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Abstract—This paper discusses the design and implementation
of a framework that automatically extracts and monitors the shape
deformations of soft objects from a video sequence and maps
them with force measurements with the goal of providing the
necessary information to the controller of a robotic hand to ensure
safe model-based deformable object manipulation. Measurements
corresponding to the interaction force at the level of the fingertips
and to the position of the fingertips of a three-finger robotic hand
are associated with the contours of a deformed object tracked in
a series of images using neural-network approaches. The resulting
model captures the behavior of the object and is able to predict
its behavior for previously unseen interactions without any as-
sumption on the object’s material. The availability of such models
can contribute to the improvement of a robotic hand controller,
therefore allowing more accurate and stable grasp while providing
more elaborate manipulation capabilities for deformable objects.
Experiments performed for different objects, made of various
materials, reveal that the method accurately captures and predicts
the object’s shape deformation while the object is submitted to
external forces applied by the robot fingers. The proposed method
is also fast and insensitive to severe contour deformations, as well
as to smooth changes in lighting, contrast, and background.

Index Terms—Deformable object, neural networks, object de-
formation monitoring, object segmentation.

I. INTRODUCTION

S TUDIES have consistently shown that object grasping and
manipulation are fundamental capabilities of autonomous

robot systems. The current generation of assistive robotic arms
is equipped with grippers to perform grasping and manipulation
tasks. While grippers are very effective for grasping, they are
generally unable to manipulate objects [1]. To address this
issue, multifinger robotic hands have been developed that can
be used, similar to human hands, for exploring, restraining,
and/or manipulating objects with the aid of fingers. However,
the presence of multiple fingers increases significantly the
complexity of the information required in order to achieve safe
manipulation of objects. When a task is performed with a robot
hand, complete knowledge of the manipulated object, namely,
whether the object is rigid or deformable, its location in the en-
vironment, and the precise action to be performed, is required.
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While well-established procedures exist for the manipulation
of rigid objects, as well as several 1-D and 2-D solutions for
the manipulation of soft objects, very few researchers have
developed so far automated solutions for the modeling and
manipulation of 3-D deformable objects [2]. Because a large
part of the real-world objects are deformable, the automated
handling of such soft flexible objects is a challenging research
issue with potential use in several applications.

The technique proposed in this paper aims at providing the
necessary deformable object model (e.g., shape and elastic be-
havior) to a robotic hand involved in the dexterous manipulation
of the object in order to enable a stable grasp and a precise
manipulation capability without a priori knowledge on the ma-
terial of the object. The main goal of this research is therefore to
design and implement an automated framework that performs
the acquisition of data and the construction of 3-D deformable
object models as a result from the interaction with a robotic
hand. The work presented is a continuation of the research
that the authors pursued on the topic of rigid and deformable
object modeling [3]–[6] toward a more complete solution to
allow the stable grasp and manipulation of different deformable
objects using a seven-degree-of-freedom three-finger Barrett
robotic hand. In particular, this paper addresses the modeling
aspects that enhance the description of objects and provide
accurate estimates of the objects’ shape and elastic behavior
to the controller of the robotic hand. The proposed solution
has significant impact for medical robotics, for remote medical
examination of patients, and also for other applications such as
interactive virtual environments for training, robotic assembly,
and the computer game industry.

This paper is structured as follows. Section II describes the
proposed modeling framework, the experimental setup, and
the proposed methodology in light of the existing solutions
available in the literature. Section III presents the experimental
results, their evaluation for different testing scenarios, and
comparisons with classical solutions. Section IV derives the
conclusion and presents future research directions.

II. PROPOSED FRAMEWORK FOR OBJECT

SENSING AND MODELING

As the behavior of contact points is the only characteristic
that can be directly monitored by the fingers of a robot hand
for deformable objects, the measurement of the elastic behavior
of the manipulated material cannot rely solely on force and
torque sensors. Therefore, incorporating visual data is essential
in order to analyze the shape and deformation of the object
over its entire surface during the manipulation. The addition
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of visual data allows the extraction of relevant information over
the entire visible surface of the object and enables the robot to
strategically position the hand while adjusting the effort applied
on the contact points to ensure the stability and the integrity of
the object [2].

To capture the behavior of an object, its interaction with
a robot hand is observed by a camera. Neural-network ap-
proaches are used both to segment and monitor the deformation
of the object in an image sequence and to capture implicitly the
complex relationship between the deformation of the object’s
shape and the interaction parameters measured at the robotic
fingers. The deformation of the object can be represented by its
contour or by its contour augmented with a grid of lines printed
on the object surface to better describe the internal object
deformation. For segmentation and deformation monitoring,
unsupervised neural networks are used. The motivation for us-
ing unsupervised neural architectures is to ensure an automated
processing of the image sequences that is fast and insensitive to
smooth changes in lighting, contrast, and background and, most
importantly, to severe contour deformations. The proposed seg-
mentation procedure also leads to lower errors than a classical
segmentation method. The choice of an appropriate unsuper-
vised architecture for deformation monitoring enables the study
of the trajectory of every point on the contour of the object,
therefore simplifying and unifying the description of the con-
tour shape in all frames. This property usually requires sophisti-
cated feature descriptors with most known tracking algorithms.
On the other hand, a supervised architecture is chosen for cap-
turing the relationship between the interaction parameters at the
level of the robotic hand and the corresponding contours. This is
justified by the possibility to eliminate the requirement to know
a priori the elastic parameters of the object under study which
is provided by a supervised neural network. In this research,
most of the objects studied are made of soft highly deformable
material whose elastic behavior is impossible to be properly
described in terms of simple elastic parameters. The selected
architecture also ensures that the application can handle unseen
situations, therefore reliably providing critical information for
the controller of a robot hand to achieve accurate and stable
grasp and more elaborate manipulation capabilities.

