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of interest detection using neural gas networks

Ana-Maria Cretu'2 . Maude Chagnon-Forget! - Pierre Payeur

© Springer-Verlag Berlin Heidelberg 2016

Abstract The paper discusses automated solutions for 3D
object modeling at multiple resolutions in the context of vir-
tual reality. An original solution, based on an unsupervised
neural network, is proposed to guide the creation of selec-
tively densified meshes. A neural gas network, applied over a
sparse density object mesh, adapts its nodes during training to
capture the embedded shape of the object. Regions of interest
are then identified as areas with higher density of nodes in the
adapted neural gas map. Meshes at different level of detail for
an object, which preserve these regions of interest, are con-
structed by adapting a classical simplification algorithm, the
QSlim. The simplification process will therefore only affect
the regions of lower interest, ensuring that the characteristics
of an object are preserved even at lower resolutions. Vari-
ous interest point detectors are incorporated in selectively
densified meshes in a similar manner to enable the compari-
son with the proposed neural gas approach. A novel solution
based on learning is proposed to select the number of faces
for the discrete models of an object at different resolutions.
Finally, selectively densified object meshes are incorporated
in a discrete level-of-detail method for presentation in virtual
reality applications.
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1 Introduction

The current generation of graphics software packages offers
enhanced capabilities to create extremely detailed and real-
istic 3D models associated with a high count of polygons.
Similarly, the new generation of 3D data acquisition devices
is able to collect large amounts of data in a relatively limited
time. However, the increased complexity and size of datasets
and models frequently represent a challenge for further
processing, transformation and visualization at a reasonable
computational cost, particularly in interactive applications
where users expect to see results in real time. This explains
the interest of researchers into identifying appropriate pro-
cedures that minimize the size and complexity of models by
retaining only the most important characteristics of objects
to be incorporated in interactive environments.

One approach to address the real-time constraint in com-
puter graphics applications is to manage the level of detail
(LOD) of an object. The three major categories of methods
for managing the LOD of an object are: discrete, continuous
and view-dependent methods (Luebke et al. 2003). Among
these, the most frequently used is the discrete LOD method.
Multiple copies of different resolutions of the same object, in
which details are uniformly reduced, are created off-line, dur-
ing a preprocessing step. Closer objects use a denser mesh
associated with a higher resolution, while distant ones use
a coarser resolution, leading to a higher rendering speed.
The method is simple, but it generally takes long to prepare
the multiple copies. Continuous LOD methods use instead
a data structure, encoding a continuous spectrum of details,
and the desired level is extracted from the structure at run-
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time. This encoding is advantageous because it provides
interruptible loading and progressive rendering properties.
View-dependent methods extend continuous LOD methods
by dynamically selecting the most appropriate level of detail
for the current view of an object. Parts of the object that are
closer exhibit higher detail than distant parts, resulting in
a better fidelity but also in higher memory use and higher
computation time. All three methods succeed in general to
provide appealing results. However, due to the fact that they
simplify the object geometry uniformly, they generally per-
form poorly at very low levels of detail. Some localized areas
or features, while they could be visually more important than
others, can be completely removed during the simplification
process (Luebke et al. 2003). To address this issue, some
researchers propose the intervention of the user to guide the
desired quality of an object model. The user can therefore
select the areas of lower quality that are then subject to local
improvements (Kho and Garland 2003; Ho et al. 2006; Pojar
and Schmalstieg 2003; Song et al. 2012). Only a few solu-
tions were proposed to automatically guide the local mesh
density of a model (Lee et al. 2005).

In this paper, regions of interest on the surface of an object
are used as an automatic mean to manage the level of detail.
The research work presented expands on the previously pro-
posed method by the authors for the creation of selectively
densified object meshes (Monette-Thériault et al. 2014). The
regions of interest are detected by automatically finding
higher density areas in the adaptation map of a neural gas
network. A classical mesh simplification algorithm, namely
QSlim (Garland and Heckbert 1997), is then adapted to only
simplify the polygons that do not belong to regions of inter-
est. These regions contain points of interest and points in the
n-nearest neighborhood of points of interest. This selective
simplification process allows the retention of the characteris-
tics in the simplified model even at lower resolutions. A series
of interest point detectors from the literature is integrated in a
similar fashion with the QSlim algorithm to enable a compre-
hensive comparison with the proposed approach. Finally the
proposed solution is incorporated in a discrete LOD scheme
to be used in virtual reality applications. A novel solution is
proposed to learn the mapping between the number of faces
to be used for each of the multiple copies at different res-
olutions and an initial mesh at full resolution. The role of
the latter is to eliminate the need for the user to provide the
appropriate number of faces for each of the discrete copies
of an object.

