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Abstract—Simultaneous acquisition of depth and texture 
information, such as that provided by RGB-D sensors, finds an 
ever increasing number of applications, including objects 
modeling, human-machine interfaces, and robot navigation. One 
of the challenges resulting from the use of densely populated 3D 
datasets originates from the massive acquisition, management 
and processing of the data generated. This reality often preempts 
full usage of the information available for autonomous systems to 
make educated decisions. Current methods for reducing dataset’s 
dimension remain independent from the content of the model and 
therefore do not optimize the balance between the richness of the 
measurements and their compression. This paper presents two 
computational methods to selectively drive the selection of depth 
measurements over the most significant regions of a scene, 
characterized by their 3D features distribution, while capitalizing 
on the knowledge readily available in previously acquired depth 
data. One of the methods builds on self-organizing neural 
networks, namely neural gas, while the second one computes an 
empirical improvement metric. Both techniques are adapted to 
automatically establish which subset of depth measurements 
within a range sensor’s field of view contribute most to the 
representation of the scene, and therefore streamline the depth 
measurements acquisition process.  

Index Terms—3D imaging, depth measurement, selective 
sensing, computational intelligence, neural gas, machine 
perception. 

I.  INTRODUCTION 
The ever increasing 3D acquisition capabilities of vision 

sensors now provide advanced possibilities to generate 
textured 3D models of an environment or specific objects. 
However, a large fraction of the data acquired by sensors such 
as RGB-D cameras, laser range finders, LIDARs or stereo-
cameras contain substantial correlation, which leads to 
redundant information, large model size, lengthy acquisition, 
and heavy data processing. Reducing the complexity of such 
datasets proves essential for autonomous machines to perform 
subsequent decisions on the resulting data at a reasonable 
computational cost. Current solutions for dimensionality 
reduction in range data rely either on predefined pattern-based 
or random subsampling, where user provided input is expected 
as to the desired density and regularity of sampling, or the 
minimum distance between samples. This proves difficult as 
the user is not always aware of the appropriate level of 
accuracy required for a given model to be further processed 
adequately, which leads to a lengthy trial-and-error process.  

However, a reduction of the redundancy in the data, 
immediately upon acquisition, can be also accomplished by 
initiating the acquisition with only a coarse collection of depth 
measurements, and then selecting regions of interest, 
characterized by rich depth features, to focus on for further 
refinement. In order to perform such selective sensing, regions 
of similar stochastic properties and continuity must be 
separated from each other in order to determine what areas 
need to be enhanced in the model. This research focuses on the 
design of innovative approaches to achieve automatic 
selection of regions of observation for range and RGB-D 
sensors. Identified regions guide a sensor to collect only the 
most relevant measurements, without human guidance, 
expedite the acquisition process, and prevent a data avalanche. 

Two original and different computational methods for 
automated selective depth acquisition procedures are detailed 
and experimentally evaluated. Both methods begin with an 
initial sparse and rapidly acquired subset on 3D points over the 
surface of a scene. In the first method, the regression process 
of a neural gas network in the training phase is used to 
adaptively identify areas of interest for further scanning in 
order to improve the accuracy of the model with only a 
reduced number of depth measurements. In the second 
method, a formal improvement metric, which expands on the 
classical interpolation technique of ordinary Kriging [1], is 
applied to automatically establish which regions within the 
field of view of a depth camera would provide the most 
improvement to a model of the scene if further acquisitions 
were concentrated in priority over those regions. Both 
methods are evaluated on datasets acquired with the popular 
Kinect multi-modal imaging sensor, but are designed to be 
inherently independent of the depth sensing technology used. 

