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ABSTRACT  

Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to 
assist or automate decision-making processes.  Advancements in sensor technologies now make it possible to capture 
and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum.  Multispectral imaging has 
countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing 
and archeology.  The development of advanced algorithms to process and extract salient information from the imagery is 
a critical component of the overall system performance. 
 
The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual 
and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found 
objects in an office setting.  A multispectral dataset (visual and thermal) was captured and features from the visual and 
thermal images were extracted and used to train support vector machine (SVM) classifiers.  The SVM’s class prediction 
ability was evaluated separately on the visual, thermal and multispectral testing datasets.   
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1. INTRODUCTION  
A continuing challenge for computer and machine vision applications remains the recognition of objects of interest in 
real and complex scenes.  Object recognition can be accomplished with a certain level of accuracy by using image or 
template matching whereby several images of the objects are stored in memory and compared to the presented scene.  A 
correlation process is used to identify the object in the scene that appears most like the stored templates.  The correlation 
process is typically performed in the spatial (pixel) domain but can also be performed in the frequency domain.  One of 
the issues with template matching approaches is ensuring that the template or descriptor remains relatively accurate over 
time. As time unfolds, the object’s physical and visual properties can change and may no longer resemble the templates 
or the descriptors.  Conversely, the templates or descriptors may have been obtained under specific conditions that do 
not match the current scene.  

Alternatively, object recognition applications can be based on machine learning and artificial intelligence (AI) 
algorithms such as neural networks, decision trees, genetic algorithms, and support vector machines (SVM) to name a 
few.  These AI algorithms are trained (typically in an offline process) to recognize features that distinguish the true 
object from its surroundings.  These algorithms usually require a large dataset of imagery exposing the desired object 
under various viewing angles and conditions.  If the object is previously known and a suitable training dataset is 
available, this type of algorithm can generate high recognition probabilities.  However, as with the template matching 
algorithms, machine learning algorithms are likely to yield low success rate if the object is not previously known or if its 
appearance is different than in the training dataset. 

Object recognition and classification research found in the open literature generally use image datasets from a specific 
band of the Electromagnetic (EM) spectrum such as X-ray, ultraviolet (UV), visual (visible) or thermal (infrared, IR).  
Multispectral image analysis is typically used in military and surveillance applications. 

The following research investigates how features from visual and thermal imagery can be used jointly to improve the 
recognition rates of commonly found objects in an office setting.  Naturally, the choice of objects was limited to those 
that radiate thermal energy.  A multispectral dataset (visual and thermal) was captured and specific features were 
extracted to train several SVM classifiers.  The SVM’s class prediction abilities were evaluated separately on the visual, 
thermal and the multispectral dataset. Commonly used performance metrics were applied to assess the sensitivity, 
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specificity and accuracy of each classifier.  It was decided that the training and testing datasets would be captured using 
different environments in order to replicate real world scenarios where a machine vision application such as a mobile 
robot maybe trained to detect an object in an unknown environment. Potential applications for this research could 
include first responders and security forces. 

The remainder of this paper is organized as follows. Section 2 presents a brief review of related works in the field of 
image features detection, classification and performance metrics. Section 3 discusses the data collection process, the 
datasets used for the experiments and the image preprocessing. Section 4 presents the methodology which discusses the 
choice of features and classifiers used as part of the experiments. Section 5 presents the experimental process 
specifically developed to support this research. Section 6 discusses the evaluation procedures and experimental 
classification results obtained. Finally, Section 7 summarizes the experiments and suggests future work. 

2. LITERATURE REVIEW 
2.1 Image Features 

In computer vision applications, image features are properties of a scene or of a specific object within that scene that can 
be extracted to describe the entity.  A feature can be something as simple as an object’s size or its intensity and can be as 
detailed as its texture.  Features are typically regrouped into three categories; shape, color and texture.  A series of 
features used to describe a scene or an object is referred to as a feature vector or descriptor.   For example, a commonly 
used shape descriptor is the Hu Moments1 which is composed of a seven dimensional vector.  An example of a texture 
descriptor is the Legendre Moments2 which is extracted from a local binary pattern and is invariant to translation, scaling 
and uniform contrast changes. Feature vectors or descriptors such as Hu and Legendre moments can be used by a feature 
matching algorithm in conjunction with a correlation process or by a machine learning system to identify objects in a 
scene that closely resemble an object of interest.   