2 Literature review
There has been a lot of interest in the research community

for the detection of points of interest. A first category of
solutions for region of interest detection is capitalizing on
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saliency, or the property of a certain region (or point) to be
different from its surroundings (its neighborhood). Lee et al.
(2005) compute mesh saliency using the curvature map, a
mapping from each vertex to its mean curvature, based on
the observation that changes in curvature identify regions
that are different from their surroundings, and are therefore
of interest. The approach is further improved in Liu et al.
(2007) that combines the mesh saliency with Morse theory.
Another improvement of Lee et al. (2005) is proposed in
Song et al. (2012) that incorporates multiscale information
in a conditional random field framework to impose con-
sistency constraints between neighboring points. Castellani
etal. (2008) re-mesh an object mesh at different levels of dec-
imation and apply a Difference-of-Gaussian (DoG) operator
to identify the points of interest over its surface. An adaptive
inhibition process chooses only the vertices characterized by
values larger than 85 % of their mean neighborhood values,
and from these, only vertices that are local maxima and have
a value higher than 30 % of the global maximum are retained
as points of interest. In Wu et al. (2013), the mesh saliency
is computed considering both the local contrast and global
rarity, the latter being defined using the global saliency of
each vertex based on its contrast with respect to all other
vertices. Yang et al. (2009) calculate vertex saliency using
its distance with respect to its neighborhood and include it
in face saliency computation. Object regions are then ranked
based on their face saliency and the ones with higher values
are retained as regions of interest. In Dugataci (2012), some
of the previously discussed methods for interest point detec-
tion are compared with human-generated ground truth. Zhao
et al. (2013a) compute the salient regions over a mesh by first
diffusing with a random center surround operator the shape
index field (calculated using the maximum and minimum
curvatures at each vertex) and enhancing it using Retinex the-
ory, a bilateral filtering based on the photometric spread. The
results are segmented and interest points are either sampled
using a stratified point sampling approach (Zhao et al. 2012)
or using the entropy of saliency values (Zhao et al. 2013b)
from each segment. The authors of Song et al. (2014) com-
bine local multiscale saliency with global spectral response
to obtain 3D mesh saliency. No interest points are identified,
the saliency being employed for mesh segmentation and scan
integration. In Gal and Cohen-Or (2006), salient geometric
features based on curvature are obtained by first approximat-
ing locally a surface at each vertex by an analytic quadric
patch, by selecting arepresentative point on each patch and by
calculating analytically the differential properties (descrip-
tors) at that point. Salient features are obtained by clustering
sets of descriptors that have a high curvature with respect
to their neighborhood and a high variance of curvature val-
ues. Feixas et al. (2009) compute view-based mesh saliency
using mutual information between polygons. The saliency of
a polygon is defined as the average dissimilarity, measured
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in terms of Jensen—Shannon divergence, between itself and
its neighbors. Leifman et al. (2012) detect regions of interest
over a triangulated surface by searching regions that are dis-
tinct using three criteria: local vertex distinctiveness, shape
extremities and patch association. A method is then proposed
to select viewpoints based on these salient regions. A series
of ten local descriptors, namely the first and second principal
curvature, the Gaussian curvature, the mean curvature, the
shape index, the log curvedness, the distance to local plane,
the local volume, the spin image histogram and the spherical
histogram, is used in Creusot et al. (2013) to find keypoints
over the surface of 3D human faces.

Another category of interest point detectors is related to
the identification of corners. In Sipiran and Bustos (2010),
a Harris corner detector is proposed for 3D objects. In the
method proposed by Novatnack and Nishino (2007), the sur-
face of amesh model is initially parameterized on a 2D plane,
to create a distortion map that encodes the relative change in
the edge length. A normal map is then constructed by inter-
polating the normals at each vertex, and a Gaussian filter,
modified to take into account the distortion, is applied to
the normal map obtained at different scales to allow for the
detection of corners. The corners detected at several scales
are then projected back on the 3D surface. In Zaharescu
et al. (2009), corners are identified as extrema in across
scales DoGs, further processed with a Hessian operator to
eliminate non-stable responses. Other solutions capitalize on
minimum and maximum values for the detection of points of
interest. The solution proposed by Godil and Wagan (2011)
uses a voxel grid and capitalizes on the SIFT algorithm.
3D Gaussian filters are applied at increasingly large scales
and a DoG operator is used to identify minimum and maxi-
mum points, respectively. From these, only those located on
the surface are retained. Sun et al. (2009) identify points of
interest by finding local maxima of the heat kernel signature
(HKS) computed over a triangular mesh. The information
about the neighborhood of a point on a shape is calculated
by recording the dissipation of heat from the point onto the
rest of the shape over time. The authors of Zou et al. (2008)
detect salient keypoints as local extrema of the DoG function
defined over a curved surface in geodesic scale space.