A. Experimental Setup

The proposed setup is composed of a Barrett robotic hand
and a camera situated perpendicularly to the surface of an ob-
ject, as shown in Fig. 1. A Point Grey Research Flea 2 industrial
camera provides uncompressed video streams via a FireWire
connection, with a resolution up to 640 × 480 pixels. The hand
is positioned with the palm up in order to allow the observation
of the interaction by the camera without unnecessary occlu-
sions. Two interaction parameters are recorded at each finger.
The first one corresponds to the position of each fingertip. It
is represented by the number of pulses in the encoder that
reads the angle of the motor that drives the finger, and it is
equivalent to the Cartesian coordinates of the fingertip, using
the Barrett hand kinematic model. This measurement is referred
to as “position” measurement to simplify the explanations. The
second parameter is a measure of the interaction force applied

Fig. 1. Experimental setup (lateral and top views).

at each fingertip. It is obtained via strain gauges embedded in
each finger. It will be called hereon the “force” measurement
as the strain value can be converted into equivalent physical
force measurements, in kilograms or newtons, through proper
calibration. Additional details on the measurement procedure
and data collection are available in [6].

These interaction parameters are collected simultaneously
with an image sequence of the object’s shape deformation
as captured by the camera. Measurements are collected for
different forces applied on a set of test objects made from dif-
ferent materials. The force and position measurements are then
associated with the tracked contour of the object in the image
sequence using a feedforward neural-network architecture.

B. Deformable Object Segmentation and Tracking

Many approaches have been explored for both color im-
age segmentation and object tracking. Among them, neural-
network-based solutions have received considerable attention
because they are usually “more effective and efficient than
traditional ones” [7]. There are various neural-network-inspired
solutions proposed for the segmentation of objects in images.
One approach is to classify each image pixel into background
and object of interest (or foreground) using self-organizing
networks [8] or unsupervised competitive networks [9]. Other
approaches for object segmentation are based on color infor-
mation. A hierarchical two-stage self-organizing network is
employed in [10] to segment images based on color, where,
in the first stage, color image pixel values are grouped in an
unsupervised way to identify groups of typical colors and, in
the second stage, the dominant color is identified from each
group. In [11], the image segmentation procedure is based on
a self-organizing map with inputs representing the coordinates
of a pixel and its red–green–blue values. Dong and Xie [12]
perform color image segmentation based on a combination of
unsupervised and supervised techniques. These solutions are
limited because the network parameters (e.g., the network size)
are determined heuristically, the number of clusters in which
the image is divided is predefined, and it is not clear how to
select such parameters for a certain image.

After the segmentation of the object of interest, the aim of
an object tracker is to generate the trajectory of the object over
time by locating its position in every frame of the video [13].
Several neural-network solutions have been proposed for track-
ing of rigid objects in image sequences. In [14], each rigid ob-
ject in a scene is assigned to a neuron of a growing competitive
network, and neurons are added or deleted when new objects
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enter or exit the scene. In [15], a variation of growing neural gas
is employed to track simple circular computer-generated rigid
objects in video sequences. Rodriguez et al. [16] use the topol-
ogy of a growing neural gas network to determine the posture of
a hand in an image sequence and the adaptation dynamics of the
same neural network in time to determine the gesture performed
by the hand. In [17], contours of hands are described by an
active growing neural gas network. An unsupervised solution
based on a time-adaptive self-organizing map for tracking of
the outer boundary of the lips in an image sequence is proposed
in [18]. Apart from the last solution, all the other ones refer to
rigid objects and cannot be adapted to deformable objects.

In order to enable the automatic recuperation of elastic
parameters and the learning of elastic behavior of deformable
objects that would allow for their manipulation using robotic
hands, research can greatly benefit from the development of
automated segmentation and shape deformation monitoring
procedures for such nonrigid objects. It is important to mention
that several papers were published in the literature, of which a
few examples are [19]–[22], where the term “deformable object
tracking” is used to define the tracking of objects that change
appearance. These objects can take the shape of pedestrians
[19], [20], hockey players [21], faces, and cars [22] that are
tracked in video sequences mainly for surveillance applications.
In these papers, authors are interested in the motion of the
subject or object and less in the way its appearance or in the
way its shape changes. This fact is proven by the common
use of bounding boxes or circles around the tracked object. In
this context, the term “tracking” refers to motion tracking or
following of the object. The research topic addressed in this
work is a completely different one, in the sense that, while the
object moves under the interaction with the robot hand, it is
not its motion that is of interest but rather the way that the
object deforms under external forces and, therefore, how its
shape changes due to the interaction. This is the reason why the
term “shape deformation monitoring” is used in the context of
this paper instead of “deformable object tracking” to avoid the
confusion with the aforementioned literature. While there has
been a lot of work on “deformable object tracking” in the sense
of motion tracking, there are much fewer papers that address the
topic of highly deformable soft object deformation monitoring
[4], [23]. In [23], the shape of an object is represented by a
small subset of angles between the facets of a mesh, and a
set of potential shapes is built on these angles. A dimension-
ality reduction technique is then employed to produce low-
dimensional 3-D deformation models that can capture object
models from video sequences. The research work discussed in
this paper goes beyond monitoring and capturing the behavior
of a soft object by also addressing the learning of soft object
behavior from real data and its correlation to the action applied
on the object body.