Many other object descriptors have been proposed such as SIFT3, Speeded Up Robust Features4 (SURF), Features from 
Accelerated Segment Test5 (FAST), Binary Robust Independent Elementary Features6 (BRIEF), Oriented FAST and 
Rotated BRIEF7 (ORB).  Others algorithms based on Mean-Shift8, Continuously Adaptive Mean-Shift9 (CAMSHIFT), 
covariance, Principal Component Analysis (PCA), and various edge/corner detection methods such as Canny10, Harris11, 
Sobel and SUSAN12 have been used to detect and track objects of interest.  In cases where feature extraction is used for 
tracking, these algorithms often work in conjunction with a variation of a Kalman or Particle filter to predict the size, 
position, velocity and acceleration of the targets.    

Cayouette, Labonté and Morin13 investigated the possibility of incorporating a Probabilistic Neural Network (PNN) in an 
Automatic Target Recognition (ATR) system for an imaging IR seeker emulator.  They conducted several tests by 
shuffling the training and validation datasets and achieved between 95% and 99.43% success rate in correctly identifying 
aircraft and flares.  The features they initially considered included intensity-based features (maximum intensity, average 
intensity, intensity variance, and intensity distribution) and shape-based features (area, coordinates of the centroid, 
perimeter, roundness, angle of the principal axis of minimum inertia, small principal moment of inertia, large principal 
moment of inertia, aspect ratio, maximum radial distance, minimum radial distance, average radial distance and radial 
distance).  From this list of intensity and shape features, they observed the discriminability between the two classes for 
each feature and selected 13 features. The 13 features were normalized to make them invariant to rotation and translation 
(see Section 4.1 for feature description).   

2.2 Classifiers 

A classifier is an implementation of a classification scheme whereby an algorithm is used to learn the characteristics of a 
class or a pattern from a training dataset and subsequently attempts to recognize the pattern in a separate testing dataset.  
There are several types of classification schemes or machine learning algorithms such as decision trees, neural networks, 
SVM, probabilistic methods, Nearest Neighbor, Hidden Markov Model, Bayesian and their variants.  A commonality 
between these machine learning algorithms is that they need to be trained prior to being capable of predicting class 
associations.  The learning is typically done in a supervised or unsupervised way.  Simply put, in supervised learning 
techniques, the class association or the class label is provided to the machine learning algorithm.  In unsupervised 
learning approaches, the class association is not provided and the classification algorithm must look for similarities in 
the dataset for class prediction.   Each method has its advantages over the other and ultimately the type of application 
and the available data greatly influence the method used for the training of the classification algorithm. 
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Among these multiple solutions, SVM were chosen in the context of this work because SVM have been used extensively 
in the literature for various types of statistical pattern recognition applications and demonstrated a high potential for this 
specific application.  SVMs are fast to train, can operate on linear and non-linear data in n-dimensional space, and are 
usually a top performer in statistical classification challenges. Duda14 described some of the early work on SVM 
published in the early to mid-90s which were based on previous work done on margin classifiers (linear machines with 
margins).  SVMs are categorized as linear discriminant classifiers and the general idea behind them is to map data 
patterns, which cannot be separated by a linear decision boundary, into a much higher dimension.  The transformation to 
the higher dimensional space is achieved through a non-linear mathematical transformation (also known as a kernel) 
where the input patterns can then be separated by a linear decision boundary or hyperplane.  The optimal hyperplane, in 
the new higher dimensional space, is determined by maximizing the margin (i.e. the separation distance) to the nearest 
training points.  These training points used to compute the margin are known as the support vectors.  A larger margin 
between the support vectors and the optimal hyperplane typically results in better generalization ability by the 
classifier14.  Duda also notes that the support vectors are the hardest to classify but most useful in the design of the 
classifier.   