The detection of points of interest plays a key role for var-
ious applications including: matching of objects and shapes
(Lee et al. 2005; Gal and Cohen-Or 2006; Zaharescu et al.
2009; Zou et al. 2008), mesh and shape retrieval (Yang
et al. 2009; Godil and Wagan 2011), mesh analysis (Zhao
et al. 2013b), mesh segmentation (Zhao et al. 2013b; Song
et al. 2014), adaptive scanning of 3D objects (Payeur et al.
2013), scan integration (Song et al. 2014), and guiding mesh
simplification (Song et al. 2012, 2014; Lee et al. 2005;
Monette-Thériault et al. 2014). Finally a general evaluation
of various 3D keypoint detectors in terms of repeatability,
distinctiveness and computational efficiency for object detec-

tion, recognition and registration is presented in Yu et al.
(2013) and for feature-based matching in Tombari et al.
(2013).

As the interest in this paper is to guide the mesh simpli-
fication process using the points of interest, a few solutions
are discussed that allow for user guidance to only impact
certain regions of an object instead of its whole surface. It is
worth mentioning that in most of the papers from the liter-
ature that consider this form of region-based guidance, the
simplification algorithm of choice is QSlim proposed by Gar-
land and Heckbert (1997). The main reason is the fact that
the algorithm is known to ensure one of the best balances
between fidelity, speed and robustness among all the simpli-
fication algorithms (Luebke 2001). A user-guided version of
the QSlim algorithm is proposed in Kho and Garland (2003).
The importance of different regions is controlled selectively
by the user, while the algorithm ensures the preservation of
features in those regions by local adaptive weighting and
by imposing boundary constraints on contours, planes and
points. In Lee et al. (2005), the order of simplification con-
tractions of the QSlim algorithm is guided using a weight
map that is obtained by thresholding the mesh saliency map,
therefore making the weighting stronger in salient regions.
The vertex pairs to be repeatedly contracted are ordered by
increasing quadric error (collapsing cost) as in Garland and
Heckbert (1997). Song et al. (2012) weigh the simplification
process by amplifying the saliency values of the points situ-
ated in the regions of interest. The solution proposed by Pojar
and Schmalstieg (2003) enables the user to control the simpli-
fication of a mesh by painting the regions that are considered
important by the user in a Maya plug-in. Their algorithm
weighs the collapsing cost, but also takes into account appear-
ance attributes. In Ho et al. (2006), the user can improve
regions that are considered unsatisfactory in a two-step pro-
cedure: in a first step the desired regions are weighted, while
in the second step, a local refinement occurs. Most of these
solutions count on the user guidance for the local improve-
ment of an object mesh.

3 Proposed approach for regions of interest
detection and their integration in a selectively
densified 3D object model

In this paper, an original automated method is proposed
to create selectively densified 3D object models based on
interest regions over their surface. A neural gas network
is initially employed to determine the regions of interest,
using a sparse point cloud representing the uniformly down-
sampled vertices of an object mesh. The identified regions are
then incorporated in an adapted version of the QSlim sim-
plification algorithm to create selectively densified meshes
that encode the shape of 3D objects while preserving their
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(b)

Fig. 1 aInterest points detected by the proposed method, b selectively
densified mesh with interest region preservation for a number of faces
in the simplified mesh equal to half of the faces in the initial mesh,
without and with material properties, ¢ discrete levels of details with
region of interest preservation for a dog model

characteristics. Using a discrete LOD method inspiration,
multiple copies of an object are created during an off-line pre-
processing step. The details of object are uniformly reduced
in the areas that are not detected as regions of interest, but
are preserved for the interest points and their immediate
n-neighborhood. Distant objects use a coarser resolution,
therefore a smaller number of polygons, but ensure that the
characteristics of an object are preserved. An illustration of
the approach is shown in Fig. 1 for a dog model. Figure la
illustrates identified interest points, shown in red, using the
proposed method over the object surface, while Fig. 1b shows
the selectively densified model obtained for half of the num-
ber of faces in the initial model as a mesh and also using a
gray material.

The discrete level-of-detail copies for the same model are
shown in Fig. 1c. One can notice that even at very low level
of detail, as in the upper part of Fig. 1c, the most important
features of the object (i.e. tail, ears, etc) are preserved.