II. LITERATURE REVIEW 
Various sampling policies have been exploited in the 

literature in relation with 3D point clouds [2, 3, 4]. Uniform 
sampling favors a sample distribution where the probability of 
a surface point to be sampled is equal for all. In random 
sampling, each point over an object has an equal chance of 
being selected, but only a lower number of points are 
collected. As the percentage of sampled points increases, the 
cost gets higher and eventually reaches that of uniform 
sampling. Stratified sampling subdivides the sampling domain 
into non-overlapping partitions and generates evenly spaced 
samples by sampling independently from each partition. 
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Alternatively, Kalaiah and Varshney [5] propose a scheme to 
compactly decimate and represent point clouds using Principal 
Component Analysis (PCA). Coherent regions exhibit similar 
PCA parameters (orientation, frame, mean, variance) and can 
therefore be classified using clustering and quantization. These 
methods are not meant to be part of the actual sampling 
procedure, but rather post-process already collected data.  

Pai et al. [6, 7] merge the sampling procedure into the 
measurement process, for modeling deformable objects. The 
probing procedure considers a known mesh of the object along 
with parameters such as the maximum force on the object, the 
maximum probing depth and the number of steps for 
measuring the deformation. An algorithm generates the next 
position and orientation for the probe based on the 
specifications and the object mesh. However, the procedure is 
not selective and reaches similar complexity as collecting data 
for all points over the mesh. Shih et al. [8] develop different 
techniques to guide a non-uniform data acquisition process 
based on a hierarchal tree representation, with error between 
actual values at leaf nodes and estimated values at those points 
calculated from the next layer up being used to determine if 
new points within each sub-division are worthwhile to acquire. 
The resulting point locations correspond to an optimal 
scanning pattern for that particular object.  

In a different perspective, numerous publications 
addressed the next best view (NBV) problem which consists 
of dynamically defining a configuration where a sensor should 
be placed to maximize the coverage and quality of the model 
of a scene, while minimizing the amount of separate 
acquisitions.  Connolly [9] proposes a method based on 
octrees generated from multiple views to determine optimal 
viewing vectors from the current knowledge of the scene. 
Several researchers also investigated active view selection [10, 
11]. Morooka et al. [12] define a discretized shell around a 
region to limit the number of possible viewing vectors and 
optimize the entire process. Mackinnon et al. [13] rely on 
several additional fields of data provided by a laser range 
sensor to derive quality metrics for each acquisition point in 
order to drive the NBV process and optimize the quality of the 
overall model. 

Other research analyzed optimal fixed scanning patterns for 
specific scenarios.  Ho and Saripalli [14] investigate scanning 
patterns for autonomous underwater vehicles (AUV) which 
attempt to maximize coverage and quality, while minimizing 
energy use from the AUV propulsion system.  English et al. 
[15] use a Lissajous, a rosette, and a spiral scanning pattern, 
along with an adaptive algorithm to swap between them 
depending on the characteristics and objects detected in the 
scene, with the goal of optimizing the estimation of position 
and orientation for automated space docking operations. 

III. MEASUREMENTS SELECTION WITH NEURAL GAS 
An adaptive computational approach for intelligent depth 

data acquisition is developed to support active machine 
perception. The proposed automated selective scanning scheme 
builds upon a self-organizing neural network to select regions 
of interest for further refinement. The use of a self-organizing 

architecture is justified by its ability to quantize the given input 
space into clusters of points with similar properties, leading to 
an efficient way to compress data. The neural gas network is 
selected over other self-organizing architectures due to its 
capability to capture fine details, unlike others that tend to 
smooth them. The neural gas algorithm can be described as 
follows [16]: A set S of network nodes is initialized to contain 
N units ci with the corresponding reference vectors ��� � �� 
(each unit c has an associated n-dimensional reference vector 
that indicates its position in the input space) chosen randomly 
according to a probability density function p(x) or from a set � 	 
��
 ��
 � 
 ������ � ���. The winning neuron, namely 
the one that best matches an input vector x is identified using 
the minimum Euclidean distance criterion:  

���� 	 �����������  ��� (1) 
where ||.|| denotes the Euclidean vector norm. The neurons to 
be adapted during the learning procedure are selected according 
to their rank in an ordered list of distances between their 
weights and the input vector. When a new input vector x is 
presented to the network, a neighborhood ranking indices list is 
built (j0, …, j N-1), where �!" is the weight of the closest neuron 
to x,  �!#the weight of the second-closest neuron, and �!$ is the 
reference vector such that k vectors ��  exist with: ��  ��� %&�  �!$&. The weights of the neurons to be updated are 
calculated as follows: 