There are numerous forms of kernels used to transform the feature space into a higher dimension and some of the typical 
ones include14 Linear Radial Basis Function, Polynomial, Radial Basis Function (RBF) and Sigmoid.  SVMs are, in their 
basic form, binary or two-category classifiers but can be extended to handle multi-category classification problems.  This 
is achieved by combining several binary classifiers15 (i.e. Class A and not-A, Class B and not-B, Class C and not-C) 
where the output of the binary classifier carrying the largest weight is selected as the predicted class. The drawback to 
this approach is that there may be ambiguous regions which cannot be assigned to one class. 

3. DATA COLLECTION AND DATASETS 
A review of the open literature did not find a suitable dataset for the purposes of this research.  The datasets found 
typically consisted of imagery from the visual or thermal bands of the EM spectrum but rarely from both.  In the rare 
datasets16 that did have both visual and thermal imagery of the same scene, the view point was very far away and made it 
very difficult to extract details from the potential objects.  In another case, the imagery contained only one class of 
objects which was again not suitable for the purpose of this research.  As a result, no suitable dataset was available and a 
custom set of matching visual and thermal imagery was captured. 

In defining the objectives of this research, it was decided that the imagery collected would be in an indoor setting to have 
better control on the environment. This requirement added additional challenges since only a limited class of objects 
actually radiate thermal energy.   

3.1 Camera Specifications and Image Analysis Software 

The image dataset was acquired using a Fluke Ti10 Thermal Imager.  The hand held camera encloses a visual and 
thermal detector which allows its user to acquire nearly co-located images of an object in both visual and thermal bands. 
The Ti10 allows the user to select one or more palette to display the apparent temperature of the scene in the camera’s 
field of view.  For the purpose of this project, the thermal image were mapped to a greyscale palette to facilitate 
comparison to greyscale visual images. 

The collected dataset consisted of common office items with a thermal signature.  Examples of these items include a 
recently charged mobile phone, a coffee cup with a hot beverage, a laptop charger, a desk lamp and a portable heater.  A 
sample of the five classes of objects is illustrated in Figure 1.   

Fluke’s SmartView 3.7.23 was used to analyse the imagery captured by the Ti10 thermal imager.  The image captured 
by the Ti10 camera was exported to the Fluke .ISO file format and using the SmartView software converted to visual 
and thermal (greyscale) bitmap images.   
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Figure 1. Examples of the five classes of objects used for this research 

 

3.2 Image Preprocessing 

The dataset consisted of a total of 173 image pairs captured using the Ti10 thermal imager and was divided into 44 
training image pairs and 129 testing image pairs.  All of the training images contained a single object class per image.  In 
the case of the testing dataset, several images contained multiple object classes in the same image.  This resulted in 44 
instances of objects used in the training dataset and 165 instances of objects for the testing dataset.  The breakdown of 
each class in the training and testing datasets is described in Table 1. 

Table 1. Dataset description 

Class Name 
# of occurrence in the 

dataset 
Training Testing 

1 Mobile Phone 7 (15.9 %) 23 (13.9%) 
2 Coffee Mug 9 (20.5%) 44 (26.7%) 
3 Laptop Charger 10 (22.7%) 28 (17.0%) 
4 Desk Lamp 9 (20.5%) 40 (24.2%) 
5 Portable Heater 9 (20.5%) 30 (18.2%) 
 Total 44 165 

 

The training images were captured using the same background for all objects at various viewing angles and distances to 
the camera.  Examples of the training dataset are illustrated in Figure 2 to Figure 6.  Each sample contains a visual band 
image (top) and a thermal band image (bottom).  

The training dataset was not used for testing of the classifiers. Similarly, the testing dataset was not used to train the 
classifiers.  To generate the testing dataset, the same five objects were positioned in different places within two different 
office spaces.  The class object imagery was captured at different distances, under different lighting and in many cases 
with several objects in the same scene.  In order to preserve the thermal signature of the coffee mug relatively constant in 
all of the testing dataset, the mug was refilled several times with boiling water.  Similarly, the cell phone was placed 
back on a wireless charger for several minutes and the portable heater was restarted for several minutes as well.   