3.1 Neural gas networks
In general, the purpose of neural gas networks is to clus-

ter multi-dimensional vectors. Such a network consists of
nodes (or cluster centers), which independently move over
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the data space during the adaptation process. The adaptation
algorithm starts by initializing the set of network nodes with
a predefined number of nodes whose corresponding refer-
ence vectors are chosen randomly according to a probability
density function or from a finite set (Martinetz et al. 1993;
Cretu 2009). Each node has an associated reference vector
that indicates its position in the input space. At each training
step, the winning neuron that best matches an input vector
is identified using the minimum Euclidean distance crite-
rion. The neurons to be adapted in the learning procedure
are selected according to the rank they have in an ordered
list of distances between their weights and the input vector.
A full description of the neural gas algorithm is available in
Martinetz et al. (1993). In the context of this work, the neural
gas is employed to model a decimated point cloud represent-
ing a 3D object. This decimated point cloud is obtained by
uniformly reducing the initial point cloud to 10 % of its size.
Starting from the resulting sparse point cloud, a neural gas
network adapts a predefined number of nodes to the shape of
the object contained in the point cloud. During this adapta-
tion process, the nodes converge toward regions where more
pronounced depth variations are present and therefore where
local features are situated.

The algorithm starts by initializing the set S of network
neurons to contain N units ¢; with the corresponding ref-
erence vectors w.; having very small values, of the order
of 107>, Input vectors x are chosen randomly from a finite
training data set that in the current case contains the X, Y, Z
coordinates of vertices in the sparse point cloud, x =[XY Z].
The nodes to be adapted in the learning procedure are selected
according to their rank in an ordered list of distances between
their weights and the input vector. Each time a new input
vector x is presented to the network, a list of neighbor-
hood ranked indices is built (jo, ..., jy—1), where wjo is
the weight of the closest neuron to x, w;; the weight of
the second closest neuron, and w ji is the reference vector
such that k vectors w; exist with: [|x — w;|| < |lx — wjkll,
k =20,..., N — 1. In each training step, the best matching
neuron s(x) at time ¢ is computed using the minimum Euclid-
ean distance. All neurons are then ordered and based on the
rank, a given number of nodes is adapted according to:

wit+ 1) =w;() +a@)hyk;(x, wj)x@) —w;()]
(D
where a(t) € [0, 1] describes the overall extent of the mod-

ification, and A, is 1 for k;(x, w;) = 0 and decays to zero
for higher values according to Eq. (2):

hy(kj(x, wj)) = exp(=k;(x, w;)/A(t)) @)

As in Martinetz et al. (1993), k;(x, w;) is a function that
represents the ranking of each weight vector w ;. If j is
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the closest to input x then k = 0, for the second closest
k =1 and so on. The learning rule is local, meaning that
the operation at neuron level only requires the knowledge
of the weight associated with that neuron and the input
vector. The network minimizes the following cost (error)
function:

1

N
3 / P () (kj (e, w)) - (x — w))>?
j=1

3)

where P (x) is the distribution of input vectors x (n) and

N—-1
CO) =D (k)
k=0

The parameter A can be seen as a temperature factor. At very
low temperatures only the winning node produces a cost. As
the temperature is increasing, only the nodes close to the
input contribute significantly to the error, while at high tem-
peratures many of the nodes in the network add to the cost of
the network. The corresponding update rule that is applied
to all nodes reduces the cost function in Eq. (3).

The learning rate «(¢#) and the function A(¢) are both
time-dependent. To ensure that the algorithm converges, it
is important that these parameters are decreased slowly dur-
ing the learning process. The following time dependencies
are used:

(X(t) = Olg(OlT/()(o)t/T’ )\.(t) — )‘-()()\-T/)‘-())t/T (4)

where the constants « and g are the initial values for «(t)
and A(¢), o7 and At are the final values, 7 is the time step and
T'the training length. For the time-dependent variables, initial
and final values have to be chosen. The algorithm continues
to generate random input signals x while ¢t < T'.

The neural gas network converges quickly, reaches after
convergence a lower distortion error and better captures finer
details than other self-organizing architectures (Cretu 2009).
However, its main limitation is related to the fact that the ini-
tial number of nodes of the neural gas map needs to be decided
prior to adaptation (tuned by the user) and that impacts the
accuracy of the results. After multiple trials, a series of guide-
lines have been developed to choose an appropriate map size
according to the size of the initial scan (Cretu 2009), as shown
in Table 1.

Nevertheless, the desired accuracy of the model can vary
slightly with the characteristics of the objects considered,
such as the size of the object, and the number and the size of
the features. Therefore, to ensure that the best map is chosen,
multiple neural gas map sizes are tested and the best is chosen
according to an error measure, as further described in Sect.
3.4. The other parameters are set as follows: «, = 0.5 and A,

Table 1 Neural gas map size with respect to the initial model

Size of initial model
(number of points, N)

Approximate
neural
gas map size

2000-3000 60-100%N
3000-4000 50-90%N
4000-5000 30-70%N
5000-6000 20-60%N
6000-7000 15-50%N
7000-15,000 10-40%N
Over 15,000 5-10%N

(a) (b)

Fig. 2 aNeural gas map, b points of interest detected in the neural gas
map and c selectively densified 3D horse model

is set equal to half the number of neurons in the initial map.
The network is trained for 15 epochs.

