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Abstract – The paper reviews measurement and neural networks
modeling techniques developed by the authors for the real-time
rendering of the geometry and elastic properties of 3D objects.

I. INTRODUCTION

Haptic perception is the result of a complex investigatory 
dexterous manipulation act involving two distinct sensing
components:  (i) cutaneous information from touch sensors 
which provide data about contact force, topology, texture, 
and temperature of the touched object-area, and (ii)
kinesthetic information about the positions and velocities of 
the kinematic structure of the hand [1].

Haptic and visual perception modalities complement each 
other [2], [3]. The resulting multi-sensor perception allows 
human operators to have a telepresence experience virtually 
identical with what they would have had while manipulating 
real physical objects.

The potential of the emergent haptic perception
technologies is significant for applications requiring object 
telemanipulation such as : (i) robot-assisted handling of
materials in industry, hazardous environments, high risk
security operations, or difficult to reach environments [4]-[9],
(ii) telelearning in hands-on virtual laboratory environments 
for science and arts [10], [11], and (iii) telemedicine and
medical training simulators [12], [13].

Many interactive applications cannot rely on synthetic
models, or simulations, of the manipulated objects and need 
models conformal to reality obtained from direct
measurements of physical objects. While there are many
industrial-strength techniques, using vision, laser scanners, 
etc., for the measurement of the 3D object shape, there are 
few available techniques for the acquisition of the cutaneous 
elastic properties of physical objects.

Multi-sensor fusion techniques are studied for the
integration of the 3D geometric shape model with the
measured elasticity characteristics into a composite geometric 
and haptic model which is a conformal representation of the 
haptic properties of a physical object.

As high rendering rates are essential for the quality of the 
high-fide lity virtual environments, high-speed hardware co-
processors have to be developed for the efficient storage,
model transformation, and real-time rendering of large
numbers of comp osite geometric and haptic object models 
evolving in the virtual operation theater.

Neural Networks (NN) which are able to learn nonlinear 
behaviors from a limited set of measurement data can provide 
efficient and compact multi-media object modeling solutions.
Due to their continuous, analog-like, memory behavior, NNs 
are able to provide instantaneously an estimation of the
output value for input values that were not part of the initial 
training set.  NNs consisting of a collection of simple neuron 
circuits provide the massive computational parallelism
allowing for high rendering rates of complex models [14].

The paper will review geometric and elasticity
measurement techniques as well as NN models developed by 
the authors for the real-time rendering of the geometry  and 
elastic properties of 3D objects  as part of an experimental 
distributed and interactive haptic virtual environment, Fig. 1,
which is currently under development in the DISCOVER Lab 
at the University of Ottawa. An impedance-reflecting virtual
operation theatre incorporates the composite geometric & 
haptic models  of the kinematic and dynamic interaction
behaviour of all manipulated objects, [8], [9]. The interactive
haptic virtual environment is designed to allow any user
USER(k)   from a distributed set of users, k=1,…NU, to
experience the haptic “hands-on feeling” while dexterously 
manipulating a  remote physical object via a robotic
telemanipulator ROBOT(k) (k=1,…NR) equipped with haptic 
and video sensors.

II. 3D GEOMETRIC SHAPE ACQUISITION

This section will review the structured light techniques
developed at the University of Ottawa for the recovery of the 
3D geometric shape of the object, [15]-[22].

Structured light is an efficient method for obtaining 3D 
scene information from a single 2D image by using a
specially designed light source to project sheets or beams of 
light with a known a priori spatial distribution onto the scene 
casting lines or points on objects [23]-[25]. A camera is used 
to visualize, from an angle, the structured light projection on 
the surface.  Recovery of the 3D coordinates of the points 
identified on the object's surface is based on the triangulation 
principle .

There are different patterns that can be used for structured 
light applications: (i) single point, (ii) single line, (iii) stripe 
pattern, and (iv) grid pattern.
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Figure 1. Distributed interactivehaptic virtual environment.

We have adopted the grid pattern as it combines the
advantages of both the simple point and the line pattern as 
sharp discontinuities may indicate jump boundaries at several 
object points. All the information needed for the
reconstruction of the 3D object shape can be recovered from
a single snapshot of the illuminated object surface, which has 
the advantage of accelerating the ranging process. 

The simultaneous generation of all grid nodes or lines may 
introduce ambiguity in the identification of individual nodes 
or lines projected on object surfaces resulting in the so called 
point identification problem similar to the correspondence
problem encountered in stereo vision. 

We were using pseudo-random encoded grid patterns,
which solve the point identification problem as they allow for 
an absolute identification of both grid coordinates, the line-
and column -index, of any grid node projected on an object's 
surface, Fig. 2.

We use either special geometric shapes , as illustrated in 
Fig. 3, or colours, as illustrated in Fig. 4 - or a combination of 
both - to mark the distinct pseudo-random symbols used to 
encode the projected structured light grid.
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Figure 2.  Point identification in grid encoded structured light.
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Figure 3. Image of a pseudo-random geometrically
 encoded grid projected on a cube, from [21].

Figure 4.  Image of a pseudo-random color
 encoded grid projected on a cube, from [19].

III. NEURAL NETWORK MODELLING OF 3D 
OBJECT SHAPES

This section will review the NN modeling techniques
developed by Cretu et al., [26], for real time rendering and
geometric transformations of the 3D object shapes .

Starting from a 3D point-cloud of the object’s shape, a NN
is used to provide a volumetric representation of the object. 

The surface of an object is described by a set of zeros in the 
output response of the network, while the interior or ext erior
of an object are mapped to a negative or positive value, 
respectively. The representation is continuous, compact, and 
accurate.  This modeling technique solves the problem of
large memory usage and rendering times of polygonal
models, the problem of the large memory for storage of
octrees, the incapability to specify a point on a surface of the 
implicit surfaces or the lack of representation of the object 
interior in the case of the constructive solid geometry (CSG)
models , and the problems in modeling minute details of
splines.