In order to challenge the segmentation algorithms, the testing images were captured with the class objects positioned in 
typical office settings such as on bookshelves, on a work desk next to other objects of the same size and color as well as 
on a textured carpet.  Several testing dataset examples are illustrated in Figure 7 to Figure 11, including the visual band 
image (top) and the thermal band image (bottom). 
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Figure 2. Sample training dataset for Class 1 (Mobile Phone) 

 
Figure 3. Sample training dataset for Class 2 (Coffee Mug) 

 
Figure 4. Sample training dataset for Class 3 (Laptop Charger) 
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Figure 5. Sample training dataset for Class 4 (Desk Lamp) 

 
Figure 6. Sample training dataset for Class 5 (Portable Heater) 

 
Figure 7. Sample testing dataset for Class 1 (Mobile Phone) 
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Figure 8. Sample testing dataset for Class 2 (Coffee Mug) 

 
Figure 9. Sample testing dataset for Class 3 (Laptop Charger) 

 
Figure 10. Sample testing dataset for Class 4 (Desk Lamp) 
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Figure 11. Sample testing dataset for Class 5 (Portable Heater) 

4. METHODOLOGY 
This section provides a general overview of the methodology used to develop the necessary software tools to achieve the 
objectives of the research.  The principal workflow is illustrated in Figure 12 and consists of first segmenting the image 
to extract the objects of interest, extracting the desired features from the segmented images, finally training the SVM 
classifiers and evaluating their class predictability against the testing dataset.  Each of these main components of the 
research are discussed in the following subsections with the exception of the Segmentation component which is 
presented in a separate publication17. 

 
Figure 12. Principal workflow 

4.1 Image Features Selection 

As briefly described in Section 2.1, there are numerous types of features that can be extracted from visual and thermal 
imagery and are typically categorized by shape, color and texture.  For the purpose of this research, it was necessary to 
identify a set of features that could be extracted from both visual and thermal imagery.  Although beyond the scope of 
this research, the selected features should be easily and efficiently computed such that they could eventually be 
implemented in hardware for a real-time application.  The final consideration was the dimensionality of the feature 
vector as it would be used to train classifiers. 

It was decided to implement the features presented by Cayouette et al.13 primarily because the features had already been 
evaluated on thermal imagery and demonstrated great discriminability in the context of the application presented.  In the 
present work, the same features were evaluated on visual imagery as well as thermal imagery to demonstrate their 
discriminability capabilities.  The features are presented in Table 2. 

The list of features selected represent intensity and shape characteristics of the objects of interest.  They do not however 
represent any texture characteristics and this was intentional because of the low imagery quality produced by the Ti10 
camera.  In the visual dataset, many of the images were blurred and contained very few textured details.  In the thermal 
imagery, the low dynamic range of the sensor combined with highly radiating objects (such as the bulb of the desk lamp 
and the elements of the portable heater) resulted in localized pixel saturation in many images.  For these reasons, only 
intensity (both in the visual and thermal images) and shape features were retained.   
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Table 2. Features Description 

Feature 
Type Feature Formula 

Feature ID 

Visual 
Band 

Thermal 
Band 

Intensity 

Normalized Maximum Intensity 
Z

Zmax  1 14 

Normalized Average Intensity 
A
Z

 2 15 

Normalized Variance of the Intensity 
Distribution 2

2

A
Zμ  3 16 

Normalized Third Moment of the 
Intensity Distribution 3

3

A
Zμ  4 17 

Shape 

Normalized Square Root of the Minimum 
Moment of Inertia A

Imin  5 18 

Normalized Square Root of the Maximum 
Moment of Inertia A

Imax  6 19 

Normalized Maximum Radial Distance 
A

Dmax  7 20 

Normalized Minimum Radial Distance 
A

Dmin  8 21 

Normalized Average Radial Distance 
A

D
 9 22  

Normalized Second Moment of the 
Distance Distribution A

D
2μ

 10  23  

Angle of the Principal Axis of Minimum 
Inertia θ 11 24 

Aspect Ratio 
min

max

I
I

 12 25 

Roundness 
A

P
π4

2

 13 26 
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4.2 Classifier Selection 

The final component is the classifier selection and description.  As presented in Section 2.2, there are several types of 
classifiers that could be used for this application and as the “no free lunch” theorem suggests, no one classifier is above 
all in all cases.  The choice of the Support Vector Machine (SVM) was based on the availability and well documented 
open-source library LIBSVM18. SVM have been used extensively in the literature for various types of statistical pattern 
recognition applications and based on the authors’ previous experience with the library, demonstrated a high potential 
for this specific application.  SVMs are fast to train, can operate on linear and non-linear data in n-dimensional space, 
and are usually a top performer in statistical classification challenges.  Specifically for these experiments, several multi-
class SVM were used with the polynomial kernel.   