�!�' ( )� 	 �!�'� ( *�'�+, -.!/�
 �!01 2��'�  �!�'�3 (2) 

where *�'�∈[0, 1] describes the overall extent of the 
modification, and +, is 1 for .!��
 �!�= 0 and decays to zero for 
higher values according to: 

+, -.!/�
 �!01 	 4�5/ .!/�
�!067�'�0 (3) 

where .!��
 �!� is a function that represents the ranking of each 
weight vector �! . If j is the closest to input x then k = 0, for 
the second closest k = 1 and so on. The learning rate *�'� and 
the function 7�'� are both time-dependent. These parameters 
are decreased slowly during the learning process in order to 
ensure that the algorithm converges. The following time 
dependencies are used, as in [17]: 

*�'� 	 *8�*96*8�:69
 7�'� 	 78�79678�:69 (4) 

where the constants *8 and 78are the initial values for α (t) and 
� (t), *9 and 79�are the final values, t is the time step and T the 
training length. The algorithm continues to generate random 
input signals x while t<T.  

Starting from an initial sparsely scanned sample of 3D 
points over an object, the neural gas network with a predefined 
number of nodes is trained to adapt its nodes to the point 
cloud.  The number of nodes is chosen according to the size of 
the initial scan as described in [17]. In the context of the 
current work, it varies from 1400 to 2800 for the different 
objects. The other parameters are set as follows: *8 	 ;<= and 78 is set equal to half the number of neurons in the initial map. 
Through this process, the nodes in the neural gas map 
converge toward regions where varying features and edges are 
located, which produces clusters of points in regions where 
more pronounced depth variations are present. The process is 
illustrated in Fig. 1 for the Stanford bunny [18].  
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Figure 1. (a) Full scan of a bunny, neural gas nodes distr
45×50 (up), and identified areas of interest (down) for t

epochs, (d) 10, (e) 25, (f) 40, (g) 60, and (h) 10

  
(a) (b) (c) 

Figure 2. Influence of initial scan size for (a) 32×32, (b)
and (d) 75×75 uniformly sampled poin

Fig. 1a shows the full 3D point cloud
containing 35947 points, and the results obta
an initial sparse scan of approximately 64×6
and an initial number of nodes in the neural ga
The upper rows show in red the distribution
neural gas map after different training epoc
require additional sampling to refine the mode
finding higher density areas in the neural g
done by first applying a Delaunay triangulati
gas output map. Areas of high density of node
by smaller triangles in the tessellation. The m
length of vertices between every pair of n
triangle is set as a threshold. Subsequently, 
triangles that are larger than this threshold ar
the tessellation. The removal of the edges 
threshold ensures the identification of clo
therefore, dense areas of features. Such featur
darker areas in the lower rows of Fig. 1
remaining nodes extracted from the neural ga
rescanning over the regions of interest t
samples of depth measurements. A denser 
model can then be constructed by selectively
initial sparse low-resolution point cloud with t

Fig. 1 also shows that it is beneficial to 
after a reduced number of epochs to ensure
capture details rather than becoming unifor
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improves as expected with an incre
scan, as shown in Fig. 2 that illustr
interest for various numbers of poin

IV. MEASUREMENTS SELECTION W

An alternative computational m
extends on the interpolation form
formulate an original and c
improvement metric which serv
further acquisition of depth meas
interest. By monitoring a relative 
gets computed solely on the basi
given stage in the acquisition p
effectively compressed at acquisi
both an appropriate level of covera
a sufficient level of quality in the 3D

Kriging is an estimation techniq
properties of current measure
measurements at other locations
estimation variance.  Its advantage 
sampling of depth measurements i
estimate of a value at a location
variance on that estimate. Ordinar
(5)-(10), relies on the estimation o>�+�, which is a graph that relat
expect over a given distance, h
semivariogram be related to measu
the Kriging system, the semivario
empirical semivariance of the measu