3.2 Region of interest detection based on neural gas

The regions of interest are then identified by detecting areas
with a higher density of nodes in the adaptation map of
the neural gas. A Delaunay triangulation is first applied
to the neural gas output, knowing that areas of high den-
sity of nodes are represented by smaller triangles in the
resulting mesh. All the edges of triangles larger than a
threshold are removed from the tessellation. The threshold is
selected empirically as half of the mean value of the length
of vertices between every pair of nodes for every triangle
in the tessellation. This process ensures the identification
of points that are close to one another and, therefore, of
areas that contain features. This approach is used to identify
regions (and implicitly points) of interest over the surface
of a 3D object. In particular, points of interest are those
that represent vertices in the remaining tessellation. Fig-
ure 2 illustrates the detected points of interest for a horse
model.

Figure 2a shows with green points the neural gas map for
a size of 1500 nodes in the map, selected according to Table
1, while Fig. 2b illustrates the detected points of interest, in
red, using the procedure described above. Figure 2¢ shows the
selectively densified object mesh that preserves the regions
around these interest points.
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3.3 Incorporation of regions of interest in the selectively
densified 3D model

The simplification algorithm proposed in Garland and Heck-
bert (1997), QSlim, is chosen and adapted into an automated
solution to incorporate the detected areas of interest and cre-
ate a selectively simplified mesh M. The QSlim algorithm
can be briefly described as follows: given a triangular mesh
M(V, F), where V is a set of vertices v; and F is a set
of faces, or more precisely a set of triplets {v;, vg, v;} that
define three vertices that each create a face in the mesh, in
counter-clockwise order, it simplifies a mesh by repeated
edge contractions (collapses) based on a quadric error met-
ric computed of each vertex of the mesh. This metric is a
4 x 4 matrix that represents the sum of squared distances
from the vertex to the planes of neighboring triangles. If its
value is large, the corresponding vertex could be considered
a distinctive feature over the surface of the object, and there-
fore will be retained longer in the mesh. Otherwise, it will
be removed earlier. The same metric is used to calculate the
cost of a contraction and the optimal position for the unified
vertex resulting after an edge removal. In this way, each edge
is associated to a contraction cost and all the edges are stored
in an ordered list of costs. The idea of the algorithm is then
to remove at each step the edge with the lowest cost, update
the neighborhood as a result of the contraction and update
the costs of edges connected to the unified vertex. The most
important parameter to control is the final resolution of the

Step 1:

mesh, or number of faces, f;, to be retained after the sim-
plification. Most solutions available in the literature weigh
stronger the regions of interest after the creation of a simpli-
fied mesh (Ho et al. 2006; Song et al. 2012; Lee et al. 2005)
and adjust their cost to delay their simplification. Instead, in
this work, the simplification process is not allowed to affect
regions of interest at all. In particular, the faces of the mesh
that contain points of interest and their immediate neighbor-
ing faces (n-nearest neighbors) are eliminated from the list of
faces to be simplified by the QSlim algorithm. Because the
number of faces is fixed at the beginning of the algorithm, the
faces will be distributed over the object model in a selective
manner, with a higher density in the regions of interest.

The choice of the neighborhood size, n, is further dis-
cussed in the experimental results section. An improvement
with respect to the previous version in Monette-Thériault
et al. (2014) is the use of a different algorithm for the selec-
tion of the nearest neighborhood. In Monette-Thériault et al.
(2014) a version of the quick hull method was used for the
detection of neighbors of interest points. In this work, a k-
nearest algorithm is used as a basis for the identification of
regions of interest around points of interest. It is faster to
compute (improvement of about 25 % in computation time)
and leads to a slightly better quality of the simplified mesh
(i.e. lower error with about 5 %).

The algorithm in pseudo-code for our approach is the fol-
lowing:

// interest points detection for an object O represented by a mesh M of size N
Obtain sparse 3D point cloud representing an object in a mesh M by uniform decimation:

O={pr,..P _,
Initialize neural gas network;

Pasts Pi=[X, Y, Zi] € M, i=1...NS,Ns<N;

Apply neural gas adaptation over O to obtain the neural gas map:

oNG= 1P -.s

P, ., Papy| P=1[X, Y; Z], j=1...ND, ND<NS/2;

Apply Delaunay on the resulting map Oyg to obtain:
D={r, .., P,....Pw}| P,=[X, Y, Z], j=1...ND
Threshold D to identify the interest points P for the object;

P={pr;, ..., Pr,..., Pyp}| Pr=1[Xp Y1 Zi], k=1...NP, NP <ND

Step 2:

// simplification for a mesh M to obtain selectively-densified mesh Mg
Calculate PN = the n-nearest neighborhood of points P in M, n=1, 2,...
Recuperate edges on the mesh that do not connect to points of interest or

neighbours of points of interest:

Ep= {e(w,v)|e(u,v) € M, e(u,v) ¢ PN}

Initialize Mg&=Ep
// apply QSlim

Compute quadric error at each vertex of Mg
Determine contraction cost at each edge e(u,v) in Mg
Create ordered list of edges based on cost

Step 3:

Remove the edge e(u,v) with lowest cost

Use quadric error to choose the optimal contraction target

Contract u and v and recalculate costs for the adjacent edges in Mg
While desired resolution (number of faces) not reached repeat Step 3
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Fig. 3 Proposed method with regions of interest preservation for the
Igea model with interest points shown in red, and selectively densified
models with a 2500, b 3500, ¢ 4500, d 5500, e 8500 and f 10,000 faces
in the simplified mesh and their corresponding error distribution and
magnitude, from blue (perfect match) to red (large error) (color figure
online)

P, the set of interest points, can be obtained using any inter-
est point detector, for example any of the detectors that are
used for comparison in Sect. 4. Because the proposed region
of interest detector in Sect. 3.1 runs on Matlab, the Matlab
wrapper of QSlim is adapted from Peyre (2007) and the same
platform is used to implement the proposed solution.
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3.4 Comparison of simplified meshes

The Metro software (Cignoni et al. 1998) is the solution
chosen to enable the comparison of different selectively sim-
plified meshes. To measure the output quality of simplified
meshes, Metro uses a point-to-surface distance metric. It
takes as input a pair of surfaces, meshes of objects in our
case, and outputs the maximum distance, as well as the mean
and variance from the first mesh to the second mesh. Using
the initial mesh as a reference, the reported distance can be
viewed as a measure of error with respect to this mesh. It
therefore allows for a quantitative comparison of different
simplified meshes. The Cloud Compare tool (http://www.
danielgm.net/cc/) is employed for a visual comparison of
error distribution and magnitude over the simplified mesh
with respect to the initial mesh.

3.5 Multi-resolution object modeling

Taking inspiration from discrete level-of-detail methods, an
original solution is proposed to create automatically the mul-
tiple copies of an object at different resolutions. For this
purpose, the simplification algorithm with region of inter-
est preservation is applied for an increasing number of faces,
varying from 1500 up to the entire number of faces in the
initial mesh of an object. A neural network is trained to learn
the mapping between the initial mesh, at full resolution and
the number of faces for each of the multiple copies at differ-
ent resolutions. This replaces the need for a user to estimate
by trial and error the number of faces that would be required
for an object. A two-layer feed-forward architecture with 40
neurons in the hidden layer is employed for this purpose. The

S

=i

A

Fig. 4 Selectively densified models obtained using the proposed approach for a sample of objects extracted from the dataset
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number of neurons is empirically determined. To perform the
training of this network, among the multiple copies of sim-
plified meshes within a given range of resolution, the one
that obtains the lowest error (i.e. lowest maximum distance)
within the range is chosen as a sample for training. The range
of resolutions is calculated by dividing the interval between
1500 faces and three-quarter of the number of faces in the
entire mesh in the desired number of copies of different reso-
lutions that one wants to obtain. When provided, at run-time,
with the mesh of an unknown object, the trained network
outputs the number of faces for each of the copies, from
coarse to detailed. The simplification algorithm with regions
of interest preservation is then applied to create the discrete
level-of-detail copies, constraining the simplification to the
identified number of faces.

4 Experimental results
To evaluate the proposed framework, the approach is tested

over all the objects from the dataset associated with the
benchmark for 3D interest point detection algorithms (http://

www.itl.nist.gov/iad/vug/sharp/benchmark/3DInterestPoint/).

This dataset is chosen as it allows a direct comparison of
the neural gas-based detection of regions of interest for the
same objects with other interest point detectors identified
in the benchmark, namely mesh saliency (MS) (Lee et al.
2005), salient points (SP) (Castellani et al. 2008), 3D-SIFT
(3DS) (Godil and Wagan 2011), 3D Harris (3DH) (Zhao
et al. 2012), scale-dependent corners (SDC) (Novatnack and
Nishino 2007) and HKS (Sun et al. 2009). Figures 3 and 4
illustrate samples of results over the dataset obtained with
the neural gas approach. Figure 3a—f illustrates the results
obtained when the number of faces is gradually increased,
starting from coarse to detailed, as a mesh with the detected
interest points marked in red and as a model containing the
error distribution and magnitude over the object surface. The
latter models show the errors in green (smaller error), yellow
(medium error) and red (large error), while the regions in
blue show a perfect match to the initial mesh. One can notice
that even at very low number of faces, such as in Fig. 3a,
the regions containing areas of interest (i.e. eyes, mouth) are
very well preserved. Figure 4 presents selectively densified
models, obtained using the proposed approach, for several
objects in the dataset, for a number of faces in the simplified
mesh equal to half of the number of faces in the initial mesh
and for a preserved neighborhood n = 3 around each interest
point.