The open literature19 suggested that the classification results can be optimized by varying the cost and gamma 
parameters.  As part of the classifier application, a grid search was performed for each feature combination evaluated to 
optimize the classification results.  The cost parameter was evaluated between 2e-4 and 2e5 while the gamma parameter 
was evaluated between 2e-5 and 2e4.  The grid search initially consisted of 100 points and the SVM was trained and 
tested on each of the 100 grid points.  From these 100 results, the highest classification rate was identified along with the 
associated cost and gamma parameters.  An automated process refined the grid search until the best classification rate 
was achieved.  Generally, the optimum cost and gamma parameters for a specific feature combination were identified 
within 300 to 600 iterations.  Once the optimum classification rate was identified, the specific feature combination along 
with the classification rate, the cost and gamma parameters were stored in an output text file for post classification 
analysis.  The classification analysis results are presented in Section 6. 

5. EXPERIMENTS DESIGN 
For every training and testing image captured, the 13 features defined in Table 2 were extracted from the visual image 
and the same 13 features were extracted from the matching thermal image for a total of 26 features per object. Three 
separate experiments were conducted to determine if the proposed features were suitable for distinguishing between the 
five classes of objects selected. 

The first experiment was to determine the best classification rates using only the visual features, the second experiment 
was to determine the best classification rates using only the thermal features. The third experiment was to find a feature 
vector or descriptor combination from both the visual and thermal image pairs which would hopefully produce better 
results than the visual or thermal alone. 

For the first two experiments, the dimensionality of the feature vector could be up to 13 features.  However, it was 
decided to limit the number of features to five in order to reduce the possible number of combinations.  In the case of the 
third experiment, the dimensionality could be up to 26 features.  It was decided to limit the feature vector to a maximum 
of five visual features and five thermal features for a maximum of ten features, once again to limit the possible number 
of feature combinations. Lottery mathematics20 was used to determine the number of possible feature vector 
combinations for experiments 1 and 2.   

Assuming that the feature vector had k = 5 features with n unique possible values between 1 and 13, then the number of 
possible combinations (c) is defined as follows: 

( )!!
!),(

knk
nknc
−

=           (1) 

However, since the feature vector can have up to k = 5 unique features with values between 1 and 13, Equation 1 has to 
be evaluated for all possible values of k as follows: 

( )∑
= −

=
5

1 !!
!),(

k knk
nknc                             (2) 

Evaluating Equation 2 for n = 13 from k = 1 to 5 results in 2,379 possible combinations for the visual dataset and 2,379 
possible feature combinations for the thermal dataset. 
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For the third experiment, the goal was to identify a feature vector that included both visual features and thermal features.  
In this experiment, the feature vector had to include a minimum of two features (one from the visual image and one from 
the thermal image) but was limited to 10 features (5 from the visual and 5 from the thermal).  If there are 2,379 possible 
combinations in the visual dataset and the same number in the thermal dataset, the total possible combinations was 
determined by multiplying the possible combinations in the visual dataset (i.e. 2,379) by the possible combinations in the 
thermal dataset (i.e. 2,379) for a total possible combinations of 5,659,641. 

For the first two experiments, all 2,379 visual band and 2,379 thermal band possible feature combinations were 
evaluated.  In the case of the third experiment, all of the possible 5,659,641 feature combinations were evaluated. The 
feature combinations were evaluated by systematically combining the 2,379 visual features with the 2,379 thermal 
features, training, optimizing and testing the SVM classifier.  The 5,659,641 combinations were divided into 40 subsets 
which were evaluated in parallel over several days. The classification results and analysis are provided in Section 6. 