Also, while addressing the problem of automatic deformable
object segmentation and monitoring in image sequences, the
proposed solution aims further than the classical segmenta-
tion/tracking solutions. The neural-network solution presented
not only segments and monitors but also models the elastic
behavior of an object. Such a description is useful to control
a robotic hand for the manipulation of deformable objects. It

TABLE I
PROPOSED SEGMENTATION AND MONITORING ALGORITHM

is important to mention that the experimentation takes place
in a relatively controlled environment. The accent is on a fast
algorithm that is insensitive to smooth changes in lighting,
contrast, and background. The solution does not have to deal
with multiple moving objects, as separate object models are
built for each object, and neither with severe changes in the
environment. Instead, the emphasis is put on accurately track-
ing and capturing severe object deformations. The proposed
approach builds on the solution introduced in [3] and [4]. In
the current work, an extensive evaluation with more testing
objects and scenarios and a thorough comparison with classi-
cal solutions of the segmentation and tracking algorithm are
performed. Moreover, additional data are brought in the model
to better describe the internal dynamics of deformation that
cannot be captured by the contour only. The shape deformation,
depicted by both contour and surface grid lines, is finally
integrated with the force and position measurements to a more
complete description that better supports the stable grasp and
manipulation of the modeled objects.

The segmentation and shape deformation monitoring algo-
rithm for the contour, illustrated in Table I, can be summarized
as follows. The object of interest is automatically segmented
from the initial frame of the sequence of images collected by
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the camera. The segmentation is treated as a clustering problem
based on color information (hue–saturation–value (HSV) color
components) and spatial features (X and Y coordinates of each
pixel). The HSV color space is chosen because it represents
better the color similarities and is able to more accurately
identify pixels on the same surface in spite of some differences
between their colors due to nonuniform illumination or shading
effects. An unsupervised ontogenic network, namely, growing
neural gas [24], is employed to cluster each pixel of the initial
frame. At that stage, an unsupervised architecture is preferred
to a supervised one because the latter requires a set of training
samples, which may not be available, particularly when the
image features are unknown or when a certain degree of au-
tomation is desired. Growing neural gas is a network that builds
by itself by incrementally adding node by node to a neural
map, thus eliminating the constraint imposed by the fixed map
size of standard unsupervised networks (e.g., self-organizing
maps). Moreover, the adaptation parameters of the network are
constant; therefore, the need for selecting them heuristically
is eliminated. The full mathematical formulation is presented
in [24]. In the context of this work, the growing neural gas
network receives as input a set of given HSV color-coded
pixels, together with their spatial coordinates (x, y) in an image.
The input vector is of the form P = {p1, . . . , pn}, with pi being
a 5-D vector defined as [Hi, Si, Vi,Xi, Yi], with i = 1, . . . , n,
where n represents the number of pixels in the image. The spa-
tial coordinates of the pixels in the image are used together with
the color information in order to improve the clustering results.

The addition of spatial information does not add to the com-
putational burden, as the computation time is not proportional
to the size of the input vectors but to the number of adaptation
steps. However, it is worth mentioning that, generally, the
clustering results depend more on the first components of the
input vector. The addition of too many dimensions in the input
vector will not bring improvements in the learning procedure;
on the contrary, it might lead to larger errors in the clusters.

The growing neural gas maps the P input on a smaller array
of nodes M of the same form as P, M = {m1, . . . ,mr}, with
mj = [Hj , Sj , Vj ,Xj , Yj ], with j = 1, . . . , r, with r < n. M
is structured in such a way that pixels with similar color and
position in P are projected to nearby nodes in M. Initially,
M is empty. Nodes are added into the network structure at the
position where the accumulated error is the highest and when
the number of iterations performed is an integer multiple of
a predefined value. The growth of the network is terminated
when a predefined stopping criterion is met (e.g., a minimum
error is reached). The clustering results obtained by the grow-
ing neural gas are then classified as one of two categories:
object of interest or background. M is therefore split into
two clusters, namely, foreground (object of interest) denoted
as Cf = {m1, . . . ,mrf}, where mf ∈ M with f = 1, . . . , rf ,
and background denoted as Cb = {m1, . . . ,mrb}, where mb ∈
M with b = 1, . . . , rb, and rb + rf = r. The distinction is
made based on the mean HSV value computed for the two clus-
ters and based on knowledge that, generally, the background is
darker in color than the object of interest. The latter assumption
is generally satisfied due to the controlled environment in which
the experiments are performed. If, however, this assumption

does not hold, a swap of the two clusters can be performed to
ensure that the algorithm maps the correct part of the image as
foreground. It is worth mentioning that the color segmentation
algorithm also works correctly to extract objects that do not
have a single color, provided that the background color is
different enough from the color of the object and that the colors
of the object are somewhat similar (within the threshold). If
the colors of an object are significantly different, the color
segmentation algorithm can be readily expanded to deal with
this situation by performing a multiple-class clustering (e.g., the
number of clusters equal to the number of colors) on the results
obtained by the growing neural gas instead of the proposed
binary foreground–background classification.

In order to identify the color of interest, which is the color of
the object to be segmented, the mean is computed for all HSV
values in the foreground cluster Cf , Oc = mean(Hk, Sk, Vk),
with k = 1, . . . , rf . The procedure is applied only on the first
frame in the sequence. The identified HSV color code Oc is then
searched in the initial image and over all images in the sequence
where movement occurs, and all pixels with this color code or a
very similar code are replaced with one and the rest are replaced
with zero in order to segment the object of interest in subse-
quent frames. The tolerance level allows for the fine tuning of
areas on the object surface with different lighting conditions
and around the object edges that are usually perceived darker
because of the shadow effect. A median filter is finally applied
on the result to reduce isolated patches of color. The contour
of the object is identified based on the filtered image with the
aid of the Sobel edge detector. In the case of objects made of
different colors, aside from the search of each color of interest,
an additional procedure is required to merge the areas of the
object prior to the application of the Sobel edge detector.

