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Abstract - Modeling 3-D objects as octrees has demonstrated
considerable advantages which led to numerous applications in
robotics where free space localization is critical. Efficient neighbor
finding techniques in tree structures are required for such models to
be used properly, especially for path planning and collision
avoidance. In this paper, an optimized neighbor finding approach is
presented that is based on a recursive addressing scheme which
precludes any backtracking into the tree structure while preserving
model compactness. Neighboring cell addresses are computed
directly given a displacement direction in 3-D space and the address
of the starting cell. Neighboring rule sets that have been previously
derived for a quadtree representation are now extended to octrees.
Given the algebraic rules that are defined, computation of a
neighboring cell address in an octree comes down to basic arithmetic
operations with carry. The algorithm complexity is kept low in order
to provide good performances.

Keywords - 3-D modeling, neighbor finding, occupancy maps, virtual
navigation.

I. INTRODUCTION

Modeling the environment in which an autonomous system
must operate is a critical issue in robotic applications. The
availability and fast access to information about the cluttering
of space is primordial for solving many problems in this field.
Octrees demonstrate important advantages to satisfy these
requirements in robotic telemanipulation because of their
compactness and their capability to represent multiresolution
models which is critical to ensure performances in 3-D space
representations.

Octrees offer a compact way to encode the same
information as the classical 3-D occupancy grids that result
from a recursive subdivision of space along each of their axes.
When each of the resulting space cell is tagged with the
occupancy state of space, this provides a detailed
representation of space cluttering. Such models can contain a
combination of different levels of resolution depending on the
uniformity of space state. 

An important aspect is that an octree structure does not
contain any direct information about the Cartesian position of
a given cell. All cells are defined in relationship with the origin
and the size of the mother cell that corresponds to the entire

volume that is modeled. The traversal path from the mother
cell to a cell of interest in the tree structure is then the only way
to locate a given volume.

Several applications of octrees require a means of
computing 3-D spatial displacements based on the
connectivity between cells contained in the model as if it were
encoded in a Cartesian grid. Split-and-merge segmentation in
3-D computer vision, properties estimation in biomedical
imaging [1] and collision-free path planning for robotic
manipulators [2] are all examples of such applications. In the
later case, a neighbor finding technique is needed to identify a
free path among a set of objects. As the entire structure of a
robot needs to be moved without colliding with the
environment, the number of cells to validate is significantly
increased in comparison with the problem of mobile robot path
planning that often summarizes to the displacement of a point.
An efficient neighbor finding technique is therefore essential
to quickly locate free space in 3-D volumes. Unfortunately, in
a tree structure, neighboring leaves no longer coincide with
geometrically adjacent cells in 3-D space, and steps from a leaf
to its neighbors must then be defined without referring to
Cartesian coordinates.

Samet brought a significant contribution on how to build
and use tree-based structures [3,4,5]. But the majority of this
work is concerned with 2-D space. The classical neighbor
finding approach proposed by Samet is based on the search of
a common ancestor cell [6,7]. This technique has been
revisited by Besançon [8] who designed a neighbor finding
algorithm relying on the encoding structure introduced by
Ballard and Brown [9]. The idea consists in backtracking in
the tree starting from the initial cell until a common ancestor
of this cell and its neighbor of interest is reached. From this
point, the algorithm goes down the tree and reaches the desired
neighbor cell. Logical functions are introduced to verify the
neighboring status between two given cells and the algorithm
is designed to minimize backtracking. Nevertheless, it tends to
create long traversals of the tree before a valid ancestor can be
found, especially in three-dimensional models. In addition,
neighbor finding between corner neighbors appears to be more
difficult to process than between face neighbors using this
approach.
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Other strategies that exploit the model size rather than the
tree structure can also be found. Klinger and Rhodes [10]
propose such an algorithm to identify a sister cell in a given
direction in a quadtree by means of a sequence of primitive
displacements. This approach is based on some complex
primitives that lead to an important computational load. Other
researchers propose to add some data inside of each cell of the
tree in order to keep the identity of every neighbor cells. Hunter
and Steiglitz [11] call these supplementary informations ropes
which are inserted in the model during its building. These
ropes allow to directly access the neighbor cell in a given
direction without the need for a neighbor search while the
model is in use. On the other hand, extra memory space is
required to store the ropes, and the neighbor finding process
complexity is not reduced since all neighbors must be
computed for each cell while the model is built. As only a small
percentage of the ropes are actually used in a given application,
computing time is wasted in preprocessing many ropes that
will never be used.