? 	
@A
AA
AB
>/+�5�
 5��0 >/+�5�
 5��0� C
>/+�5�
 5��0 >/+�5�
 5��0 CD D E>/+�5�
 5��0 >/+�5�
 5��0 C) ) C./5F!0 	 G> -+/5�
 5F!01 > -+/5�
 5F!01 C

H 	 GI�5�� I�5�� C I�57/5F!0 	 ?J�./5F!0 IF/5F!0 	 79/5F!0H KL�/5F!0 	 79/5F!0./5F!
Capitalizing on this framework,

optimal locations to acquire futur
formal measure of potential impro
point can contribute to the overal
scene is derived. Since it is desire
how the error in the estimation is r
unknown point is acquired, the me
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variance to mean ratio (VMR), M��
of the fact that ordinary Kriging p
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the fact that typically, and for mos

here the best extraction of 
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ber of epochs leads to more 
e loss of details around the 
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nts in the initial scan. 
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to the context of selective 
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ry Kriging, defined by eq. 
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h. In order to have the 

ured data, and as a result to 
ogram model is fit to the 
ured data. 
>/+�5�
 5��0 )
>/+�5�
 5��0 )D D>/+�5�
 5��0 )) ;NO

OO
OP
 (5) 

C > -+/5�
 5F!01 )Q9 (6) 
5�� ;Q9 (7) 
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, and in order to determine 
re range measurements, a 
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l 3D representation of the 
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easure of error that is used 
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variance of the estimation, 5F!. The VMR also reflects 
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measurement is located further from the sensor, the error on 
the measurement increases, and is inherently normalized in the 
formulation of the VMR, defined as follows. 

M��/5F!0 	 KL�/5F!0IF/5F!0  (11) 

Now, if in the future, an acquisition is made at a point, 5R, 
it will result in a depth measurement, I�5R�. In order to predict 
the effects of this acquisition before it occurs, the assumption 
is made that the estimated depth value for that point is the 
actual value, namely that 5R 	 5FR and I�5R� �	 IF�5FR�. This 
assumption results in the formulation of eq. (12), which 
represents the new VMR at unmeasured point, 5F!, given the 
previous assumption on point 5R. The difference between these 
two values contributes to the novel formulation for a measure 
of improvement, eq. (13), indicating how much the overall 
knowledge acquired on 5FR via a future range acquisition will 
improve the estimates of all 5F! in the neighborhood of 5FR, or in 
other words, how much improvement in the representation of 
the scene is estimated to be gained by the acquisition of 5FR. 

M��/5F!�5FR0 	 KL�/5F!�5FR0IF/5F!�5FR0  (12) 

��5�5FR� 	 SM��/5F!0  M��/5F!T5FR0
U

!V�
 (13) 

By substituting the formulations of the M��
 eq. (11) and 
(12), into eq. (13), eq. (14) can be developed.  

��5���5FR� 	SKL�/5F!0IF/5F!0  
KL�/5F!T5FR0IF/5F!T5FR0

U

!V�
 (14) 

As KL�/5F!0 and IF/5F!0 are calculated directly from a 
Kriging system, eq. (9) and (10), only the relationships for KL�/5F!�5FR0 and IF/5F!�5FR0 need to be developed, which are the 
results of the Kriging system when 5FR is included among the 
measured points, namely the system that can be formed by eq. 
(15)-(20). Furthermore by comparing the two systems 
represented by eq. (5)-(10) and eq. (15)-(20), it is observed 
that the former contains the later, with the addition of new 
terms, which is determined using the original Kriging system 
where 5F! 	 5FR.  
?W�5FR�

	
@A
AA
AA
B>/+�5�
 5��0� >/+�5�
 5��0� C >/+�5�
 5��0 >/+�5�
 5FR�0 )
>/+�5�
 5��0 >/+�5�
 5��0 C >/+�5�
 5��0 >/+�5�
 5FR�0 )D D E D D D>/+�5�
 5��0 >/+�5�
 5��0 C >/+�5�
 5��0 >/+�5�
 5FR�0 )
>/+�5FR
 5��0 >/+�5FR
 5��0 C >/+�5FR
 5��0 >/+�5FR
 5FR�0 )) ) C ) ) ;NO

OO
OO
P
 (15) 

.X/5F!T5FR0 	 G> -+/5�
 5F!01 C > -+/5�
 5F!01 > -+/5FR
 5F!01 )Q9 (16) 
HY�5FR� 	 GI�5�� C I�5�� I�5FR� ;Q9 (17) 7/5F!T5FR0 	 ?W�5FR�J�.X/5F!T5FR0 (18) IF/5F!T5FR0 	 79/5F!T5FR0HY�5FR� (19) KL�/5F!T5FR0 	 79/5F!T5FR0.X/5F!T5FR0 (20) 

Hence, eq. (21)-(22) can now be developed. 

KL�/5F!T5FR0 	 KL�/5F!0 ( Z.
9/5F!07�5FR�  > -+/5FR
 5F!01[�
>/+�5FR
 5FR�0  KL��5FR�  (21) 

IF/5F!T5FR0 	 IF/5F!0 ( �Z.
9/5F!07�5FR�  > -+/5FR
 5F!01[ /IF�5FR�  I�5FR�0

>/+�5FR
 5FR�0  KL��5FR�  
(22) 

After substituting these results into the improvement 
equation, eq. (13), and by using the properties of the 
semivariogram, namely that the semivariance over zero 
distance is zero, the improvement equation in terms of the 
original Kriging system can be formed, as follows. 

��5�5FR� 	 )KL��5FR�S
Z.9/5F!07�5FR�  > -+/5FR
 5F!01[�

IF/5F!0
U

!V�
 (23) 

From this improvement equation it can be observed that 
there will be � terms summed together which depend on both 5FR and 5F!, and furthermore, the improvement value is to be 
computed at each of these points.  In the current formulation, 
each of these terms needs to be calculated for each 5FR and then 
summed. But by careful selection of the semivariogram model, >�+�, an improvement formulation is created where the 
summation does not depend on 5FR, and hence the summation 
depending on 5F! only needs to be performed once.  Selecting 
the semivariogram model defined in eq. (24) meets this 
criteria, when � 	 \.  Unfortunately this case yields an 
impermissible semivariogram, where the resulting Kriging 
system may have singular matrices.  To solve this issue, an 
approximation where � 	 \  ] is used in the Kriging system 
when determining the terms of the Kriging system to prevent 
the use of singular matrices. 

> -+/5FR
 5F!01 	 �+^/5FR
 5F!0 ( _` -+/5FR
 5F!01 (24) 

+/5FR
 5F!0 	 a/�LR  �L!0� ( /bLR  bL!0�c
 (25) 

`�+� 	 d;
���+ 	 ;)
���+ e ; (26) 

where 5FR and 5F! are located at the coordinates ��LR
 bLR� and /�L!
 bL!0 respectively, while � and _ are the fitting parameters 
of the semivariogram model. Combining the semivariogram 
model where � 	 \, eq. (24), fitted on the local neighborhood 
of 5FR with the improvement measure, eq. (23), and expanding 
the formulation, a final estimated improvement, eq. (27), is 
developed for all locations within the field of view of a sensor.  