A second growing neural gas is employed here to represent
the position of each point over the contour Pc ={pc1, . . . , pcn},
with pci = [Xi, Yi], with i = 1, . . . , cn. The main purpose of
this second network is to detect a reduced number of points
(stored in MGNG) that accurately represent the geometry of
the contour. The adequate number of points is achieved due to
the inherent property of neural gas [25] and growing neural gas
networks [24] to find compact data representations based on
feature vectors while preserving the topology of the input space.
While one might argue that a standard uniform sampling could
be used instead, a uniform distribution of points would not
allow the monitoring of large local deformations, as not enough
points will be allocated locally to accurately capture severe lo-
cal deformation. By their nature, neural gas and growing neural
gas networks preserve the topology of the input space that they
are capturing, therefore coping with severe local deformations.
For the interested reader, a visual comparison of the differences
between uniform sampling, neural gas, and growing neural gas
distributions for point clouds is available in [26].

The compact growing neural gas description of the contour
is then used as an initial configuration for a sequence of neural
gas networks [25] that monitor the contour deformation in the
image sequence. Each neural gas network monitors the contour
of an object by predicting and readjusting the position of the
neurons to follow the contour. Similar to the second growing
neural gas described earlier, it receives as input vectors pci of
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the form [Xi, Yi], with i = 1, . . . , cn. It starts with an initial
configuration of nodes, which are, in this case, set to the initial
contour points obtained using the growing neural gas (from
MGNG). These nodes take the shape of the contour by moving
over the data space during adaptation. The main difference
between growing neural gas and neural gas is the fact that the
number of nodes in the output map MNG of the neural gas is
predefined. In this case, it is set equal to the number of points
in MGNG. As the optimum number of points to represent
the contour is known from the initial frame analyzed with the
growing neural gas, the proposed algorithm uses this number of
nodes to track the contour over the image sequence. A fixed-
size network with a predefined number of nodes ensures a
unified representation of the contour in all frames and makes
easier the study of the trajectory of specific points in the contour
as each point can be iteratively referred to its previous position.
Knowledge of these trajectories enables the description of the
deformation behavior under the forces exercised with the ro-
botic fingers. This representation provides, as it will be shown,
a solid basis for the anticipation (prediction) of the deformation
of the object under manipulation. As well, the capability of
the network to start with a set of predefined positions allows
the tracking algorithm to always continue from the shape of the
contour in the previous frame, therefore increasing the speed
of the training procedure given that the movement is, in most
cases, smooth from one frame to another.

The training of a neural gas network takes place only for
those frames in which a motion occurs with respect to the pre-
vious frame. At the time a new frame is presented to the
algorithm, an intensity difference is computed between the
gray-scale representation of the new frame and the previous
one with the purpose of identifying if motion occurred in the
scene. This motion can be either the result of the manipulation
of the object, which leads to its deformation, or the result of
some external factors, such as a change in the background. By
computing intensity differences between frames, the proposed
solution can handle smooth changes in the contrast and lighting
conditions. Moreover, due to the fact that the algorithm searches
for the color of interest in the frame each time a motion occurs,
the proposed solution can also handle a cluttered and/or moving
background as long as it does not interfere with the mean HSV
color of the object.

Each frame where motion occurs is transformed to HSV
color coding, and the object of interest and its contour are found
based on the mean HSV color as identified from the first frame.
A neural gas network initialized with the contour of the object
in the previous frame is used to predict the new position of its
neurons and to readjust them to fit the new contour. This new
contour will be used to initialize the next neural gas network
in the sequence when a new frame in which motion occurs
is presented again to the algorithm. The procedure is repeated
until the last frame of the sequence, as shown in Table I.

To further improve the description of the deformable object
shape, a grid of black straight lines can be printed on the object
surface to give a better image of the dynamics of deformation
without being restricted to the external contour of the object.
The points in the deformed grid are recuperated from each
image sequence where movement occurs at the same time as

the contour. Since the grid is known to be black within a
tolerance level, it can be identified following the proposed color
segmentation technique. In this case, the second growing neural
gas employed to represent the shape of the deformed object
will map not only the contour points Pc = {pc1, . . . , pcn}, with
pci = [Xi, Yi], with i = 1, . . . , cn, but also the grid line points
Pg = {pg1, . . . , pgn}, with pgi = [Xi, Yi], with i = 1, . . . , gn.
As a consequence, the sequence of neural gas networks will
monitor the evolution of the contour together with the grid
points Pc ∪ Pg. This sequence of neural gas networks will be
further on associated to the interaction parameters at the level of
the hand where the applied forces determined the corresponding
deformed contours.

In several manipulation tasks, the proposed algorithm will
allow the manipulation of a 3-D object using only the available
2-D data from the sequence of images. If a more complete
description of the object’s deformation is desired, video data
can be collected for different positions of the deformable ob-
jects from different sides. In this case, the proposed framework
is repeated for each point of view and integrated with the
interaction parameters. While being beyond the purpose of this
paper, if a complete 3-D object model is desired for complicated
manipulation tasks, the proposed method can be employed
without changes to monitor 3-D deformations of the object
surface as both neural gas and growing neural gas are multidi-
mensional networks. Instead of the grid of black lines imprinted
on the object surface, a calibrated stereoscopic camera system
can be employed for live acquisition of 3-D data on the surface
of the object and for real-time estimation of the surface shape
of the manipulated deformable object. Such a framework is
proposed in [6]. In this case, the second growing neural gas
employed to represent the shape of the deformed object will
map 3-D points Pd = {pd1, . . . , pdn}, with pdi = [Xi, Yi, Zi],
with i = 1, . . . , m, with m being the number of reconstructed
3-D points on the object surface that will be monitored using the
sequence of neural gas networks and further associated with the
interaction parameters.