Schrack [12] proposes a sophisticated approach to perform
elementary operations such as addition and subtraction on data
encoded in the linear quadtree defined by Gargantini [13].
These operations are used to identify neighbors of the same
size in a given direction by encoding geometrical data in the
cells. With this information available, the identity of a neighbor
cell in a given direction is easily computed. In retrospect, such
an approach is equivalent to encoding the model as a Cartesian
grid rather than a tree structure, compromising their inherent
advantages. Binary trees (bintrees) have also been proposed to
provide models which are approximately 25% more compact
than classical quadtrees and octrees [14,15]. Unfortunately,
bintrees use a simplified structure that limits their application
range.

In this paper, a neighbor finding approach that does not
imply any backtracking in the octree structure nor the encoding

of any supplementary data in the model is presented. This
method has been initially developed and validated for 2-D
space [16] and is now extended to three-dimensional models.
The algorithm uses an addressing scheme which identifies
each cell. Starting from a given address, the addresses of
neighbor cells are computed using simple algebra and taking
into account the displacement direction and the address of the
original cell.

The following sections define the selected addressing
scheme and detail the proposed address-based neighbor
identifier before applying it to free space identification in a
generic 3-D space representation. Finally the complexity and
performance of the approach are analyzed.

II. CELLS ADDRESSING

The basis of the proposed navigation algorithm in octree
models is the addressing scheme that associates a numerical
value with each branch and each leaf of the tree structure.
Various classical types of addressing have been considered
during the development. For instance, Shu and Kankanhalli’s
addressing method [1] relies on the subdivision level, L, and
on the relative coordinates (x, y) of a given cell with respect to
the origin as shown in figure 1a. Here the concept is presented
on a 2-D multiresolution grid for clarity. The address
associated to each cell is of the form (L, x, y), where the mother
cell receives address (0, 0, 0). This type of addressing allows
to build a tree for which it is not required to use pointers that
connect leaves and branches to each other. It results in a simple
structure but requires a more complex set of logical rules to
process the addresses. Especially, a complete update of all
addresses is required if the subdivision level of a part of the
model is changed, making this encoding inadequate for
dynamic modeling.

Samet [4] proposes a continuous addressing scheme as
shown in figure 1b. The address grows with the number of

Fig. 1. Various addressing schemes: a) Shu and Kankanhalli, b) Samet, c) Major et al.
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independent cells in the grid. In spite of the relative simplicity
of this addressing approach, it appears to be difficult to define
a standard numbering strategy since the subdivision level of
each region of space is not known a priori in a model in
evolution like those found in telerobotics. Major et al. [17]
proposes a basic addressing method as shown in figure 1c.
Cells are incrementally numbered from 0 to 3 following a
scanning pattern of the four children (for a quadtree) resulting
from the subdivision of a mother cell. The number of digits
varies with the resolution level as one digit is associated with
each level starting from the lowest one (the entire model). As
in the example of figure 1c for a 2-D map, the first mother cell
is tagged 0 while its four children are respectively tagged 00,
01, 02 and 03 in a predefined order. In accordance with this
pattern, the four children of the second child (01) are
respectively tagged 010, 011, 012 and 013.

This addressing follows a logical numbering scheme which
depends on the resolution level of each cell. For this reason, it
remains perfectly independent from the subdivision state of a
given cell and allows easy addressing of multiresolution grids.
Local addresses can also be easily updated following the need
to increase the resolution of some areas of the model or to
merge groups of cells exhibiting similar characteristics. This
scheme then provides the required flexibility and adaptability
for complex environments representation.

Moreover, it is easily extended to 3-D space where
subdividing a cell results in eight children instead of four. For
instance, the eight children of the main 3-D mother cell would
receive respectively the addresses: 00, 01, 02, 03, 04, 05, 06
and 07.