��5�5FR� 	 �
fgc�hLi� j79�5FR� Zk �l/hLm0ln/hLm0�oF/hLm0

U!V� [ 7�5FR�  /\�/�LR� (
bLR�� ( \_0 Zk �ln/hLm0oF /hLm0

U!V� �[ 7�5FR�  \� Zk �ln/hLm0/pLmcqrLmc0oF/hLm0
U!V� �[ 7�5FR� (

s��LR Zk �ln/hLm0pLmoF/hLm0
U!V� �[ 7�5FR� ( s�bLR Zk �ln/hLm0rLmoF/hLm0

U!V� �[ 7�5FR� (
-��/�LR� ( bLR�0� ( \�_/�LR� ( bLR�0 ( _�1 Zk �

oF/hLm0
U!V� [ (

/\��/�LR� ( bLR�0 ( \�_0 Zk /pLmcqrLmc0oF/hLm0
U!V� [  /s��/�LR� ( bLR�0�LR (

s�_�LR0 Zk pLmoF /hLm0
U!V� [  /s��/�LR� ( bLR�0bLR ( s�_bLR0 Zk rLmoF/hLm0

U!V� [ (
�� tk /pLmcqrLmc0coF/hLm0

U!V� u  s���LR Zk /pLmcqrLmc0pLmoF/hLm0
U!V� [  

s��bLR Zk /pLmcqrLmc0rLmoF /hLm0
U!V� [ ( s���LR� Zk pLmcoF/hLm0

U!V� [ (
v���LRbLR Zk pLmrLmoF /hLm0

U!V� [ ( s��bLR� Zk rLmcoF/hLm0
U!V� [w ( �x

oF�hLi�  xc
fgc�hLi�oF�hLi�  

(27) 

This formulation leads to a bi-dimensional improvement 
map where areas of higher potential improvement are put in 
evidence, similarly to the clusters of nodes obtained with the 
neural gas approach described in section III. 
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V. EXPERIMENTAL EVALUATION 
The evaluation of the proposed computational methods is 

performed using range images acquired with the Microsoft 
Kinect for Xbox 360 sensor which uses a structured light 
approach to efficiently generate a dense distribution of depth 
measurements. Data acquisition was accomplished with the 
open source OpenNI drivers, the depth sensor resolution set at 
640x480, over scenes at about 2 m depth which provides a 
spatial resolution of 1 cm along the depth axis. 

Three different scenes are considered here to support the 
experimental evaluation. The first case consists of a standard 
computer workstation exhibiting various planar surfaces with 
different reflectance characteristics, as shown in Fig. 3a. The 
second scene is that of a large exercise ball, shown in Fig. 3b, 
which is selected for its curved and smooth surface. Finally, a 
more elaborate scene, composed of a fire hose station 
surrounded by pipes over a flat wall, shown in Fig. 3c, supports 
the validation of the computational methods over complex 
shapes and a wider range of depth values. All scenes are 
initially acquired with the Kinect sensor in order to provide 
datasets, shown in Fig. 4, from which a collection of sparse 
depth measurements is extracted via uniform subsampling to 
initialize the selective sensing procedure. As reported in section 
III, the selection of depth measurements to acquire in the future 
tends to improve with an increase in the density of the initial 
sparse scan. Therefore a compromise between the quality, the 
compactness, and the speed of acquisition of the resulting 
model was experimentally determined. It involves a uniform 
subsampling to be performed over the raw data to extract 
uniformly distributed 3D point clouds composed of 128x128 
depth measurements over each of the three scenes. This 
subsampling provides the initial rough acquisition to initialize 
the measurements selection procedures, which are both based 
on previously acquired knowledge about a scene rather than on 
user selected parameters. 

The approach based on neural gas is applied on every 
dataset, initially subsampled at a 128x128 density, and the 
resulting location of dense neural gas nodes highlights the 
regions of interest where further acquisitions are worthwhile to 
be conducted to refine the definition of the scene. In this case 
the regions identified for further exploration are marked by 
dark triangles in the center column of Fig. 5. The improvement 
metric method is similarly applied on the datasets and an 
improvement map is computed, following the methodology 
described in section IV. The resulting improvement maps are 
displayed in the right column of Fig. 5. Brighter (white) areas 
represent those with the highest potential for contributing to 
increase the knowledge about a scene, and darker regions 
(black) are those where further time and energy spent at 
acquiring depth measurements is not likely to contribute 
significantly to knowledge and accurate modeling of the scene. 
Gray pixels map intermediate improvement potential on a 
continuous 0-1 (black-to-white) scale. 