In both of these figures, it can be noticed that the simplified
mesh has a higher density in the regions of interest.

Figure 5 compares the proposed approach with regions of
interest preservation (Fig. 5d and enlarged in Se) with the case
where the QSlim is not constrained in the regions of interest
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(Fig. 5b, ¢) for the same number of faces, that is 15,000 faces
in the simplified mesh. Because in general, objects in virtual
environments are presented as colored and textured meshes,
in Fig. 5f and 5g a comparison is illustrated between the
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Fig. 6 Comparison for the
same number of faces (half of
the initial model) of a standard
QSlim simplification with b the ,
proposed approach (color figure

online)

’

(a)

QSlim simplified mesh and the selectively densified mesh
using a dull gray material and Gouraud lighting.

Figure 5h-k compares the error distribution and magni-
tude for the two solutions. While the overall error is slightly
higher for the proposed method, as it can be observed by
comparing Fig. Sk with Fig. 5j, the error is not located in
the same regions. In particular, for the proposed solution, the
error is lower (i.e. more blue) in the areas of interest, namely
around the nose, the eyes and the mouth, as illustrated in Fig.
5i versus Fig. 5h.

Figure 6 illustrates the same comparison between the stan-
dard simplification and the proposed solution for a shiny
material. The fine details are more visible in Fig. 5g ver-
sus Fig. 5f and Fig. 6b (in particular the areas marked in
red) versus Fig. 6a that present the results obtained by the
proposed interest region preservation method.

The identification of interest points using neural gas takes
on average 10s for each 10,000 vertices of an initial model
for a Matlab platform, running on a Windows machine with
an Intel Pentium CPU at 4.5GHz and 2GB of RAM. An
additional 0.06s per each batch of 10,000 faces of the initial
model is required for the adapted QSlim algorithm. Figure 7
compares visually the simplified meshes for several interest
point detectors, namely SS (standard simplification without
region of interest preservation), MS, SP, 3DH, 3DS, SDC,
HKS, and the proposed solution using neural gas, NG, for a
neighborhood n = 3 and a number of faces in the simplified
mesh equal to half of the number of faces in the initial mesh.
It is worth mentioning that the series of objects presented in
the figure is selected such that the final shape of the object
remains undistorted.

To allow for a quantitative comparison of performance,
the simplified meshes obtained by the different interest point
detectors are evaluated using the error measures detailed
Sect. 3.4. To perform this comparison, the interest points pro-
vided in http://www.itl.nist.gov/iad/vug/sharp/benchmark/
3DInterestPoint/ for the interest point detection methods are
incorporated in the adapted QSlim algorithm in a similar
manner to the one proposed for our approach. The error mea-
sures are computed in each case with respect to the full size
mesh.

A slightly higher error is in general expected with the
preservation of regions of interest, because the triangles of
the mesh are redistributed to better cover these regions and

therefore resulting in a less detailed coverage of regions that
are less important, as explained above. As the error is calcu-
lated as an average over all triangles of the mesh, this fact
will lead to slightly higher errors for methods that include
region preservation with respect to a standard simplification
(SS).

Table 2 summarizes the number of interest points achieved
by each method, the average error measures computed over
the objects in the dataset and as well as the percentage of
distorted objects with respect to number of objects in the
dataset. The error measures are computed for a number of
faces equaling one-fourth (1/4), one-half (1/2), three-quarter
(3/4) and the entire (1) number of faces in the initial dataset,
respectively, and for a size of neighborhood, n = 3. It can be
noticed that interest point detectors such as SDC and MS
are the most affected by the distortion phenomenon, and
that the phenomenon is amplified with an increase in the
neighborhood size (decrease in the number of faces in the
simplified mesh). When an interest point detection method
returns many interest points, and therefore constrains a large
number of triangles to be fixed and not affected by the sim-
plification algorithm, the number of remaining triangles may
be not large enough to preserve the shape of the object in
the areas that are considered less important. The proposed
method, NG, is less affected by distortion when compared
with most of other interest point detectors. It is surpassed
only by the standard simplification (SS) and the HKS detec-
tor that returns a very low number of interest points. This
implies that the proposed method can overall achieve lower
resolution copies of a model and higher compression rates
than the other interest point detectors.