The definition of the scanning pattern is not a critical issue.
The ordering of addresses can vary provided that the same
scanning pattern is respected at each resolution level and that
the same numbering structure is preserved. The repetitiveness
characteristic is essential in order to take advantage of the
addressing scheme to identify neighboring cells in space. The
addressing scheme that has been adopted in the present work
is a 3-D extension of Major et al. with the first cell located at
the bottom left corner on the back side of the main mother cell
as shown in figure 2a.

Fig. 2. a) Incremental addressing scheme assigned to 
b) a 3-D space occupancy representation.
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III. ARITHMETIC FOR NEIGHBORS 
IDENTIFICATION

The proposed neighbor finding technique results from the
logical behavior of the selected addressing scheme. The
addressing structure leads to a set of rules which determine the
address change when one moves from a given cell to its
neighbor for each possible direction. These rules are similar to
elementary arithmetic operations with carry on the next left
digit which composes the address.

Considering only the back layer of the tridimensional
Cartesian grid shown in figure 2b to illustrate the rule
definition process in a simple case, their are eight possible
directions of displacement: North (N), South (S), East (E),
West (W), North-East (NE), North-West (NW), South-East
(SE) and South-West (SW), as the third dimension is neglected
[16]. Therefore, neighbors can be grouped into two categories:
edge neighbors respectively located in the North, South, East
and West directions; and vertex neighbors located respectively
in the North-East, North-West, South-East and South-West
directions.

According to their relative position in the tree structure,
sister cells are defined as cells that belong to the same mother
cell. Cousin cells are defined as cells whose mother cells are
sister cells. From there, neighboring rules are built by
comparing successively only the digits of the cells addresses
that correspond to a same level of resolution, e.g. the digits
which occupy the same position in the address expression. The
computation is thus performed one level at a time starting at
the highest resolution level (the rightmost digit) until the
lowest resolution level is reached (the leftmost digit).

A. Neighboring Between Sister Cells

Based on the addressing scheme of figure 2, for a given
level of resolution (sister cells), address computation rules for
edge neighbors can be established as follows through a close
examination of address variations for each direction: the digit
changes from 0 to 1 or from 2 to 3 in the East direction, from
0 to 2 or from 1 to 3 in the North direction, from 1 to 0 or from
3 to 2 in the West direction, and finally from 3 to 1 or from 2
to 0 in the South direction. Similarly, for vertex neighboring
between sister cells, the rules can be defined as follows: a digit
is changed from 2 to 1 in the South-East direction, from 1 to 2
in the North-West direction, from 0 to 3 in the North-East
direction and from 3 to 0 in the South-West direction.

B. Neighboring Between Cousin and Distant Cells

An important phenomenon that occurs in the addresses
when a displacement from a given cell to its neighbor implies
a change in their parent cells is that the digit associated to the
parent’s resolution level is also affected. Neighboring rules
must then be applied successively to each digit starting from
the rightmost one until the affected parent’s resolution level is
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reached. Moving from a parent to another is similar to the
application of a carry on the immediate left digit in elementary
arithmetic.

Processing a carry, to which a direction is associated here,
follows the same neighboring rules as those applied to the
previous digit. That is, the set of rules between sister cells is
applied with eventually another carry being applied on the
next left digit until common parents are reached. Because of
the recursive structure of the tree, this situation must occur. In
the worst case, neighboring rule set processing continues until
the leftmost digit is reached. But this occurs only when the
delimitations between each of the four children of the global
mother cell are traversed. In the large majority of situations,
carries on left digits are limited to higher levels of resolution
(few rightmost digits).

Even though a given number of carries might be required to
find the address of a neighbor cell, it is important to note that
no backtracking in the tree structure is required. Only
arithmetic manipulations on the address digits are necessary.
This significantly speeds up processing as the model stored in
memory doesn’t need to be accessed and no validation of the
actual neighboring between cells needs to be performed.
Computation of the other cell’s address with the proposed
computational technique guaranties that a valid neighbor is
reached in the desired direction.

The application of the neighboring rule set is driven by two
simple principles. First, processing an address always begins
with the rightmost digit (the highest resolution level) and
successively proceeds to the left as carries are generated.
Second, processing is based on the initial value of the digit in
the starting cell’s address and on the moving direction. These
two informations alone determine the rule to apply in order to
identify the appropriate new value for the considered digit.
Furthermore, these rules are easily encoded in a lockup table
to speed up processing.