C. Learning the Mapping of Object Deformation to
Force and Position Measurements

The topic of robotic grasping and manipulation of objects
has been widely discussed in the literature. Interested readers
can find a complete literature review on the topic in [2]. Among
the many solutions offered, neural networks have received
considerable interest due to their capability to learn the complex
functions that characterize the grasping and manipulation
operations [27]–[33] and/or to achieve real-time interaction
after training [32]. Pedreño-Molina et al. [27] integrate three
neural models to control the movement of an anthropomorphic
finger in a two-finger robotic manipulator with no dependence
on the nonlinear stiffness characteristic of objects, based on
tactile information from force sensors. A neural network is
used by Xia et al. [28] to approximate the dynamic system (the
set of contact forces such that the object is held at the desired
position and external forces are compensated) that describes
the grasping force-optimization problem of multifinger robotic
hands. To solve the same problem, Fok and Wang [29] use a
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primal-dual neural network based on a quadratic formulation
with linearized friction constraint. Valente et al. [30] propose a
neural-network-based system to determine the three contact po-
sitions out of a set of fixed points defining a 2-D object contour.
Howard and Bekey [31] represent the viscoelastic behavior of
a deformable object according to the Kelvin model and train a
neural network for extracting the minimum force required for
manipulating it. Chella et al. [32] use a neurogenetic approach
to the problem of three-finger grasp synthesis of planar objects
fitted with superellipses. A hierarchical self-organizing neural
network to select proper grasping points in 2-D is proposed by
Foresti and Pellegrino [33].

In the context of this paper, neural architectures are chosen
for reasons similar to those mentioned earlier, namely, their
capability to store (offline, in a compact manner) and predict
(online, in real time) the complex relationship between the
deformation of the object and the corresponding interaction
parameters at each finger. Unlike the other neural-network solu-
tions, the proposed approach neither makes any assumption on
the material of the object by imposing a certain representation
[31], [32] nor imposes certain dynamic models at the points of
contact [28], [29]. A feedforward neural network is employed to
map each contour in the sequence, as obtained in Section II-B,
with the interaction parameters that are the corresponding po-
sition of the fingers of the robotic hand and the corresponding
force measurement at each fingertip, as defined in Section II-A.
After training, the network is capable of predicting the behavior
of an object under manipulation in real time. By storing such
networks, a database of object models is built. Such models,
when used appropriately in the control loop of the robotic hand,
can support more accurate and stable grasp and more elaborate
manipulation capabilities for deformable objects. The network
defined to map contours with interaction parameters on a given
object has six input neurons associated with the interaction pa-
rameters, namely, the positions of the three fingers (P1, P2, P3)
and the force measurements at each fingertip (F1, F2, F3). A
number of 30 to 50 hidden neurons are generally used. This
number is adjusted such that it ensures a good compromise
between the training time and the accuracy of models. The
output vector is the set of coordinates defining the points on
the contour. Its size is double the number of points in the
contour (the number of points in MGNG), as it contains the
X and Y coordinates for each point in the contour. The only
preprocessing applied on the input is a normalization to the
[0 1] interval prior to training. In our experimentation, three-
quarters of the data available are used for training, and a quarter
are used for testing. The network for each object under study
is trained for 120 000 epochs using the batch version of the
scaled conjugate gradient backpropagation algorithm [33] with
the learning rate set to 0.1. Once trained, the network takes as
inputs the interaction parameters (P1, P2, P3, F1, F2, F3) and
outputs the corresponding object contour.

Similarly, the contour and the grid points can be mapped to
the corresponding set of interaction parameters with a feedfor-
ward neural-network architecture identical to the one described
earlier, i.e., with the same number of inputs, outputs, training
parameters, and learning algorithm. The only difference is
that the output vector will contain not only the X and Y

Fig. 2. Test objects: (a) Round foam ball, (b) oval rubber ball, (c) rectangular
green sponge, (d) rectangular orange sponge, (e) yellow sponge, and (f) long
blue sponge.

Fig. 3. (a) Distribution of HSV color values in the HSV color space for the
long blue sponge and (b) the corresponding growing neural gas map, with the
identified background shown in dots, the object marked by circles, and the mean
HSV color of the object marked by a large square.

coordinates for each point over the contour but also the X and
Y coordinates for each point recuperated from the grid printed
on the object. This model provides a comprehensive evaluation
of the object deformation over its entire surface, i.e., not only
around its contour where robot fingers are applying forces.

III. EXPERIMENTAL RESULTS

In order to validate the proposed modeling framework, sev-
eral tests were conducted on a set of deformable objects with
different shapes, colors, and elasticity characteristics, of which
a limited subset is shown in Fig. 2. The deformations of each
object as a result of the interaction with the robotic hand’s
fingers are recorded in a series of image sequences collected
with the vision system located perpendicularly over the object.
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Fig. 4. (a) Downsampled images of the round foam ball and the long blue sponge. Results obtained (b) when replacing the color of interest with one and the
background with zero, (c) when tolerance levels of 0.09 for H and S and 0.02 for V are accepted, and (d) after median filtering. (e) Contour detection with the
Sobel edge detector on the filtered image (with the contour displayed over the initial frame). (f) Growing neural gas model of the contour.

Each object is tracked in the image sequence using the algo-
rithm in Section II-B, and then, the contours, along with the
grid line markers if available on the object, are associated with
the position and force data, as defined in Section II-C.

A. Segmentation Results and Evaluation

The first steps for the proposed segmentation applied on the
initial frame in the case of the long blue sponge from Fig. 2(f)
are shown in Fig. 3. Fig. 3(a) shows the initial distribution
of HSV color values in the HSV color space, while Fig. 3(b)
shows the corresponding map M obtained when the color-
coded HSV values [in Fig. 3(a)] and the spatial coordinates of
the corresponding pixels are presented to a growing neural gas
network. In order to segment the object in a selected image, M
is split into two clusters.