6. RESULTS AND ANALYSIS 
6.1 Individual Features 

One of the objectives of this research was to identify the optimum feature or features to maximize the classification 
results.  In this section, individual features were evaluated and the highest True Positive Rate (TPR) using a single 
feature in the visual band was 55.8% achieved using Feature 7 (Normalized Maximum Radial Distances).  In the thermal 
dataset, the highest TPR was 49.7% also using Feature 7. It is clear from these results that using only 1 feature is not 
sufficient and that several visual features or several thermal features or a combination of visual and thermal features are 
required to achieve classification improvement.  The following section presents the classification results achieved when 
combining several visual features to train the SVM classifier. 

6.2 Visual Band Features 

As discussed in Section 5, it was decided to limit the number of feature combinations in the visual band and thermal 
band to 5 features. Table 3 illustrates the 5 best feature combinations with the highest TPR using visual band features 
only.  Recall that the classification experiments were conducted on a testing dataset which contained images from all 5 
classes and was not used to train the SVM classifiers. The first column of Table 3 represents the overall ranking; the 
second column represents the TPR while the next five columns represent the feature combination used to achieve the 
TPR result. As illustrated in Table 3, the highest TPR achieved using up to 5 features in the visual band was 65.5%.  
This is a 9.7% improvement in comparison to the best of the individual features results (55.8%) reported in the previous 
section.  The highest TPR using a combination of visual band features was achieved with one intensity feature [2] and 4 
shape features [5 7 10 12].  Finally, it can be noted that no combination with less than 4 features appeared in the top 
classification results. 

Table 3. Visual band feature classification results 

Ranking TPR (%) Feature Combination 

1 65.5 [2 5 7 10 12] 

2 64.2 [2 5 6 7 10] 

3 63.6 [5 6 7 9 10] 

4 63.0 [7 8 10 12] 

5 62.4 [5 6 7 10] 

 

6.3 Thermal Band Features 

As discussed in Section 5, it was also decided to limit the number of feature combinations in the thermal band to 5 
features.  Table 4 illustrates the 5 best feature combinations with the highest TPR using thermal band features only.  As 
illustrated in Table 4, the highest TPR achieved using up to 5 features in the thermal band was 69.1%.   
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Ranking TPR (%) Feature Combinations 
1 69.1 [14 19 20 26] 
2 68.5 [14 16 20 26] 
3 68.5 [14 19 20 22 26] 
4 68.5 [14 15 20 22 26] 
5 68.5 [17 20 23 25 26]  

This is a 19.4% improvement in comparison to the best individual thermal band feature results (49.7%) reported in 
Section 6.1.  The TPR achieved using a combination of thermal band features only is better than the results achieved 
using a combination of visual band features only (65.5%) as reported in Section 6.2.  The highest TPR using a 
combination of thermal band features was achieved with 1 intensity feature [14] and 3 shape features [19 20 26].  It is 
worth noting that Feature 20 and Feature 7 are the same (Normalized Maximum Radial Distance) and are prominent 
features in both the visual and thermal bands.  Although the features are computed using the same mathematical formula 
in both bands, the extracted values are not necessarily the same since they may have different shapes in each bands.   

6.4 Combined Visual and Thermal Band Features 

In this section, the results of the third experiment conducted to determine if one or more combination(s) of visual and 
thermal band features could further improve the TPR achieved in the previous sections are reported and discussed.  In 
this experiment, the combination vectors contained between 2 (minimum of 1 from the visual band and 1 from the 
thermal band) and 10 features (maximum of 5 from the visual and 5 from the thermal bands).  As discussed in Section 5, 
a total of 5,569,641 feature combinations (composed of visual and thermal features) were evaluated to find the optimum 
combination to maximize the classification rates.  

Table 5 illustrates the 5 best evaluated combinations (using visual and thermal feature descriptors) with the highest TPR 
achieved of 71.5%.  This is a 21.8% improvement (71.5% vs. 49.7%) over the individual thermal band TPR, a 15.7% 
improvement (71.5% vs. 55.8%) over the individual visual band TPR, a 6% improvement (71.5% vs. 65.5%) over the 
visual band combination, and a 2.4% improvement (71.5% vs. 69.1%) over the thermal band combination results.  