In order not to bias the reported error values, the dis-
torted objects are removed when computing the average error
reported in the table. The error value is therefore computed
as an average over all the objects in the database whose
simplified mesh is undistorted. The columns 3-5 of Table
2 display the average error measures over all objects, namely
the maximum, mean and variance, respectively. One can
notice however that the increase in error is not significant
for methods such as HKS and our solution, NG, with respect
to the standard simplification, SS. The redistribution process
will also lead in general to an increased error when a larger
number of points of interest are used. As one can notice
in the second column of Table 2, the proposed method, NG,
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h standard simplification (SS)
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Table 2 Number of interest points, error measures and distortion percentage

Method  No. of inter-  Average maximum Average mean error Average variance Percentage of dis-
est points error (e=%) (e™) (e™) torted objects (%)

1/4 12 34 1 74 12 34 1 /4 12 34 1 1/4 172 34 1
MS 203 112 62 39 25 11 68 39 24 16 97 58 35 80 238 7.1 0
SP 75 69 47 38 25 99 51 38 2 13 69 48 29 285 47 0 0
3DH 87 187 41 27 21 32 47 2.7 1.9 44 64 4 27 143 0 0 0
3DS 64 188 65 34 23 22 73 34 2 33 11 47 29 285 72 0 0
SDC 207 375 84 83 56 49 69 63 4 76 11 11 79 452 19 7.1 0
HKS 19 57 36 29 22 69 39 27 1.77 9 52 37 26 O 0 0 0
NG 74 80 40 29 23 10 45 30 19 20 62 39 28 7.1 0 0 0
SS N/A 59 38 29 23 64 39 26 17 85 5.1 36 26 0 0 0 0
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Fig. 8 Simplified mesh of 3500
faces for the ant model with a a
large number of interest points
(SDC), b an appropriate number
of interest points (NG), and ¢ a
small number of interest points
(HKS)

Average maximum error

MS SP 3DH  3DS  SDC  HKS NG S
Interest point detection methods

En=1 En=2 Wn=3 En=4

(a)

Percentage of distorted objects

MS N 3DH 3Ds sDC HKS NG ss
Interest point detection methods

Hn=1 En=2 En=3 En=4

(b)

Fig. 9 Impact of the neighborhood size: a maximum error and b percentage of distorted objects for different interest point detection methods

results in a number of interest points similar the one of the SP
method, with more interest points than HKS or 3DS method.
A certain correlation is also visible between the number of
interest points and the error measures in Table 2 in that a
larger number of points seem to lead to higher errors. The
fact that more points of interest do not lead to better results
is illustrated as well in Fig. 8 that compares a method that
obtains more points, namely SDC (Fig. 8a), with the pro-
posed NG approach (Fig. 8b).

Too many points lead to the creation of clusters of dense
triangles on the mesh, as those in Fig. 8a. When the number
of interest points decreases significantly, as for example in
the case of HKS method, the error is not following the drastic
decrease in the number of points. From a visual perspective,
as shown in Fig. 8c, too few interest points lead to a model
with less well-defined characteristics, and closer to uniform
simplification.

The error values also tend to increase with an increase
in the size of the neighborhood n impacted by the preser-
vation, due to the redistribution process. This is illustrated
in Fig. 9a for the 1- to 4-nearest neighborhoods, for a num-

ber of faces equal to three-quarter of the initial number of
faces in the mesh. Similar to the approach used in Table
2, the distorted objects are removed from the error calcu-
lations and their number is reported separately, in Fig. 9b.
The error is reported as an average of maximum errors
obtained over all the objects for a given interest point
detector.

In general, with coarser meshes, it is preferred to affect
smaller neighborhoods (n = 1 or2), while for higher detailed
meshes larger neighborhoods (n = 3 or 4) can be used.
In experimentation with different meshes made of up to
35,000 faces, generally a 3-neighborhood gave good results
for meshes larger than 5500 faces, a 2-neighboorhood for
meshes between 3500 and 5500 and 1-neighborhood for
those below 3500. Finally, following the process described
in Sect. 3.5 the multiple discrete LOD models can be
constructed according to the specific needs of an applica-
tion. An example is illustrated for the dog model in Fig.
Ic, showing that even the discrete copy of lowest reso-
lution maintains the interest regions that characterize the
object.
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5 Conclusions

This research article proposed the adaptation of QSlim to
only simplify the regions that do not contain points in the
n-nearest neighborhood of interest points detected using a
neural gas solution. The proposed solution is relatively fast
and obtains a good performance when compared to other
interest point detectors. It is further incorporated in a dis-
crete LOD scheme to be used in virtual reality applications,
where a neural network predicts the appropriate number of
faces to be used for each of the multiple copies at different
resolution. In future work, the proposed solution for interest
point detection will be incorporated in a hybrid discrete and
view-dependent LOD solution that will allow to adjust the
LOD not only according to the distance with respect to the
user, but also taking into account the user viewpoint.
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