Fig. 3(b) shows the foreground (denoted by circles) and back-
ground (denoted by dots) in the growing neural gas map M.
The color of interest, which is the color of the object to be
segmented, is selected to be the mean for all HSV values in
the foreground cluster. The mean HSV value (denoted as Oc in
Table I) is marked with a larger square in Fig. 3(b).

To visually evaluate the results, Fig. 4(a) shows the images
downsampled by 50% both for the round foam ball in Fig. 2(a),
whose resolution goes from 160 × 160 pixels to 80 × 80 pixels,
and for the long blue sponge in Fig. 2(f), whose resolution goes
from 260 × 150 pixels to 130 × 75 pixels. Pixel areas consid-
ered are limited to the region of interest in the original images.
The downsampling is performed to remove some unnecessary
information in the background and therefore reduce the time
required for the background/foreground classification.

Fig. 4(b) shows the results obtained by replacing the color
of interest with one (white) and the rest of the image with
zero (black) for the two objects. It can be observed that the
results are rough at this stage. Several parts of the objects
that are slightly darker due to nonuniform lighting conditions
and shadow effects are erroneously classified as background.
The inclusion of a tolerance brings an improvement in the
results obtained, as shown in Fig. 4(c). In general, tolerance
levels of less than 0.09 for H and S and less than 0.02 for
V are used. These values can be adjusted according to each
object. The role of this tolerance level is to compensate for
slight shading and color variations resulting from the lighting

TABLE II
COMPARISON WITH CLASSICAL COLOR-BASED SEGMENTATION

conditions and/or shadow effects. A median filter is applied
next to reduce isolated patches and smooth the edges. The
filtered images are shown in Fig. 4(d).

In order to show the benefit of using an unsupervised neural
network to segment an image, the proposed method is com-
pared at this stage for all the objects under study with a standard
color-based segmentation based on HSV color codes only.
The latter is based on mean HSV values computed in a user-
selected frame that samples the object color. To ensure a fair
basis of comparison, the ground truth is obtained by a manual
segmentation of the object of interest in a set of test frames.
The same tolerance level and median filtering are applied on the
ground-truth image, on the results obtained using the standard
color-based segmentation, and on the ones obtained using the
proposed solution. The average error rate is then computed for
both the proposed color-based segmentation and the classical
solution using the formula proposed in [34], against the ground-
truth segmented image

E =

f∑

i=1

N i
ow + N i

bw

N ∗ f
(1)

where N i
ow is the number of pixels that belong to the foreground

in the ground-truth image but are wrongly classified as back-
ground in the ith frame, N i

bw is the number of pixels that belong
to the background in the ground-truth image but are wrongly
classified as foreground in the ith frame, N is the total number
of pixels in a frame, and f is the number of frames in the image
sequence. The results are presented comparatively in Table II.
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Fig. 5. Examples of contour tracking for the objects under study.

Fig. 6. Trajectory of nodes between successive configurations for the long blue sponge and details of the enlarged trajectory.

It can be observed that, apart from the fact that the proposed
solution does not require the user to select an area of interest
that samples the object color, it also reaches slightly lower
errors (errHSV -NN) than the standard color-based segmen-
tation (errHSV ). The image obtained after median filtering
[Fig. 4(d)] is then used to detect the contour of the object
of interest, shown in Fig. 4(e), using the Sobel edge detector.
The growing neural gas model trained to capture the initial
contour, denoted as MGNG in Table I, is shown with red dots
in Fig. 4(f).

B. Deformation Monitoring Results and Evaluation

Starting from the growing neural gas model, a series of neural
gas networks is employed to monitor the deformation of the
contour of the object as it deforms due to the interactions
with the robotic hand. Each neural gas network starts with
the configuration of nodes from the previous frame in order to
minimize the movement of nodes during adaptation.

Figs. 5 and 6 show various frames extracted at different times
throughout the videos and the corresponding configuration of
points in MNG (shown with red dots) for each of the test
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Fig. 7. Comparison of series of neural gas networks with active contour models for the round foam ball.

Fig. 8. Comparison of series of neural gas networks with active contour models for the long blue sponge.

objects. It can be seen that the monitor follows accurately the
contour of each deformed object, a fact that is also demon-
strated by the low error achieved during tracking, as will be
illustrated in the next section. The results are robust against
smooth changes in lighting and background as it can be ob-
served when comparing the images for the orange ball between
columns 1 and 2 in Fig. 5 and for the blue sponge between
columns 5 and 6 in the same figure for different lighting
conditions. Fig. 6 shows parts of the complex trajectory that
the points in the contour of the long sponge follow during ma-
nipulation. The trajectory is marked with arrows for only a few
nodes in order not to overload the figure. It can be observed that,
due to the choice of a fixed number of nodes used in the neural
gas network and to the proposed learning mechanism, the nodes
in the contour retain their correspondence with specific points
throughout the deformation. This one-to-one correspondence of
the points in the trajectory helps to avoid their mismatch during
deformation and ensures a unified description of the contour
deformation throughout the frames. The same property ensures
also the monitoring of the lateral motion (along the sides of
the object) that occurs beyond the object’s compression, as it is
illustrated in the enlarged trajectories on the right side of Fig. 6.
Finally, the fact that each tracked point is uniquely paired with
a single well-defined correspondent in a successive contour
and further learned and predicted using a feedforward neural
network in Section III-E eliminates the need for implementing
specific procedures for data association. The elimination of
the need for techniques such as the nearest neighbor principle
or Kalman filters to predict the trajectory is another great
advantage of the proposed solution.

By imposing continuity in the displacement of shape points,
the proposed solution also brings an additional geometrical con-
straint over the object deformation. Given that contour tracking
is dedicated here to deformable objects, one cannot rely on
other information, such as shape constraints, for example, that
could be otherwise used as a basis for tracking. Finally, the
proposed solution for shape deformation monitoring provides
the basis for the estimation of the elastic behavior of an object
based on its contour deformation when submitted to external
forces at certain positions, which distinguishes it from classical
tracking algorithms.