While providing a quite accurate model, with facilities to 
perform volumetric and implicit operations, the multi-layer
feed-forward neural network (MLFFNN) representation
implies a computationally expensive training phase and a
time investment for the generation of the modeled object. 

Among all NN architectures studied by Cretu et al., [26],
the neural gas network offers both a very good modeling
accuracy and a reduced computation cost.  Fig. 5 shows as an 
example the neural gas network model of a 3D human face 
defined by an initial cloud of 19,080 points. This neural gas 
network model is remarkably compact consisting of only
1,125 points. Its generation took only 42 minutes , which is 
much shorter than the 3.3 hours needed for training of a
MLFFNN model of the same face.

Figure 5.  Neural gas network model of a 3D human face, from [26].

IV. MEASURING THE ELASTIC PROPERTIES

This section will present a measurement system developed 
for the recovery of the strain-stress relation at different points 
on the surface of a 3D object, [27].

A robot manipulator equipped with a stylus style haptic
probe was used to measure the elastic properties of the object.
Once the probe touches the obje ct’s surface, the 3D
coordinates (xp, yp, zp) of the point of contact recovered from 
the robot’s kinematic transform function are used to index the 
registered elasticity characteristics. 
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Measuring the elastic properties of physical objects is a 
time consuming operation which requires moving the probe 
sequentially to touch one by one all the points of interest on 
the object surface and measuring the strain-stress relation on 
each point of contact. 

Figure 6.   Force-torque sensor measuring the interaction
 force and torque at the point of contact between

 the robot manipulated probing rod and the object.
In order to minimize the number of points that have to be 

probed on an object surface, Cretu and al., [28], proposed a 
non-uniform adaptive sampling algorithm based on a self-
organizing neural architecture to selectively collect data only 
on those points that are relevant for the characterization of the 
elastic behavior of a given object.

Starting from a 3D point-cloud of an a priori recovered 
geometric model of the object’s  shape, a neural gas network 
produces a compressed model of the object. During the
learning procedure, the model contracts asymptotically
towards the points in the input space, respecting their density
and thus taking the shape of the objects encoded in the point-
cloud. These modeling properties ensure that the density of 
the tactile probing points is higher in the regions with more 
pronounced variations in the geometric shape. The neural gas 
network architecture, its implementation and its use for
adaptive sampling are described in detail in [29].

The robot applies a continuously increasing force on the 
haptic probe which acts on the normal direction to the object 
surface in each of the points deemed of interest by the
adaptive sampling algorithm.

The elastic behaviour at any given point (xp, yp, zp) on the 
object surface is described by the Hooke’s law: 

where Ep is the modulus of elasticity , σp is the stress, and εp

is the strain on the normal direction. 

Figure 7.  Laser range-finder based recovery of the geometric profiles in an 
area around the contact point between the probing rod and the object.

A force/torque sensor in the robot’s wrist, Fig. 6, measures
the force components applied on the object and a laser range 
finder, Fig. 7, measures the deformation of the surface of the
object under the given force. The resulting mean value
profiles calculated over 100 scans, consisting each of 512
samples measured along the laser sweep line on the object’s 
surface, are then saved for each magnitude of normal force 
applied on the object and for each cluster of similar elasticity. 

V. NEURAL NETWORK MODELLING OF 3D OBJECT 
ELASTICITY

A NN modeling technique, Fig. 8, has recently been
proposed by Cretu et al., [27], to map elastic behavior from 
data collected using a joint sensing strategy, combining
tactile probing and range imaging.

For each cluster of similar elasticity, a MLFFNN with two 
input neurons (one for the position along the scanline, Y, and
one for the force, F), 25 hidden neurons and one output 
neuron (for the magnitude of the deformation, Z) is employed 
to learn the relation between the applied forces measured by 
the force-torque sensor and the corresponding geometric 
profiles measured by the range finder. One network is needed 
to model the elastic behavior of each cluster. Once trained, 
the NN takes as inputs the Y coordinate and the force F, and 
outputs the Z coordinate, as illustrated in Fig. 9 and Fig. 10.
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Figure 8. Neural network mapping and clustering of elastic behavior from tactile and range imaging data.

The feed-forward NNs were trained for 10000 epochs
using the Levenberg-Marquardt back-propagation algorithm
with a learning rate of 0.009. The whole set of measurement 
data had to be used for training in order to provide enough 
samples. For the semi-stiff material that was modelled, the 
mean square error reached is 3.50x10-7.

The resulting hapto-visual NN model allows not only to 
recover the elastic parameters in the sampled points but also 
provides an estimate on the elastic behavior on surrounding 
points that are not part of the selected sampling point set.

Figure 9.  Real and NN modeled (Y, Z) geometric profile of a semi-stiff
material (cardboard) pressed with a normal force F=0.37 N. The unit of 

measurement for both Y and Z axes is 0.1 mm. 

Figure 10 .  Real and NN modeled (Y, Z) geometric profile of a semi-stiff
material (cardboard) pressed with a normal force F= 2.65 N. The unit of 

measurement for both Y and Z axes is 0.1 mm.
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VI. CONCLUSIONS

This paper has reviewed NN modeling techniques
developed by the authors for the real-time rendering of the
geometry and elastic properties of 3D objects based on  real 
measurement data, not on simulations. 

Hardware NN architectures using stochastic data
representation developed at the University of Ottawa,  [30],
[31], are  currently used for the implementation of haptics
cards to complement the existing graphics cards for real-time
rendering of composite object models.
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