to Rscene as follows:

(1)

where ,  and  are the homogeneous transformation

matrices between the various reference frames.  and  are

the range measurements in the scene and in the camera
reference frames respectively.

Each component in equation (1) is characterized by some
uncertainty which can be expressed in terms of a covariance
matrix, . The uncertainty on range measurements depends on
the sensor characteristics. Uncertainty on the geometrical
transformations depends on mechanical calibration of the
assembly and on the precision of the manipulator used to hold
the camera.

For each measurement from a given viewpoint, the sensor
provides the coordinates, , of a point located on the object
and its covariance matrix,  with respect to the camera
reference frame. Simultaneously, the configuration of the
robot, , is measured along with its uncertainty, .
Similar information might be estimated for the camera
configuration with respect to the robot end effector, 
and for the reference frame rigidly attached to the scene model,

.
In order to keep uncertainty processing tractable, the

assumption is made that the uncertainty along each axis is
independent from the uncertainty along other axes. This makes
the covariance matrices diagonal. The spatial relationships and
covariance matrices are all defined with respect to different
reference frames while the ultimate goal is to merge all
measurements into a single reference frame rigidly attached to
the scene while taking into account the different sources of

uncertainty. This justifies the necessity to propagate the
uncertainty through the transformation chain in order to obtain
quantitative uncertainty values along each axis of Rscene.

The following sections examine strategies to propagate
the uncertainty associated with each spatial transformation and
propose an approach to encode this supplementary information
into the probabilistic occupancy virtual representation.

IV. Propagation with Jacobian matrices

Smith et al. [13] have developed the expressions to
propagate uncertainty when only two spatial transformations
in 3-D space are considered. Here, the development is
extended for a chain of three spatial relationships in 3-D as
required by the acquisition setup.

The measurements coordinates expressed with respect to
Rscene, , depend on 21 parameters:

(2)

where ,  and  are the parameters of the
transformations matrices ,  and  respectively (3
translations + 3 rotations each).  corresponds to the 3
parameters of the measurement point .

The covariance matrix of the measurements with respect
to Rscene, , taking into account all sources of uncertainty, can
be expressed as:

(3)

where Jf is the Jacobian matrix of the nonlinear function f

evaluated around the mean value .  is a global

covariance matrix composed of four diagonal submatrices

containing respectively the covariance parameters , ,

,  associated with , ,  and . As each

transformation and each measurement is independent of each
other, the global covariance matrix is also diagonal.
Therefore, equation (3) can be developed as follows:

(4)
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Figure 3: Range data acquisition setup. Figure 4: Uncertain transformations in the acquisition setup.
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But covariance matrices associated with inverse
geometrical transformations must be processed in a slightly
different way [14] such that:

(5)

where

(6)

when

(7)

Finally, the uncertainty propagation equation (4) can be
expressed as follows:

(8)

Applying equations (1) and (8) to every range
measurement with respect to Rcamera, , provides the
corresponding coordinates with respect to Rscene, , as well as
the uncertainty on  taking into account every sources of
error in the acquisition setup.

Even though this approach is very rigorous, its complexity
directly depends on the number of chained transformations
through which the measurements must be propagated. It is also
sensitive to the fact that some transformations are inverted with
respect to the definition of their parameters. The resulting
processing is computationally intensive and the overhead
added to the model building algorithm is therefore significant.

V. Propagation through reference frame relationships

Julier and Uhlmann [7] have proposed a strategy to
propagate uncertainty across nonlinear relationships such as
spatial transformations between two reference frames. The
approach consists in applying the nonlinear relationship to a
probabilistic distribution centered on the measured point in the
initial reference frame whose dimensions are augmented to
match the total number of degrees of freedom implied in the
nonlinear relationship and in the measurement. The initial
probabilistic distribution is characterized by the variance along
each axis of the augmented reference frame, R1. Applying the
nonlinear relationship to this distribution results in a new
probabilistic distribution defined with respect to the axes of a
second reference frame, R2. Estimating the mean and the
covariance along each axis of the new distribution provides the
measurement coordinates and the uncertainty values relative to
the second reference frame.

In the context of 3-D probabilistic modeling from multiple
viewpoints with three uncertain transformations, the nonlinear
relationship depends on 21 parameters as shown in the
previous section. Therefore, the initial and the final reference

frames must but be expanded to 21 dimensions for the
technique to be applied. As we are only interested in the
coordinates and the uncertainty of measurements along the x,
y and z axes of Rscene to compute the model, only these three
parameters are really relevant. This allows to reduce the
computational complexity by avoiding the computation of the
other values along the virtual axes of Rscene.

Nevertheless, in accordance with Julier and Uhlmann, the
probabilistic distribution in the initial reference frame must be
composed of a minimal set of 2n points for a n-dimensional
system (here n = 21) in order to preserve the probabilistic
distribution moments in both frames. This means that for each
range measurement, the nonlinear relationship of equation (1)
must be computed for 2n points before the mean and the
covariance along the first three axes (x,y,z) of Rscene are
estimated.

The first step of this approach consists in extracting the
square root of  to estimate the standard
deviation along each of the 21 axes in the augmented camera
reference frame. The Cholesky method [12] is well suited for
this task. The 2n points, pt[i], included in the probabilistic
distribution sample are defined as each column of the two
matrices resulting from the root extraction (plus and minus
signs). The mean value of each parameter is added to these
coordinates in order to center the sample on the real data
values.

Next, the nonlinear relationship is applied to camera-
based 2n points in order to compute the corresponding 2n
points with respect to Rscene.