IV. FREE SPACE LOCALIZATION
IN 3-D STRUCTURES

The definition and the application of a neighboring rule set
in 3-D structures (octrees) follows the same principle as for the
2-D case. The main difference is that the number of rules
increases as a consequence of the additional number of
neighbors that goes from 8 to 26 possible directions as shown
in figure 3.

Fig. 3. Possible directions of displacement in 3-D space:
a) face, b) edge, and c) vertex neighbors.
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Neighboring relationships can be divided into three
categories depending of the type of intersection occurring
between cells in a given direction. Face neighbors occur in the
North (N), South (S), East (E), West (W), Front (F) and Rear
(R) directions. Edge neighbors occur in the North-East (NE),
North-West (NW), South-East (SE), South-West (SW), Front-
East (FE), Front-West (FW), Read-East (RE), Rear-West
(RW), Front-North (FN), Front-South (FS), Rear-North (RN)
and Rear-South (RS) directions. Finally, vertex neighbors
occur in the Front-North-East (FNE), Front-North-West
(FNW), Front-South-East (FSE), Front-South-West (FSW),
Rear-North-East (RNE), Rear-North-West (RNW), Rear-
South-East (RSE) and Rear-South-West (RSW) directions.

Neighboring rules are defined based on a close inspection
of addresses behavior when a displacement in each possible
direction occurs and for each of the eight possible children that
result from the subdivision of a mother cell in an octree. The
principle of a carry applied to the immediate left digit is also
preserved. For compactness, the resulting set of rules is
presented as lookup tables 1, 2 and 3 for each of the three types
of neighbors.

The numbers in the left columns correspond to the initial
value of a given address digit while the header rows represent
moving directions in accordance with the 3-D compass-card
depicted in figure 2. Alphanumeric codes in the lockup tables
define the required operation to compute the new address for
each digit value and displacement direction. When only a
number (0 to 7) appears, this means that the initial value of the
digit must be replaced by this number and no carry is
generated (sister cell neighboring). The addition of a carry
mark (+ X) indicates that a carry in the X direction must also
be applied on the digit located immediately to the left of the
digit presently considered in the cell address.

For example, if one moves in the Front-North-West (FNW)
direction starting from the octree cell tagged 0742, this
consists in a vertex-type neighboring relationship. When table
3 is consulted, it reveals that for a digit value equal to 2 and the
FNW direction, the initial digit value must be replaced by 5
and that a carry in the North-West direction is applied to the
following left digit, e.g. 4. This carry implies an edge-type
neighboring relationship. Therefore, line labelled 4 in table 2
is consulted for the NW direction and indicates that the digit
value of 4 must be replaced by a value of 7 and that a new carry
is generated in the West direction and applied to the following
left digit, e.g. 7 in the original address. As a final step, a face
neighboring is requested by this last carry. Table 1 is then used
to determine that, for an original digit value of 7 with a
displacement in the West direction, the value is replaced by a
6 and no more carry is generated thus completing the
processing of the address. The neighbor cell address from
0742 in the Front-North-West direction is finally 0675. This
can be verified geometrically by a close inspection of figure 2.
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Using this augmented set of rules for computing the
addresses of neighboring cells in an octree offers an efficient
way to directly identify paths of empty space connected with a
given starting point (a given cell) no matter the complexity of
the scene encoded in the 3-D virtual representation. Since such
a process must be repeated a very large number of times in a
path planning operation with collision avoidance in order to
successfully connect volumes of space through which all
members of a robot manipulator can safely circulate, the
proposed technique significantly contributes to reduce the
computational workload introduced by the determination of a
proper sequence of movements in virtual representations of
complex environments. Some generalization has also been
made to efficiently handle multiresolution models and to deal

with border effects in the model using the proposed approach.
Even though they are not detailed here due to space
limitations, experimentation demonstrated their efficiency and
generality.

V. ALGORITHM COMPLEXITY

The complexity of the proposed approach simply depends
on the number of digits to be processed for finding the
neighbor cell address in a given direction. In other words, it
depends on the number of accesses that are made to the lookup
tables containing the rule sets. The geometric location of
neighboring cells in the grid thus slightly influences the
complexity. As shown above, sister neighbors are rapidly
identified since no carry is generated. Only one access to a

Table 1. Face neighboring rules in an octree structure.