C. Comparison of Tracking With Active Contour Models

In order to further evaluate the proposed method for moni-
toring the shape contour deformation, it is compared with an
active contour tracking method based on an improved version
of classical active contour models, namely, the active contours
without edges proposed by Chan and Vese [36].

The reason for choosing an improved active contour model
for comparison is twofold. First, in spite of the fact that active
contour models, also known as snakes, have been proposed
over a decade ago and initially not specifically proposed for the
tracking of deformable objects, they are considered to be one
of the standards for tracking deformable objects, as revealed
by the literature on the topic over the years up to now [20],
[37]–[41]. The second reason is that active contour models are
the closest in concept to the research proposed in this paper.
Similar to the proposed solution, active contour models are
proposed for a single image and applied sequentially for all
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the images in the sequences. The main idea for active contour
models is to evolve a curve, subject to constraints from a given
image, in order to detect objects in that image [36], similar to
the sequence of neural gas networks proposed in Section II-B
whose nodes evolve in time to track the object’s contour in the
image sequence. Unlike neural gas networks, active contour
models require an initialization curve around the object to be
detected. This curve moves for a predefined number of steps
toward its interior normal and stops on the boundary of the
object. Since, in the context of the current application, the
accent is on developing automated solutions, the initial contour
for the active contour model in the initial frame of the sequence
is automatically set to the same size as the input image (minus
a 5-pixel frame around), as shown in Figs. 7(a) and 8(a) for the
ball and the long sponge, respectively.

The active contour modeling, particularly the improved ac-
tive contour model without edges proposed in [36] that incorpo-
rates techniques of curve evolution, Mumford–Shah functionals
for segmentation, and level sets, is applied on the presegmented
image, at the same stage as the sequence of neural gas networks
in the proposed solution. There are two reasons for this. First,
in this way, a common basis for comparison is ensured. The
second reason is the incapability of the active contour model to
capture the object alone in the color image. The segmentation
obtained with the active contour model is correct, but it also
contains the cables and the robotic fingers present around
the ball. The algorithms are tested on the Matlab platform
running on a Pentium 1.3-GHz machine with 512-MB memory.
Figs. 7(a) and 8(a) show that, for the two examples presented,
the time required by the active contour model to capture the
shape of the object in the initial frame of the sequence (denoted
as timeACM ) is significantly larger than the one required by
the neural gas (denoted as timeNG). This very large difference
characterizes only the first frame. At the same time, the errors
achieved by the two methods on this frame, errACM and
errNG, respectively, are very similar. The error is computed as
the Hausdorff distance between each of the contours obtained
by the two methods (CNG and CACM, respectively) and the
contour of the object obtained by manual segmentation of the
object in the input image (Cm)

H(Cm, CNG/ACM)

= max
(
h(Cm, CNG/ACM), h(CNG/ACM, Cm)

)
(2)

where

h(Cm, CNG/ACM) = max
a∈Cm

min
b∈CNG/ACM

‖a − b‖ (3)

and ‖ · ‖ denotes the Euclidean distance. In a similar manner
to the proposed solution in Section II-B, each time a new
frame is presented, the contour obtained in the previous step
is used as the current initialization contour for the new active
contour model, as shown in Figs. 7(b) and (c) and 8(b) and (c),
respectively. This initialization reduces the time required by the
active contour model for the subsequent frames in the sequence.
Nevertheless, the computing time for the active contour model
is generally higher than the one required by the neural gas, as

TABLE III
AVERAGE TIME (PER FRAME IN SECONDS)
AND AVERAGE ERROR FOR MONITORING

it can be observed in Figs. 7(b) and 8(b), Figs. 7(c) and 8(c),
and Table III that displays the average computing time and the
average error for all the objects under study. The average time
and error include the initial frame, but as the average length
of videos is 900–1500 frames, the weight of this first frame
is low. The overall error achieved by our method is similar,
as it can be observed in Figs. 7(b) and (c) and 8(b) and (c)
and Table III. The error is higher for both methods for the
round ball when compared to the other objects due to the severe
deformations and also due to the fact that the ball rolls in the
hand during probing. The probing for this object occurs by
repetitively contracting and relaxing the grip of the hand, but
the movement of the three fingers is not synchronized, while
for all the other objects, the contracting and relaxing occur
simultaneously at the three fingers.

In general, the time is higher for the active contour model in
those situations where the object moves under the interaction
with the fingers during probing (e.g., the round ball in Fig. 7(b)
rolls over the palm of the robotic hand) and when the object
undergoes large deformations with respect to the previous
frame [e.g., the long sponge in Fig. 8(b)]. The video sequences
are made up of a large number of severe deformations, and
this justifies the significantly longer time for the active contour
model. When only small and smooth deformations occur from
one frame to the other as those shown in Figs. 7(c) and 8(c), the
times are almost equal for both methods. These observations
lead to the conclusion that the proposed solution for deforma-
tion monitoring is faster than active contour models for severe
deformations. It also offers a higher degree of automation due
to the insensitivity to initial conditions, unlike the initialization
curve that is required for active contour models, and to the
parameter setting, unlike the preset number of iteration steps
for active contour models.

D. Grid and Contour Tracking Results

To further improve the description of the deformable object
shape over its entire surface, a grid of black straight lines
is printed on some objects’ surface, as shown in Fig. 2(c)
and (d). Given that the grid has a defined color (within a
tolerance level), it can be recuperated from the initial image
in the sequence following the color segmentation algorithm
detailed in Section II-B. Fig. 9(b) shows the grid points and
the contour that are simultaneously recuperated for the orange
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Fig. 9. Contour and grid point tracking for the orange sponge: (a) Initial frame, (b) grid and contour points, (c) initial growing neural gas, (d)–(f) tracking using
a sequence of neural gas networks, and (g) trajectory of tracked points and detail of the one-to-one correspondence of tracked points.