(9)

The mean  and the variance

 are finally estimated on these points.

The Julier and Uhlmann approach eliminates the need for
a repetitive estimation of the Jacobian matrices and equation
(8). But for each range measurement, 2n points must be
processed through a nonlinear function. The complexity of the
approach is then dependent on the number of degrees of
freedom implied in the nonlinear relationship. However, it is
possible to reduce the number of points to process from 42 to
30 by setting the scene reference frame aligned with the world
reference frame (Rscene = Rworld) at the expense of a lost of
some flexibility.

VI. Uncertainty integration into probabilistic octree modeling

As range measurement are collected from many different
viewpoints in a 3-D modeling application, the uncertainty
propagation procedure must be consistent with the necessity to
merge multiple local occupancy grids built locally around each
viewpoint. In a previous approach, Elfes [2] proposed a
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blurring convolution process to take into consideration the
uncertainty on a mobile robot position on which a sonar sensor
was mounted to create a planar map of the environment. Such
a strategy could be extended to 3-D space but would hardly
deal with the uncertainty on rotation transformations as the
blurring process is defined along the axes of the reference
frames only. This could lead to important deviation of the
uncertainty estimation with respect to Rscene.

An adaptation of the closed-form OPDF computation is
proposed that allows taking into account both the uncertainty
on position and orientation originating from all sources. The
technique consists in transforming each measurement from
Rcamera to Rscene taking advantage of the Julier and Uhlmann
approach described previously. This results in a distribution of
measurement points referred to Rscene ( ) which
depends both on the position and on the orientation
uncertainties. The modified closed-form OPDF approximation
provides knowledge on the uncertainty of the sensor position,
which corresponds to the origin of the corresponding local
spherical occupancy grid as shown in figure 5. The ellipses
represent the uncertainty level on measurements and on the
origin of the area scanned by the sensor. To incorporate this
supplementary information on the sensor location, the initial
closed-form OPDF approximation is extended behind the
sensor as shown in figure 6. As previously mentioned, the
occupancy probability, p, is 0 (empty) between the sensor and
the object surface because there is only empty space. Nearby

the object, the probability grows in a Gaussian-like manner and
drops to 0.5 (unknown) behind the object surface. A similar
behavior is expected around the sensor position. Behind the
sensor, the state of the space remains unknown (p = 0.5). As
the sensor position is not perfectly known because of the
uncertainty on the transformation chain, the step between
unknown area (behind the sensor) and empty space (in front of
the sensor) is not accurately located. For this reason, the
occupancy probability near the origin of Rcamera drops down in
a Gaussian-like manner from 0.5 to 0.0. Figure 6 shows a 1-D
projection of the updated closed-form OPDF approximation.
In practice, this probabilistic distribution must be extrapolated
to 3-D.

The OPDF can also be defined on a parametric straight
line aligned with the laser beam,  as shown in
figure 7. This allows to directly process measurements that
have been transformed to equivalent coordinates with respect
to Rscene. As a result, both the uncertainties on range
measurements, on the sensor position and on the model
reference frame position are taken into account when new data
are added to the local spherical grid. The OPDF parametric
straight line must be reevaluated for each measurement since
the laser beam has a different orientation for each point. This
allows considering non uniform uncertainty distributions
which characterize most range sensors.

Considering that measurements from a given viewpoint
are gathered in a short period of time in comparison with
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Figure 5: Uncertainty ellipsoids on measurements and sensor
position/orientation.

Figure 6: Extended closed-form OPDF.
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perturbations frequency, the origin of the local spherical grid is
assumed to be constant but uncertain. This assumption allows
the original range data merging strategy based on intersection
search between local spherical grids and a global Cartesian
grid to be applied even with the addition of uncertainty
processing.

The main interest of this approach based on uncertainty
propagation techniques is that it allows to merge both the
uncertainty on the range measurements that depends on the
sensor characteristics and the uncertainty on the sensor
position/orientation that depends on the mechanical system
used to position the camera. All this information, which is
critical in many applications, can be processed without the
evaluation of Jacobian and covariance matrices. Moreover, as
the transformed measurements relative to Rscene are used to
estimate the occupancy probability distribution rather than
measurements relative to Rcamera as in Elfes’ approach, both
the position and the orientation uncertainties are taken into
account. This strategy also appears to be less computationally
expensive than the evaluation of Jacobian matrices in spite of
the fact that 42 points must be processed for each
measurement. This is explained by the fact that this processing
is simply a product of 3 constant matrices for a given viewpoint
of the sensor.

VII. Conclusion

A strategy to deal with uncertainties on measurements and
on range sensor position/orientation in a multi-viewpoints
acquisition setup for 3-D probabilistic modeling has been
presented. The Smith et al. Jacobian-based propagation
scheme has been extended to a chain of three geometrical
transformations with one inverse component between Rcamera
and Rscene. The Julier and Uhlmann probabilistic distribution
propagation scheme through nonlinear transformations has
also been investigated and appears to be more suitable for the
probabilistic information merging algorithm currently used in
our modeling system. Its capacity to take into account the
uncertainty on both the position and the orientation without
complex matrix derivation and evaluation is an important
advantage. Finally, an adaptation of the closed-form
approximation of the occupancy probability distribution
function to suit the requirements of uncertainty processing is
presented. Future work is planned to remove the assumption of
fixed sensor origin during the scanning phase from a given
viewpoint. But the merging strategy between local occupancy
grids and the final Cartesian grid must first be revisited.
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