Table 5. Combined visual and thermal band feature classification results 

Ranking TPR (%) Feature Combinations 
1 71.5 [2 4 6 14 19 20 22 26] 
2 70.9 [3 7 11 15 20 22 23 26] 
3 70.9 [3 7 14 15 20 22 26] 
4 70.3 [6 7 10 11 13 17 20 21 25 26] 
5 70.3 [2 3 4 6 14 20 22 25 26] 

 

In terms of feature descriptors, the feature combinations that achieved the highest classification rates were: 

Visual band only:   [2 5 7 10 12] (1 intensity feature, 4 shape features) 

Thermal band only:  [14 19 20 26] (1 intensity feature, 3 shape features) 

Combined visual-thermal:  [2 4 6 14 19 20 22 26] (3 visual band, 5 thermal band features) 

It was determined that the Normalized Maximum Radial Distance feature (Feature 7 in the visual band and Feature 20 in 
the thermal band) was the most prominent feature, and the feature that provided the most discriminability between the 
classes.  The Normalized Maximum Radial Distance feature was part of the best feature combination in the visual-only, 
in the thermal-only and combined visual-thermal classifiers.  Also worth noting that the Roundness feature (Feature 26) 
extracted from the thermal band appeared in 49 of the top 50 combined visual-thermal combinations. 

Table 4. Thermal band feature classification results 
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7. CONCLUSIONS AND FUTURE WORK 
The fundamental objective of this research was to investigate the potential offered by combining features from visual 
and thermal imagery to improve the recognition rates and accuracy of commonly found objects in an office setting.  The 
research demonstrated that the best results were achieved by the combined visual-thermal classifier which improved the 
overall True Positive Rate (TPR) of the system to 71.5%. This is an improvement of 6% and 2.4% respectively over the 
visual-only and thermal-only classifiers. 

The features selected for this work were not typical, or commonly used features such as SIFT, FAST, SURF, Hu or 
Hough Moments discussed in Section 2.1, but rather a unique set of features that were previously used in another 
classification study13 using thermal imagery only.  In Cayouette et al.’s study13, classification rates over 95% were 
achieved using only 2 classes of objects (aircraft and flare) that clearly differentiated from each other. A direct 
comparison between the results achieved in this study and those achieved by Cayouette et al. is difficult to make because 
in this study 5 different classes were used instead of 2, visual and thermal imagery were used instead of thermal only and 
much fewer training/testing samples were available (209 vs. 1264).   

It is possible that other feature descriptors (different features) could achieve better classification rates than the 
descriptors selected for this work. Furthermore, it was decided to limit the dimension of the descriptor length to 5 
features (up to 13 available) for the visual and thermal-only classifiers and to 10 features (up to 26 available) for the 
combined visual-thermal classifier.  It is possible that a feature descriptor with a dimension greater than 10 could provide 
better classification rates but would also increase computational time.   

In the early stages of the experimental design, it was decided that two separate datasets would be acquired; one to train 
the classifiers and one to test the classifiers. The training dataset was generated in a different environment setting than 
the testing dataset.  As described in Section 3, the training imagery was captured using a common background while the 
testing dataset was captured in much more complex backgrounds intended to create different levels of difficulty for the 
segmentation algorithm.  It is possible that if the training dataset had been captured in the same setting as the testing 
dataset, that the classifier might have achieved better classification rates (more similarities between the training and 
testing samples). In addition, the size of the training dataset was relatively small in comparison to the testing dataset.  
The results presented in this work were achieved using between 7 and 10 training samples per class.  It is possible that 
better classification rates could be achieved if more training samples were used. 

In many classification studies, a single large dataset is divided into a training and testing subset.  In these studies, the 
datasets are randomly divided and re-tested with new subsets each time to obtain an average classification rate using 
cross-validation techniques such as n-fold, hold-out and leave-one-out.  Various techniques of meta-learning such as 
Arcing, Bagging21 and Boosting22 can be used to further enhance the classification results by choosing an optimum 
subset to train the classifiers. It is possible that by combining cross-validation and boosting techniques, better 
classification rates could have been achieved. 

Finally, the image quality of the Ti10 camera was poor at best.  In many image pairs, the visual image was blurry and 
had low level of details. In the thermal samples, the small dynamic range of the sensor resulted in limited thermal details 
of the objects.  A better quality imager could very likely improve the classification results achieved in this study and 
could potentially allow for additional features based on object texture in both the visual and thermal bands to be used as 
part of the descriptor. 
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