One can notice in the set of comparative figures that the 
two methods succeed to identify, in spite of their different 
approach, most of the areas that require additional scanning to 

improve the model. In the current implementations, only depth 
information is used to monitor regions of interest over which 
further acquisition should be prioritized. This is motivated by 
the fact that the methods were developed to accommodate a 
diversity of range sensors, including laser triangulation and 
LIDAR sensors that do not provide color or texture 
information. Close examination of Fig. 5 also confirms the 
sharpness of the regions of interest identified by both 
measurements selection methods while relying initially only 
on a very low percentage (about 5%) of the information about 
the scene to further drive depth measurements collection. 

For the neural gas nodes distributions, the smaller the 
density of the initial scan, the smaller number of nodes is 
needed to extract the topology of the scene, but more training 
epochs are required to ensure the correct identification of 
regions. This approach also calls for a number of internal 
thresholds to be tuned in order to optimize the outcome, which 
is not the case for the formal improvement metric approach. 

 
a) b) c)

Figure 3. Three scenes supporting the experimental evaluation: computer 
workstation, exercise ball, and fire hose station. 

 
a) b) c)
Figure 4. RGB-D datasets acquired with Kinect sensor. 
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Figure 5. Depth measurements selection computational methods applied on 
three different scenes acquired with Kinect sensor. 
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The correspondence between regions of interest identified 
by both methods is evidenced in all sets of results. However, 
the improvement metric method tends to highlight the edges 
and contours of components of the scene, where depth 
transitions occur, as denoted by white pixels in all 
improvement maps. The method therefore concentrates in the 
areas of transition between the shape of the object and the 
background, or between various components of the scene at 
different depths, resulting in a clean definition of the object 
boundaries. On the other hand, the neural gas method 
concentrates clusters of nodes over sections of the surface of 
the objects. The complex fire hose station scene exemplifies 
this behavior. The neural gas nodes tend to obtain regions that 
are overall more uniformly spread, resulting in the 
identification of regions over the surface of the object. As a 
result, the improvement metric method appears as a very 
efficient technique for edge detection in depth maps or 3D 
models. Alternatively, the neural gas measurement selector 
provides an efficient approach to rapidly acquire a compact 
representation of a scene from only a very sparse set of 
measurements. Both methods can therefore find application in 
rapid scene understanding and object recognition, beyond their 
suitability to dynamically drive the acquisition process with 
random access range or RGB-D sensors. 

TABLE 1. Computing time for obtaining the neural gas nodes distribution 
(NG), and the improvement map (ImpMap) on objects acquired with Kinect. 

Computer Exercise ball Fire hose 

NG ImpMap NG ImpMap NG ImpMap 

153.0 s 1.39 s 153.9 s 1.41 s 150.0 s 1.41 s 

Tables 1 summarizes the computation time required to 
obtain the neural gas nodes distribution and the improvement 
map, both marking the regions of interest. A significant 
difference is observed in between the computing time required 
to obtain neural gas nodes distribution and improvement maps. 
However, these are reported only to demonstrate independence 
to the scene complexity of both methods, and not as absolute 
values given that the two computational methods are 
implemented in different manners and on different platforms. 
While the improvement metric method is coded in optimized 
C++ language and executed on an Intel I7-2630 processor 
operating at 2.6 GHz, the neural gas method currently runs on 
the Matlab platform and is not optimized. 

VI. CONCLUSION 
Two computational methods for the selective acquisition of 

depth measurements with range sensors in autonomous 
machine perception have been detailed. An experimental 
validation demonstrated the effectiveness of the proposed 
techniques to selectively and automatically determine which 
regions of a scene should be prioritized for the acquisition of 
supplementary data to progressively enhance knowledge about 
that scene while minimizing the load of the acquisition process 
and further data processing. Such a capability proves essential 
when operating slower range sensors or random access laser 
range sensors, as the acquisition can be significantly 

accelerated. The methods also find application with faster 
sensors, such as Kinect devices, to efficiently detect the 
boundaries, location and shape of objects, and therefore support 
the operation of objects recognition processes. 
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