Fig. 10. Contour and grid point tracking for the rectangular green sponge.

rectangular sponge shown in Fig. 9(a). It can be observed that
the grid points are fairly well but not fully recuperated due to the
change in the color of the grid that occurs during the interaction
with the object. As the object’s deformation is stronger, the
number of lost points in the grid is larger, but nevertheless, the
presence of grid points helps to better understand the internal
deformation of the object that cannot be captured by tracking
the contour only. Starting from a growing neural gas model that
maps the contour points along with the grid points as shown
in Fig. 9(c), a series of neural gas networks tracks the shape
deformation that results on the object due to the interaction
with the robotic hand. Several frames illustrating these neural
gas networks (the points in MNG are shown with white dots)
are shown in Fig. 9(d)–(f). In this case, as for contour tracking,
there is a one-to-one correspondence between the points, as
shown in Fig. 9(g), in spite of a larger number of points tracked.

To demonstrate the robustness of the approach, an additional
example of tracking of the contour together with the grid lines
is shown in Fig. 10, where stronger deformations occur on the
narrow side of the object. It can be observed by comparing
these frames with the last two columns in Fig. 5 that the
presence of grid points aside from the contour gives a better
image of the dynamics of shape deformation. The contour, as
obtained in Section III-B, or the contour together with the grid
points, as obtained earlier, is further associated to force and
position measurements to capture the object model in terms of
its deformation behavior.

E. Evaluation of Learning and Prediction of Deformation

A feedforward neural network is used to store implicitly
the behavior of an object under manipulation by mapping
contours to the finger positions and force measurements at
fingertips. Finally, an estimated deformed contour for a set
Pi1, Pi2, Pi3, Fi1, Fi2, Fi3 of interaction parameters that were
not part of neither the training set nor the testing set is pre-
sented in order to test the prediction capability of the net-
work. The latter are marked with black stars and denoted as
“est.” in the legend. In this case, the network has 30 hidden
nodes and 110 units at the output and is trained for 200 000
epochs. The learning error is, on average, of order 5 × 10−5.
The error on the testing set is slightly higher. This is shown
by the dots representing real data being slightly off centered
in the circle representing modeled data in the right side of
Fig. 11. However, overall, the error remains low (on average,
of order 3 × 10−3).

To show the prediction capability in the testing scenario,
the finger positions are kept almost at the same position, but
the force at the first finger (F1 = 220) is increased from the
value in the magenta dot contour (F1_magenta = 204), while
it is kept below the value in the cyan curve (F1_cyan = 228).
The estimated profile depicted with black stars is placed, as
expected, in between the magenta and cyan contours but closer
to the cyan one to which the force value is closer. Similar results
were obtained for different testing scenarios and for objects
made of different materials. The network was able to provide
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Fig. 11. Real, modeled, and estimated contour points for the ball.

Fig. 12. (Dots) Real contour and grid data recuperated from the image sequence and (stars) estimated shape deformation when compressing the green sponge.

accurate estimates for data that were not part of the training or
testing sets.

Similarly, a feedforward neural network is used to store im-
plicitly the shape deformation of an object under manipulation
by mapping contours together with the grid points to the finger
positions and force measurements at fingertips. This case is
exemplified for the green sponge in Fig. 2(c) and detailed in
Fig. 12. To test the prediction capability, the network is tested
for a simulated force at finger 3 (F3 = 162) that is higher than
the value of the measured force (F3_green = 160) applied when
the object takes the shape shown with green dots but lower
than the measured one applied when the object deformation is
illustrated with red dots (F3_red = 171). The positions of the
fingers are kept almost unchanged, and so are the forces applied
at the other fingers, as shown in the legend. The estimation is
shown in black stars, while depicted in green and red are the
contours and grid points recuperated from the image sequence.
It can be seen that the estimated shape, while not perfect,
is close to what one would expect—namely, passing slightly
below the green contour and closer to it as the value of the
force is closer but above the red one around finger 3. The
placement around the other two fingers is correct as well, and
therefore, the network is able to provide estimates of the shape
deformation of the object under previously unseen parameter
configurations.

IV. CONCLUSION

This paper has demonstrated the benefits of using neural-
network approaches for deformable object segmentation and
monitoring in image sequences on one side and for modeling
and predicting the behavior of soft deformable objects manipu-
lated by a robotic hand on the other side.

The proposed combination of neural networks for segmen-
tation and deformation monitoring runs fast, is robust, and
eliminates the constraints of standard unsupervised networks
and of active contour models with respect to the choice of
parameters and the predetermined size of the network. The
segmentation solution obtains lower errors than the classical
color-based segmentation solution, and the tracking solution is
faster than active contour models. It can be easily adapted to
track grid points printed on a deformable object for a better
description of the internal deformation of an object. The neural
approach used for the modeling and prediction of deformation
shapes based on force measurements and the positions of the
fingers, when integrated with the control algorithms, can allow
for more accurate and stable grasp and for more elaborate
manipulation capabilities on deformable objects.

As future work, additional parameters of interaction will be
collected at the level of the robot fingers for a more complete
description of the interaction. The study will be expanded for
different orientations of the robot fingers for a more extensive
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description of the interaction and for objects with a broader
range of elastic properties. Data collection will be performed
for different situations, including those that lead to slippages
or drops of the objects. An extensive study of the resulting
data will be performed to allow for the characterization of
the manipulation parameters for specific objects, materials,
and grasping points and to identify configurations that ensure
stable grasps and correct manipulation techniques. As well,
additional experiments will be performed on higher density of
data obtained from the stereoscopic vision system to achieve
full 3-D surface shape estimation.
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