Table 2. Edge neighboring rules in an octree structure.

Table 3. Vertex neighboring rules in an octree structure.

N S E W F R

0 2 2 + S 1 1 + W 4 4 + R

1 3 3 + S 0 + E 0 5 5 + R

2 0 + N 0 3 3 + W 6 6 + R

3 1 + N 1 2 + E 2 7 7 + R

4 6 6 + S 5 5 + W 0 + F 0

5 7 7 + S 4 + E 4 1 + F 1

6 4 + N 4 7 7 + W 2 + F 2

7 5 + N 5 6 + E 6 3 + F 3

NW NE SW SE FN RN FS RS FE FW RE RW

0 3+W 3 3+SW 3+S 6 6+F 6+S 6+RS 5 5+W 5+R 5+RW

1 2 2+E 2+S 2+SE 7 7+R 7+S 7+RS 4+E 4 4+RE 4+R

2 1+NW 1+N 1+W 1 4+N 4+RN 4 4+R 7 7+W 7+R 7+RW

3 0+N 0+NE 0 0+E 5+N 5+RN 5 5+R 6+E 6 6+RE 6+R

4 7+W 7 7+SW 7+S 2+F 2 2+FS 2+S 1+F 1+FW 1 1+W

5 6 6+E 6+S 6+SE 3+F 3 3+FS 3+S 0+FE 0+F 0+E 0

6 5+NW 5+N 5+W 5 0+FN 0+N 0+F 0 3+F 3+FW 3 3+W

7 4+N 4+NE 4 4+E 1+FN 1+N 1+F 1 2+FE 2+F 2+E 2

FNE FNW FSE FSW RNE RNW RSE RSW

0 7 7+W 7+S 7+SW 7+R 7+RW 7+RS 7+RSW

1 6+E 6 6+SE 6+S 6+RE 6+R 6+RSE 6+RS

2 5+N 5+NW 5 5+W 5+RN 5+RNW 5+R 5+RW

3 4+NE 4+N 4+E 4 4+RNE 4+RN 4+RE 4+R

4 3+F 3+FW 3+FS 3+FSW 3 3+W 3+S 3+SW

5 2+FE 2+F 2+FSE 2+FS 2+E 2 2+SE 2+S

6 1+FN 1+FNW 1+F 1+FW 1+N 1+NW 1 1+W

7 0+FNE 0+FN 0+FE 0+F 0+NE 0+N 0+E 0
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lookup table is sufficient to compute the neighbor cell address
completely. In the case of cousin cells, two digits must be
changed and, for more distant neighboring relationships, the
number of accesses grows proportionally to the gap between
terminal leaves of common parent branches in the tree
structure.

Therefore, the maximum complexity of the proposed
neighbor finding algorithm is  where p represents the
number of resolution levels in the octree that is equal to the
number of digits in the addresses for the highest resolution.
This algorithm is much simpler in comparison with a
backtracking algorithm that searches for a common parent. As
the later needs to scan all potential children and check for a
neighborhood relationship in the proper direction by accessing
the model, such an approach has a maximum complexity of

 for a 3-D model.
Moreover, manipulating the addresses by only accessing

lookup tables is faster than accessing the octree virtual
representation each time neighboring needs to be verified.
Implementation of the proposed arithmetic is also limited to
the encoding of 3 lookup tables. Experimentation with the
proposed approach for empty space localization in robot path
planning demonstrated a drastic improvement in computation
time in comparison with a classical backtracking approach.

VI. CONCLUSION

In this paper, an algorithm allowing a fast neighbor cell
search in 3-D virtual representations of complex scenes
encoded as octree models has been presented. The approach
based on a hierarchical addressing scheme of cells, provides a
reliable and efficient strategy for identification of free space in
robotic guidance tasks without the lost of compactness
characterizing multiresolution octree models.

Moreover, the performance of the algorithm is totally
independent of the complexity of the model, it is able to take
full advantage of multiresolution encoding, and no
supplementary information needs to be added in the model as
widely suggested in the literature.

These characteristics allow to keep a low complexity in
comparison with backtracking neighbor finding algorithms
which search the tree until a common parent is found. Even
though the algorithm has been developed in the context of
collision-free path planning for telemanipulators, numerous
applications can be envisioned especially in the fields of
computer vision and robotics.
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